
Anglerfish: A Novel Pacing System for Swimmers
with Stereo Camera Tracking

1st Brian Li
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

brianli@mit.edu

2nd Viveca Pannell
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

vlpannel@mit.edu

Abstract—The Anglerfish system is a swimming training tool
that aims to help swimmers achieve their pacing targets by
displaying a light emitting diode (LED) light target for them to
follow underwater. The system provides accurate pacing via the
“speed” of the moving target, it also records athlete lap times
and slows down the target to allow an athlete who has fallen
behind to catch up to the target and resume following the pacing
target. This function requires knowledge of where the swimmer
is located in the pool, which is estimated using a stereo camera
setup. The Anglerfish system is currently in development, and we
have created a prototype that implements all of its main features
(LED pacing target, split times, and swimmer location detection)
on a pair of field programmable gate arrays (FPGAs). We present
a prototype of this pacing system, having implemented a stereo
image matching algorithm for distance detection, FPGA control
over an LED strip, and simultaneous and real-time image data
collection from two cameras to implement the image processing
in real-time.

Index Terms—FPGA, image processing, LED, neopixel, SPI,
stereo camera

I. PHYSICAL CONSTRUCTION (BRIAN)

The hardware components of this project include:
• 2 OV7670 Cameras that are spaced 2.5” apart that collect

stereo image data
• 5 meter WS2811 LED NeoPixel strip which is used to

make the light target for the swimmer to follow
• IR TX/RX modules used for low data rate link between

FPGAs to send swimmer’s time stamps
• 2 Urbana FPGAs

II. STEREO IMAGE PROCESSING (BRIAN)

We focused our project on the aspect of stereo image
processing that is most computationally intensive: identifying
distance (also referred to as disparity) between corresponding
pixels in left and right images. An example of a disparity map
is shown in Figure 2. Once we have the disparity map, it is

Report not published. Submitted to 6.205 staff 13 December 2023. (Cor-
responding authors: Brian Li, Viveca Pannell.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA (email: brianli@mit.edu; vlpannel@mit.edu).

This article has supplementary downloadable material available at https:
//github.com/brieonbread/anglerfish.git, provided by the authors.

Fig. 1. FPGA pinouts, adjusted to handle two cameras and LED strip signal

easy to calculate the distance associated with a given pixels by
using information about the geometry of our system setup. For
this matching problem, we decided to implement an algorithm
called Sum of Squared Differences (SSD).

In essence, SSD takes a block of pixels in the left image and
a block of pixels in the right image, whose sources are offset
by some given distance, and subtracts the blocks, squares
the differences, and then sums everything together to come
up with a similarity metric. The lower this metric, the more
similar the blocks are to each other. Note that the size of the
blocks, n, is the most important parameter, as it affects not
only the performance of the algorithm but also the hardware
we configure on the FPGA as detailed in the sections below.
By repeating this calculation for blocks of pixels and changing
the offset distance, d, by one pixel each time, we can find the
d at which the SSD is minimized. We then save this d into a
block random access memory unit (BRAM) and repeat for all
pixels in the image. This data then allows us to look up the
distance of the swimmer assuming we can identify their swim
cap using masking and a center-of-mass (COM) calculation.

Fig. 2. Left: left camera view, Center: right camera view, Right: disparity
map from SSD

mailto:brianli@mit.edu
mailto:vlpannel@mit.edu
https://github.com/brieonbread/anglerfish.git
https://github.com/brieonbread/anglerfish.git


A. Obtaining Simultaneous Stereo Image Data from OV7670
Cameras (Viveca)

In order to enable the central FPGA (which performs the
stereo image processing, camera data collection, and split
time output) to simultaneously use two cameras as well as
an infrared (IR) receiver, the pinouts used for integrating the
OV7670 board with the FPGA’s communications had to be
altered, and the two cameras had to share one clocking pin
while they used up all available pmod and gpio pins. Our new
assignment of pinouts allowed the FPGA to simultaneously
use two different cameras, using a switch to select which
camera’s data was being streamed to a display via high
definition multimedia interface (HDMI) communication. In
accordance with advisor feedback about the importance of
rising clock edges, we specifically chose a pin assignment
such that the servo pins on the FPGA (which, due to being
connected to a larger resistance than other pins cause weaker
rising edges) to be used for the horizontal sync signal of the
second camera rather than the shared clock or any other signals
that may require a sharp rising edge.

B. Stereo Vision Testing and Debugging Tools (Viveca)

In order to help with the development of the camera
pipelines and stereo vision depth sensing modules, we devel-
oped a module to allow an FPGA to completely transmit the
contents of an entire BRAM onto a computer, communicating
this data via the universal asynchronous receiver-transmitter
(UART) protocol. The module, given an enable signal, se-
quentially queries data entries in a BRAM and send them via
the FPGA’s UART transmission output. This way, a computer
that is receiving serial data and is connected to the FPGA’s
UART connections can read the data that the BRAM readout
module gives it.

The module is governed by a simple FSM. The FSM shifts
between states IDLE, INIT, SET DATA, and SEND DATA. In
each state respectively, the module: waits for a signal to begin
dumping data and ensures that it has not already sent all data,
requests the first data entry from the BRAM and waits for that
data to be output (since BRAMs take two cycles rather than
one in order to produce valid and correct output), requests the
next data entry from the BRAM while saving the current data
to a register, and waits for the UART transmission module to
signal that it is done before sending the data and transitioning
back to SET DATA or INIT (if done sending all data).

This version of BRAM readouts was a vast improvement
upon its previous incarnation as a camera readout via manta1,
a Python-based hardware debugger. It is much faster to directly
communicate via UART.

C. Memory Architecture (Brian)

According to its datasheet, the Urbana FPGA has 120
BRAMs for a total of 4.2 Mb of on onboard storage. Each
image from our cameras is 320 by 240 pixels, which is roughly
0.5 Mb for each image for 8 bits per pixel, so we had enough

1https://fischermoseley.github.io/manta/

Site Type Used Fixed Prohibited Available Util %
Block RAM Tile 72 0 0 75 96.00
RAMB36/FIFO* 72 0 0 75 96.00
(RAMB36E1 only) 72
RAMB18 0 0 0 150 96.00

TABLE I
OUR BRAM UTILIZATION ON THE FPGA ACCORDING TO THE

POST-SYNTHESIS REPORT

storage onboard to have one BRAM frame buffer from each
camera. For our memory architecture, we decided to use two
dual-port BRAMs with 12800 entries total (320*40), where
each entry corresponded to a set of n pixels. With each pixel
represented by 8 bits, each entry required 8n bits of data.
Figure 3 shows an example when n = 6. By storing all of
the pixels required for a row of SSD calculation in a single
word, we were able to reduce the number of cycles where
we needed to wait in order to get data from the BRAMs and
take advantage of the spatial structure of the SSD calculation.
In addition to the left/right frame buffers, we also made use
of a single port BRAM with 76800 entries (320*240), with
each entry corresponding to the disparity calculated for that
pixel. The maximum disparity is 240 (the number of columns
in the frame) and thus each word in this BRAM is 8 bits wide.
Overall, our memory architecture ended up using 96.00% of
our BRAM resources.

Fig. 3. Image data stored in 2 BRAMs where each word correspond to a set
of n pixels

D. SMAC Engine Architecture (Brian)

In order to perform the SSD calculation for the block of
pixels in the left and right images, we proceeded by calculating
the SSD for the first row in the block, then the second row in
the block, and so on. To do this, we first implemented a 48-
bit SMAC engine, which takes in two 48-bit numbers. Each
set of 8 bits corresponds to a pixel, thus each SMAC engine
takes in 6 pixels to process at once. For each set of pixels,
the engine takes their difference, squares the difference, and
then accumulates the result in a flip flop as shown in Figure
4 Thus, each SMAC engine allows us to compute the SSD
metric for six pairs of left/right pixels in one clock cycle.
We furthermore took advantage of our memory architecture

https://fischermoseley.github.io/manta/


to compute the SSD metric for an entire block in one clock
cycle by placing n SMAC engines in parallel. This is shown in
Figure 4. As they progress down each row, the SMAC engines
accumulate the SSD metric down each column. At the end of
this process, the system can sum together the values in the flip
flops across all the SMAC engines in order to get the SSD
metric for the given set of left/right blocks. An important note
is that while in theory (and if we had more time) we could
calculate the SSD metric in a single clock cycle, in practice we
added registers to break up some of the combinational logic
and avoid timing issues. Thus, each calculation actually takes
3 cycles to complete.

Fig. 4. 48 bit SMAC Engine, our implementation uses n 48-bit SMAC engines
in parallel

E. Putting it all together (Brian)

In order to implement stereo matching, we also required a
few additional components. In order to compute the disparity
for a given pixel, we needed to calculate SSD for multiple sets
of blocks where the right block has various offsets compared
to the left block. This meant that pixel values could get
reused multiple times. To avoid having to read the same
pixel values multiple times from the BRAMs, which would
introduce additional cycles of delays, we also implemented a
set of temporary buffers. There are four buffers total, two wired
with the left image buffer and two wired to the right image
buffer. Each buffer contains 6 registers, which each stores one
word of size 8n bits.

Fig. 5. Most blocks don’t fit within a single set of words so we employ a
front and back temporary buffer so we can access all data needed for these
blocks without constantly reading from BRAM

The reason we needed two temporary buffers for each image
buffer (as opposed to just one) was because, in most cases,
the pixels in a given block didn’t fit exactly in a single word.
Rather we needed to read two words from the BRAMs in order
to get the complete set of data. There is an example of this in
Figure 5. In order to update these buffers as the pixels positions

change, we wrote a separate module that takes in the current
positions of the pixels we are looking at, and retrieves the
correct data from the left and right image BRAMs. This turned
out to be a bottleneck in our stereo pipeline. For a nominal
update, based on the memory architecture we chose, it takes a
minimum of 6 cycles to update the temporary buffers for the
right front buffer only (note that the right pixel is constantly
being shifted/updated in the SSD algorithm) in addition to an
extra cycle for transferring the values from the front buffer
to the back buffer (since we don’t need to get these from
BRAM again). However, in an effort to simplify some of the
higher level control logic, we decided update both front and
back buffers each time, which means it takes 12 cycles to
fully update the temporary buffers. In retrospect, we could
have chosen a slightly different memory architecture to finish
updating buffers. This is discussed in the following section.

Finally, we implemented a top level state machine to coor-
dinate between the various modules involved in carrying out
the SSD algorithm. The states are described below:

• IDLE: default state
• NEW FRAME: resets a bunch of registers, counters, etc.

in preparation for start of new disparity map calculation
• UPDATE CENTERS: contains logic that updates the

(x, y) counters for left/right images depending on where
we are in the calculation (i.e. if a row is finished, set x
= 0 and y = y + 1

• UPDATE BUFFERS: uses updated (x, y) counters in
order to grab the corresponding entries from left/right
image BRAMs and save in temporary buffers

• CALCULATE: begins SSD calculation using parallel 48-
bit SMAC engines for the left/right blocks

• UPDATE DISPARITY: checks if SSD is less than the
smallest SSD so far and updates the disparity offset
accordingly

• SAVE: we are done with disparity calculation for this
(x, y) calculation, so save result to BRAM

The transitions between the states are illustrated in Fig 6

Fig. 6. Overview of our stereo algorithm implementation FSM states and
transitions

F. Evaluation of SSD Algorithm (Brian)

Because it is difficult to debug the SSD algorithm on the
FPGA, we wrote a ”ground truth” Python implementation of
the SSD algorithm to allow us to quickly test how well the
algorithm worked on various images and parameters (i.e. block
sizes). To test if our implementation on the FPGA worked as



expected, we loaded a left and right test image, ran the algo-
rithm, and then retrieved the values from the BRAM, storing
the disparity map to our computer for checking. Ultimately,
this module proved to be a tradeoff between memory and
timing The lower bound for the number of cycles for our
SSD system, without breaking the image up into chunks, is
320 ∗ (1 + 2 + ... + 240) = 9254400 calculations. Assuming
a clock rate of 100 MHz and 1 cycle per calculation, this
works out to roughly 0.1 seconds for a complete disparity
map calculation on a 320x240 stereo image.

One idea for we have to decrease the number of cycles
spent updating temporary buffers is redesigning our BRAM
architecture. Instead of having a single BRAM for the left side
and a single BRAM for the right side, we could instead use a
set of interleaved BRAMs as illustrated in Fig 7. This would
allow use to retrieve all values necessary to update buffers in
a single clock cycle, resulting in significant speedup.

Fig. 7. Set of proposed interleaved buffers when n = 6, Tradeoff between
increased memory/indexing complexity vs. cycle time

III. IMPLEMENTING WS2811 LED DRIVER (BRIAN)

The NeoPixels we used for this project work in a cascade
fashion where each integrated circuit (IC) in the line of pixels
receives 24 bits of data, then reshapes the remaining data and
passes it to the next ICs down the line as shown in Figure 8.

Fig. 8. Data passed to ICs on LED strip in cascading fashion

A. Packet Structure (Brian)

Each 24-bit packet contains 8 bits for each color red,
green, and blue arranged in the following manner: packet =
[R7, R6, ..., R0, G7, G6, ..., G0, B7, B6, ..., B0].

B. Timing Requirements (Brian)

There were 3 different symbols we could send to the LED
strip: 0, 1, and reset. The difference between symbols 0 and
1 came from how long the signal was held high before going
low as shown in Figure 9. A reset symbol simply holds the
signal low for a certain number of cycles, which allows the
LED lights to latch and display the new colors. The timing
requirements are summarized in Table II.

Fig. 9. There are 4 symbols we need to transmit T0H, T1H, T0L, T1L, TLL

Symbol Parameter Min Typical Max
TOH 0 code, signal high duration (ns) 350 500 650
T1H 1 code, signal high duration (ns) 50 1200 1350
T0L 0 code, signal low duration (ns) 1850 2000 2150
T1L 1 code, signal lowduration (ns) 1150 1300 1450
TLL latch, signal low duration (ns) 6000 - -

TABLE II
TIMING REQUIREMENTS FOR WS2811 NEOPIXEL LEDS

C. State Machine (Brian)

We made use of 2 state machines to implement sending
commands to the LED strip–a major finite state machine
(FSM) and a minor FSM. The major state machine contains
logic that controls the whole led strip. It is used to assign a
color to each LED and is in charge of generating the signal to
refresh the LED strip. It uses 4 states: IDLE, START BLOCK,
IN BLOCK, and END BLOCK. A block corresponds to the
sequence of bits needed to change a single LED (note that
technically each IC on the strip is connected to 3 LEDs which
all display the same color). Thus, if we wanted to control 10
LEDs, we needed to send a sequence of 10 blocks followed by
TLL, the latch signal, as listed in Table II. In order to generate
the sequence of bits within a block, our minor state machine
used 4 states: IDLE, RECEIVED INPUT, TRANSMIT 0, and
TRANSMIT 1. When it receives a signal that a new RGB
value is ready, it reads in the values stored in the RGB value
register. If the most significant bit (MSB) is a 1, it enters the
TRANSMIT 1 state, and if it is a 0, it enters the TRANSMIT
0 state. It continues parsing the RGB value register by shifting
the bits to the left by one on each iteration, reading the MSB,
and entering the appropriate state to generate the bit until all
24 bits have been transmitted.



D. Putting it Together (Brian)

In order to be able to change position of the light target
to match the swimmer’s pace, we implemented a top level
module with the following states: IDLE, FORWARD, RE-
VERSE, LATCH, and TRANSMIT. We wanted to generate
a new cascade on each iteration where all LEDs remain off
except for the LEDs corresponding to the target. Once the
target has reached the end of the LED strip, we enter the
REVERSE state where the target switches directions in order
to complete the lap. To change the speed of the target, we can
included a register that tells the state machine how many cycles
it should stay in the LATCH state (minimum of 50000 ns, or
5000 cycles), which effectively changes the rate at which the
cascade is refreshed. For debugging purposes, we connected
the register to switches 3-0 on the board.

E. Evaluation (Brian)

We tested our implementation of the WS2811 driver ex-
tensively in test benches using various sequences of RGB
values and numbers of LEDs and compared them to what
we expected. In addition, to verify that we could control the
speed of the target LED accurately, we used a stopwatch to
measure the target’s speed visually. The result agreed with our
simulations.

IV. INTER-FPGA COMMUNICATION (VIVECA)

The Anglerfish timing system also utilizes a second FPGA,
to be placed at the far end of the pool in order to time swimmer
lap times, as stereo vision depth analysis becomes less accurate
over longer distances. The two FPGAs communicate with one
another to keep track of swimmer lap times, with the central
FPGA housing critical functions such as central timekeeping,
LED pacer control, and stereo vision image processing, and
the peripheral FPGA signalling when a swimmer completes a
lap based on image data from its camera pointed at the end
of the pool.

The communication is one-way, with the peripheral FPGA
utilizing an IR LED to send out signal for a short amount of
time when it detects that a swimmer has completed a lap (with
no signal being sent by default). The central FPGA detects a
new burst of the IR signal in order to calculate lap times and
display them on the FPGA’s seven-segment display. The IR
signal is a 38 kHz emission (when signalling high) to match
the desired signal frequency of our IR receiver (which is also
a demodulator).

The secondary FPGA acts as a motion gate, performing a
subtraction of its current image’s pixels (as they are received
from the camera, not saved to BRAM) from its original image
(saved to BRAM, collected before the user manually switches
on switch 0 on the FPGA). It tracks the center of mass of the
pixels with large a large discrepancy from the original image
and send the central FPGA a new burst of IR signal when
this calculated center of mass changes direction (meaning the
swimmer has completed the lap and is returning the other
way).

This simple mode of communication allows for somewhat
accurate split time recording, as IR transmission is relatively
fast compared to a swimmer (thus, IR signal reaches central
FPGA before swimmer is too far away from the wall) and
COM calculation is not complicated (thus it is not too tempo-
rally far away from the true center of mass from the swimmer),
albeit it is not accurate to the hundredths of a second as
originally intended due to a frame rate of 30 frames per second
and a lack of interpolation methods to more precisely calculate
the time at which the swimmer completed the lap.

At the time of the submission of this paper, the usage
of the peripheral FPGA in Anglerfish timing operations was
temporarily abandoned in favor of greater focus on the central
FPGA. This was mainly due to two reasons: first, because
the overall system had not yet been adapted for the 25m
pool (hence, the image processing was deemed sufficient
for our prototype’s limited length), and second, because the
directionality of the IR LED we were using required high
precision aiming from the IR LED to the IR receiver, which
we did not believe was necessary for this project.

V. CONCLUSIONS AND LESSONS LEARNED

Overall, we were able to meet our goals of having a
functional stereo matching algorithm implemented and a LED
target pacer using the LED strip. We implemented simul-
taneous usage of two cameras fed into image processing
computations on the FPGA, and at the same time implemented
FPGA control over our LED strip. Over the course of this
project’s development, we also learned many things about the
nature of FPGA projects, algorithm design, and what we could
implement in the future.

Before taking on this project, we had little experience with
handling arrays and memory in Icarus Verilog (iverilog) and
Vivado. Throughout the course of this project’s development,
we were able to adapt to handling such data, adapting our
testbenches and developing other methods of debugging in
order to ”read out” our arrays and BRAMs.

From this project’s development, we gathered more ideas for
how to further develop the Anglerfish timing system, perhaps
taking it beyond the prototyping stage someday. Although our
current design was specifically created for 6-by-6-pixel block
correlations, we would like to eventually parameterize our
modules such that the hardware implementation of SSD could
be generalized to use any n-by-n sized block. Additionally,
although we deemed the peripheral FPGA/motion gate unnec-
essary for this version of prototyping, we would like to include
the second FPGA in a second iteration of the system.


	Physical Construction (Brian)
	Stereo Image Processing (Brian)
	Obtaining Simultaneous Stereo Image Data from OV7670 Cameras (Viveca)
	Stereo Vision Testing and Debugging Tools (Viveca)
	Memory Architecture (Brian)
	SMAC Engine Architecture (Brian)
	Putting it all together (Brian)
	Evaluation of SSD Algorithm (Brian)

	Implementing WS2811 LED Driver (Brian)
	Packet Structure (Brian)
	Timing Requirements (Brian)
	State Machine (Brian)
	Putting it Together (Brian)
	Evaluation (Brian)

	Inter-FPGA Communication (Viveca)
	Conclusions and Lessons Learned

