
Nintendo Etherstream
Vassilios Kaxiras

Physics
Harvard College

Cambridge MA, USA
vkaxiras@college.harvard.edu

Christine Imogu
EECS

Massachusetts Institute of Technology
Cambridge MA, USA

ccimogu@mit.edu

Karen Liberman
Department of Computer Science

Massachussetts Institute of Technology
Cambridge, MA, USA

karenlib@mit.edu

Abstract—This project allows for the use of a JoyCon to
interact with a game that will be displayed on any computer
screen. The game will be a simple 2D game, where players
can move in a singular direction at a time and shoot at their
opponents. The Joycons for each of the players interacts with
a computer through Bluetooth, which sends the information
through Ethernet to the FPGA, and the game dynamics are
processed within the FPGA. The FPGA will then render the
game into 3D graphics. The game graphics will be sent over the
Ethernet to the computer, utilizing ARP, UDP and RTP processes,
and thus can be displayed by any such device that has access to
the internet. We evaluate its performance by analyzing how fast
the game and graphics react to changes in the JoyCon as well
as the quality of the 3D graphics.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are known for
their quick computation speeds. We take advantage of this
property with this project Nintendo Etherstream.

II. PHYSICAL CONSTRUCTION

The main components of our system are:

1) Joycon controllers.
2) Bluetooth HID controller and UDP forwarder imple-

mented in C# on a regular laptop. This controller will
parse commands from a set of Joycons, sent over Blue-
tooth, and will package them with minimal processing
into UDP packets, sent over Ethernet to the FPGA.

3) Nexys 4 FPGA. We utilize the Ethernet PHY built in to
this device to communicate with the Bluetooth controller
and playback machines.

4) Playback laptop. This listens to the RTP stream gener-
ated by the FPGA and plays it back, using an off-the-
shelf H.261 decoder.

III. JOYCON INFORMATION TRANSFER

A. Connecting Joycons

For the FPGA to successfully pair and communicate with
the Joycons directly using Bluetooth, a Bluetooth-HID stack
is needed. As a workaround, using C#, we search for Joycons
to pair with on a computer and initialize a JoyConManager
object that keeps track of the states of all connected Joycons,
for example, button presses.

B. UDP Forwarder

The inputs from all connected Joycons are merged into a
byte string, and the UDP header sub-components – the source
port, destination port, length, and checksum are identified and
calculated. The UDP packet is sent over Ethernet to the FPGA.

C. Decoder

The bit stream received by the FPGA is decoded by an the
ReceiveUDPModule. It utilizes an FSM that first reads the
IPv4 header and stores it to a buffer, then does the same to
the UDP header, and then receives and parses the payload,
matching to the associated command of each player. The
data is received one byte at a time, and a counter is used
incrementing by 8 to insert the bytes at the correct location.
This results in the following FSM states:

1) RECEIVE IP HEADER
2) RECEIVE UDP HEADER
3) RECEIVE PAYLOAD

The RECEIVE PAYLOAD part parses the byte utilizing the
following byte format: (0, player movement (3 bits), 0, player
shooting (3 bits)). The corresponding player information is
identified based on the ordering of the packet receipt. So the
first byte in the payload corresponds to Player 1, second to
Player 2, etc. This is done by another FSM that leads to
the next player as each byte is received, then back to the
RECEIVE IP HEADER when the final player is reached.
ReceiveUDPModule then sends out all the player movements
and positions at the same time, utilizing a valid out.

IV. GAME LOGIC

A. Game Functionality and Rules

The game is played on a 2D plane, and each player has
the ability to move up, down, right and left, moving only one
direction at a time but unable to move outside of the borders
of the screen. To facilitate the interaction with multiple parts,
the game was hardcoded to have 3 players. Each player also
has the ability to shoot in each of the 4 previously mentioned
directions even while it moves (up, down, right, left), but the
bullets are unaffected by a players direction and only move in
a straight line in the direction they were initially launched. A
player only has 1 bullet to shoot with, and their bullet resets
allowing them to shoot again whenever their bullet comes in



contact with a wall. If a player’s location overlaps with the
location of a bullet at any point in time, the game ends and
that player loses. The game then immediately resets.

The game logic is taken care of by four modules, ’Shape
Party’, ’Move Boxes’, ’Move Bullets’, and ’Bullet Master’.
The all the modules and elements within ’Shape Party’ are
written combinationally, and the clock it receives is used
to send into the modules it calls. The other 3 modules are
sequential, utilizing a game clock that will control the rate at
which things move. The game was made as simple as possible
minimizing the number of elements required, so as to facilitate
the job of the 3D Encoder.

B. Managing Player Locations

Player locations are managed by a module called ’Move
Boxes’. This module will receive the information sent by each
JoyCon whose transfer was explained in the previous part.
For each of the JoyCons, the information being conveyed
will be two numbers - ’Moving Direction’ and ’Shooting
Direction’ - each of size of 3 bits. Five values are valid for
either one of these numbers, and they are be mapped to up,
down, right, left and neutral. The ’Move Boxes’ module will
only be utilizing one of these numbers, ’Moving Direction’
which communicates the direction the player should move.
This module will update the location of each player at every
clock cycle by adding or subtracting a locally defined variable
MOVE AMT to the x or y location variable, and pass that
location along to ’Shape Party’. ’Move Boxes’ also receives
in the 2 bit variable ’dead’, and if ’dead’ is ever different than
0, it resets the locations of the players to their starting spot.

C. Controlling Projectiles

Projectiles are controlled by ’Move Bullets’ and ’Bullet
Master’, and their location is updated every game clock cycle
with the one directional movement of a projectile. When
a projectile is launched in a direction, as is conveyed by
the ’Shooting Direction’ value each JoyCon transferred (as
explained in the previous subsection), the ’Bullet Master’ will
receive that information. It then parses that received value
with an FSM to then send it to the ’Move Bullets’. There
is an FSM for each of the 3 bullets being controlled. There
are 5 states in the FSM: NEUTRAL, RIGHT, LEFT, UP,
DOWN, and the state corresponds to the current parsed value
for the bullet. In the NEUTRAL state, the parsed value simply
becomes whatever state corresponding to the value received by
’Shooting Direction’, because that means we currently don’t
have a bullet being shot. In the other 4 states, parsed is stuck
at that state until the bullet reaches a location a the edge of the
screen in the direction it is flying in, and then parsed returns
back to NEUTRAL.

’Bullet Master’ compares the location of each bullet to the
location of its enemy players at every clock cycle. It there
is an overlap between them, it changes the variable ’dead’
to the number of that player for 1 clock cycle (then returns
it to 0), indicating the player that lost. The ’Bullet Master’
module calls the ’Move Bullets’ module, passing in the parsed

direction for each bullet, as well as all box (player) locations,
and it receives back the bullet locations. ’Bullet Master’ then
sends the bullet locations to ’Shape Party’, the module that
called it. ’Move Bullets’ also has an FMS for each one of the
bullets, with the same 5 states NEUTRAL, RIGHT, LEFT, UP,
DOWN. At the neutral state, the bullet is set to the location of
the center of its corresponding player box. At all other states,
its x or y location is incremented by a locally set parameter
MOVE AMT.

D. Game Logic

The ’Shape Party’ module is responsible for uniting the
game logic together. It calls ’Move Boxes’ and ’Bullet Master’,
passing between them the information each other needs. It
passes along to the 3D graphics the location of all the players
and bullets, as well as the dead variable, describing the state
of each player.

This module can be adapted to function together with a
video signal generator and block sprite creators for each
player and bullet elements that return the colors of pixels
corresponding to the box locations. This was created and
utilized to facilitate testing, though not necessary in the actual
final design.

V. NETWORKING

We use the Nexys 4 FPGA because of its integrated Mi-
crochip LAN8720A Ethernet PHY. An Ethernet Media Access
Controller (MAC) for transmitting is implemented (we did
not get to the receiving one). The main components of the
networking stack are described below:

1) BitwiseRTPModule. We send video over RTP; the
RTP sender module keeps a running sequence number
(initialized to a random number) that it increments on
each RTP packet emitted. This also sets the ssrc to a
hard-coded value, while the timestamp is passed from
the packetizer.

2) mac_transmit. This is the MAC transmitter. It re-
ceives data one byte at a time. This is implemented
with a state machine, that proceeds through each
portion of the frame byte by byte. The bytes are
then converted to dibits by a separate module named
byte_transmitter.

3) crcbzip2. This calculates the Ethernet checksum us-
ing a large table. It is used by the MAC transmitter.

We had an interesting challenge with the data flow for
packets. Since we use RTP, there are several length fields that
have to be filled out in the packet headers before we can write
the packet data. This required knowing the size of the packet
before starting the writing process, which we achieved using
a packet buffer, of size 12000 bits in BRAM. This buffer was
filled with an entire packet before it was sent out.

The RTP, UDP and IPv4 transmitters were made in the same
module. All the data this module receives from its previous
module is bit by bit, but the module sends out data byte by
byte, sending the most significant bytes first, but within each
byte, ordered by the least significant bit first. The outermost



header is the IPv4, inside it is contained the UDP, and within
the UDP is the RTP and then the payload. The module
involves an FSM machine with IDLE, SEND HEADER, and
SEND PAYLOAD states. In the IDLE state, the module waits
to receive a prepare for data command, which signifies that
the header should start being sent. With that command, the
payload size is stored, the state changes to SEND HEADER
and the IPv4, UDP and RTP headers are created. The UDP
and IPv4 headers require the size of their package, which
is computer combinationally putting together the size of the
headers within it, as well as the payload size received. The rest
of the information is hardcoded. The RTP adds in a marker
and timestamp the module receives, the rtp sequence that is
calculated, and some hardcoded elements including the SSRC.
The rtp sequence value is initiated to a random number upon
reset to for security reasons. Then, that number is incremented
with every packet sent, so that the receiver can keep track of
packet orders.

In the SEND HEADER state, the full header that was put
together combinationally is sent out 8 bits by 8 bits, using
a bit counter incremented by 8 and a valid out. When the
full header is sent, the state is set to SEND PAYLOAD, and
the ready for data variable that is outputed by the module is
set to 1, allowing the module that calls it to start sending
data. The bit counter continues being incremented in the
SEND PAYLOAD state, until it reaches the size of the full
header plus payload size, at which the state returns to IDLE.
THE SEND PAYLOAD state increments a new variable,
byte counter, that is reset whenever it is ¿7 and is utilized
to put each one of the bits received into a byte as a buffer,
and then sets valid out to 1 to send that byte and starts again.

Additionally, we implement a Serial Management Interface
(SMI) module to read and write to the control registers of the
Ethernet PHY. This is used to detect when the Ethernet auto-
negotiation procedure is complete, which is displayed on one
of the board LEDs.

VI. GRAPHICS ENGINE

This module takes in the 2D pixel coordinates and colors
of the game, and projects it onto a 3D plane. The components
required for this transformation include:

A. Creating the Polygon Mesh

The game state is tracked using the positions of the players’
and their bullets in 2 dimensions. Creating a mesh of triangles
with a specific angle of rotation at any axis and size is possible
with the created cubemodel.py file. This generates a .mem file
for a BRAM that is used to project game objects’ 2D locations
to a 3D space.

B. Vertex Shader

Given that the game is originally in 2D space, each polygon
will have a default value in one axis. Next, for each 3D
polygon in the rendering space, the vertex shader transforms
the attributes of its vertices using the camera position which
is by default at (0, 0, 0), resulting in 2D-polygons that can

be displayed on a screen. It does this by scaling the 3D-
dimensional vertices in terms of the specified distance to the
screen. The vertex of each pixel is converted and then stored
in a BRAM.

C. Pixel Shader

The pixel shader is related to the rendering 2D-window i.e.
the game screen, and determines the color of each pixel. It
does this by identifying the containing 2D-polygons of each
pixel using output from the vertex shader and calculates the
distance between each polygon and the camera at that pixel
location. The resulting pixel color depends on the overlapping
polygon with the highest relative z-index.

Finding the 2D-polygons was done by the intriangle module.
The original mathematical approach to determine if a point is
inside a triangle involves calculating Barycentric coordinates
which involves 3 cross products resulting in an additional
latency of around 50-ish clock cycles. Using unconventional
math with clever sign checks and the constraints of our system
which is bounded by the screen, this computation was reduced
to 3 to 5 clock cycles. We also reduced the latency of coloring
the screen by reducing the search space of the triangles using
its vertices instead of searching the entire screen.

Calculating the z-index of each triangle at a location in-
volves pre-calculating the 3-dimensional normal of the plane
containing the triangle using the cross-product sub-module.
This allows us to do fewer computations per pixel, and halves
the latency as a result. The normal is then used along with the
dot-product module to calculate the normal using the equation:
O·n
r·n , where O is the vector from the camera to a vertex on the
triangle, n is the normal, and r is the vector from the frame
to the camera.

Ideally, this information would be passed into another
buffer, so that the z-index of at each location at the screen
could be read before overwriting, but this results in an extra
2 cycle latency for each pixel in the screen. A solution to this
problem is yet to be found.

D. Future Work

Due to the limited time to work on this module, it was
difficult to efficiently implement matrix operations which are
needed for light and shading. After some research into efficient
algorithms such as Strassen’s and using Gaussian elimination,
it appears that for 3 × 3 matrices, it is best to follow the
classical algorithm in mathematics. However, this still results
in an overall large latency.

VII. VIDEO STREAMING

The video generated by the 3D graphics engine and de-
posited in the framebuffer is encoded via the H.261 protocol.
[1] In order to ensure the frame fits in BRAM, we use the
QCIF format (176 x 144 pixels). The encoding protocol is
implemented with a state machine, of the following high-level
states:

1) PICTURE HEADER: Output the 4 byte picture header.



Fig. 1. Block diagram of networking, game logic and video encoding subsystems. Boxes are modules, while the hard drive icons are BRAM.

2) GOB HEADER: Output a 26-bit Group of Blocks
(GOB) header.

3) MACROBLOCK HEADER: Output the variable-length
Macroblock header.

4) BLOCK DATA: Generate the variable-length coded
(VLC) pattern representing all 6 blocks in the current
macroblock and append it to the bitstream.

The DCT is implemented with a separate secondary module.
The DCT is described by the following equation:

F (u, v) =
C(u)C(v)

4
×

7∑
x=0

7∑
y=0

f(x, y) cos[π(2x+ 1)u/16] cos[π(2y + 1)v/16]
(1)

where u, v are the transformed coordinates, x, y are the real-
space coordinates, and C(a) = 1/

√
(2) if a = 0 or else 1.

The number of possible arguments to the cos above is 64,
so we store the entire set of 64 ∗ 2 possible values in the
summand (the 3 comes from the possible values of C(u)) in
distributed memory. Then we index into this memory 64∗64∗2
times and sum all the terms together, to obtain the final DCT
coefficients. All values are stored as double-precision floats (a
total of approximately 1 Mb BRAM), and the summation is
done using the Xilinx floating point IP for double-precision.
[2]. In total, we use an IP block for converting the fixed-point
integer inputs to floating point, another block to multiple the
two cosine values together, a third to multiply-and-add, and
a fourth to round the result to fixed point. Unfortunately, we
did not get to integrate this into the main encoder, but tested
it separately.

Each transformed value in the output of the DCT is variable-
lenth coded per the H.261 spec using a large number of nested
switch statements. These variable length codes are then read
out separately.

Additionally, the encoder module generates a 90,009 Hz
clock by dividing the 100 MHz master clock by 1111. This
clock is sampled at the SAMPLE state of the encoder state
machine, which generates the timestamp associated with that
frame. This timestamp is passed up through the packetizer to
the RTP transmitter.

The stream is then packetized using a separate module. This
packetizer splits the bitstream along macroblock boundaries. It
receives a single bit from the encoder, and buffers the stream,
waiting for the end of a macroblock (detected with a singe
cycle assert from the encoder). When it reaches the beginning
of a new macroblock, it checks if the current packet size is
larger than 2048 bits. If so, it then single-cycle asserts the RTP
transmitter that the first packet buffer is ready for transmission.
While the buffer is being sent, we pause the encoder.

VIII. DESIGN EVALUATION

A. Latency, Throughput and Overheads

Graphics Engine: The vertex shader takes 3.5 microseconds
at a 100MHz clock. This results in a significant delay between
when a player moves and a change is made on the screen.

Video encoding
1) The DCT video pipeline needs at little more than 4096

cycles to perform the 64 calculations per 64 entries in
a block. We use 6 DCT modules in parallel so we can
compute one macroblock in 4096 cycles or so. Since
there are 99 macroblocks in a QCIF frame, this gives
a total computation time of just over 400,000 cycles,



or about 4 milliseconds. This is well within the 33
millisecond limit for 30 frames per second.

2) When encoding a block, we may have to write up to 20
bits per level, which corresponds to 33 ∗ 6 ∗ 64 ∗ 20 ≈
250, 000 bits, which can be written in about 2.5 ms.

B. Timing Requirements

We avoided large combinational blocks, so we had not
issues meeting timing requirements.

C. Use Cases and Deliverables

Our minimal goals were partially reached, as well as some
of our ideal goals The game has been fully implemented, and
it handles the use cases of actions by 3 players. The system is
able to fully receive UDP packets, as well as send RTP packets
utilizing MAC. For future versions, some improvements could
be made. Our system is not well created to handle the use cases
of packet errors, corruption or loss. The checksum available
in the IPv4 and UDP packet headers were not utilized (they
are optional), and an improved version would utilize those to
better ensure data transmission quality. Another use case that
could be implemented without too many changes would be
to make the number of players variable. To do that, one of
the unused bits in the Joycon to UDP to FPGA transmission
payload could be used to indicate whether a player is in the
game or not, and if statements will be implemented throughout
the game logic utilizing those bits corresponding to each player
to decide whether to consider the player in the game logic or
not.

IX. CONTRIBUTIONS

Karen designed the game logic, and the modules that
manage player and bullet locations. She created an interaction
utilizing elements from a 6.205 class lab to test the perfor-
mance of the game. Karen created the UDP decoder, as well as
the IPv4, UDP, and RTP transmitters, doing research into what
their formats and headers are, and how they work together.
Karen also helped making the code for the BLOCK VCL,
creating the code matching values to VLC table for TCOEFF,
as well as the variable-length encoding (block transform and
TcoeffTable modules).

Christine implemented the Graphics Engine, making the
Vertex Shader and Pixel Shader as well as the math formu-
lation and research required. She also researched existing C
code that connects to JoyCons to a computer, as well as C
code to send that information through a UDP package for the
UDP Forwarder.

The code used communicate with the Joycons through SPI
and Bluetooth was largely based on JoyconLib, the Joycon
Library for Unity, and the UDP server/client was originally
written by Louis Erbkamm.

Vassilios created the Ethernet Media Access Controller
(MAC) to receive and send packages. He also coded
most of the video streaming modules, creating the SAM-
PLE, P HEADER, GOB HEADER, MACROBLOCK and
BLOCK DCT, as well as helping debug the BLOCK VCL.

REFERENCES

[1] GCCITT, SGXV. ”Video Codec for Audiovisual Services at p 64 kbit/s
Recommendation H. 261.” (1993).

[2] AMD, Xilinx. ”Floating-Point Operator.”
https://www.xilinx.com/products/intellectual-property/floating pt.html.


