
MOS6502 Final Report
1st Kelly Xu

Department of EECS
Massachusetts Institute of Technology

Cambridge, MA, USA
krxu@mit.edu

2nd Jan Strzeszynski
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

jstrz@mit.edu

Abstract—We aim to implement the MOS6502 Microprocessor
using Field Programmable Gate Arrays. We implement the
control logic with a complex FSM with many stages handling
the large instruction set and supporting all addressing modes.
We use two 8 bit addressing registers and implement memory
using dual port xilinx block RAMs to allow for reads and writes.
Processor functionality is extended with a custom Secure Hash
Algorithm 2 (SHA-2) module. We interface with the processor
through a specialized manta module. Finally, we evaluate our
current system using modularized testbenches.

Index Terms—Digital Systems, Field Programmable Gate Ar-
rays, MOS6502, Complex Instruction Set Processor, SHA-2, SHA-
256, Manta

I. INTRODUCTION

We aim to implement the MOS6502 processor, a complex
instruction set (CISC) processor on FPGA. Implementing
a processor on FPGAs allows for extending functionality
through customizable modules. The final design is a functional
MOS6502 processor with an additional security module that
allows users to be authenticated prior to running software.

The challenges of implementing this processor on FPGA are
the complex instruction set needed and additional connections
needed for testing. Adding an additional security module
requires determining timing constraints due to operations
on large inputs, and implementing separate states for data
accesses and calculations.

The design is a functional MOS6502 processor that follows
the specifications of the original with added security in the
form of a specialized security module. Additionally, a special-
ized module allows for easy interfacing with the processor.

II. SYSTEM OVERVIEW

The goal of a processor is to execute instructions. The
processor must be able to parse an instruction set, execute
those instructions, and modify memory accordingly. We intro-
duce security into the MOS 6502 by adding a customized
authentication module requiring a correct password before
a process can be run. We also allow for easier interfacing
with the processor with the addition of a manta module [6].
The manta module allows for straightforward interfacing with
the processor through immediate interaction. With the manta
module, users are able to load programs to memory and the
processor is able to control when it’s accepting new inputs.

A. Overview Diagram

Fig. 1. High level overview of key components

The processor is divided into three main components:
address, registers, and control logic. The addresses of the
processor are used to determine the location in memory that
the processor should use. Addresses are 16 bits, divided into
two buses - address bus low and address bus high.

The registers are used for fast access to values needed
for operations. This includes registers such as the program
counter that stores the memory address of the next instruction
to be executed. Finally, the control logic determines the action
that the processor should take through decoding instructions,
making calculations, etc.

B. Processor FSM

Fig. 2. Simplified overall FSM

The processor is able to take in a new program and authenti-
cate the user loading the program. If the user is authenticated,
the processor fetches the instructions from memory, decodes



the instruction, executes the instruction, and writes the result
to memory. Fetching, decoding, execution, and writeback are
all part of the processors control logic.

III. REGISTERS

The processor works with the following set of external (i.e.
available to the user) registers:

• ACC - accumulator, used for performing ALU operations
• X, Y - index registers, used for indexing in some of the

addressing modes
• SP - stack pointer, used by instructions accessing the

stack (e.g. JSR, RTS)
• PC - program counter
• FLAGS - processor status flags, the one byte register is

interpreted as NV1BDIZC
– NFLAG - indicates whether the result of last oper-

ation was negative (i.e. whether the most significant
bit was 1)

– VFLAG - indicates whether the last operation re-
sulted in an overflow (decided by ALU)

– bit 5 of the FLAGS register is always 1
– BFLAG - set on interrupts generated by the BRK

instruction
– DFLAG - indicates whether the processor is cur-

rently operating in decimal mode
– IFLAG - when set, the processor will ignore any

external (i.e. from devices) interrupts
– ZFLAG - indicates whether the result of last opera-

tion was zero
– CFLAG - carry produced by the last operation (de-

cided by ALU)

IV. ALU
The ALU is the part of the processor that performs all

the logical and mathematical operations necessary for the
processor to function. The ALU is connected to the pointers,
registers, accumulators, data bus, and address bus as these all
require ALU operations.

A. Inputs and Outputs

Inputs
• Operand 1: An 8 bit operand to the ALU.
• Operand 2: The second 8 bit operand to the ALU.
• Opcode: An enum determining which operation should

be taken.
• Carry in: One bit for indicating if there’s a carry from

a previous operation that should be accounted for. Only
applicable to the ADD and SUB operations.

• Decimal: One bit for indicating if the ALU should operate
in decimal mode or normal binary mode. Only applicable
to the ADD and SUB operations.

Outputs
• Result: 8 bit result of the operation.
• Carry out: One bit indicating whether there was a carry

from the result of the operation.
• Zero: One bit indicating if the result is equal to 0.

• Overflow: One bit indicating if the result of the operation
is too large to be accurately represented. Applicable to
ADD and SUB operations on signed numbers.

B. Operations

The MOS6502 ALU has six main operations: ADD, SUB,
AND, OR, XOR, and Shift Right.

• ADD: Operates in decimal mode or in binary mode. Adds
the two operands and the carry input in either two’s
complement or binary coded decimal.

• SUB: Operates in decimal mode or in binary mode.
Subtracts operand 2 from operand 1 and subtracts the
inverse of the carry in bit to allow for chained operations.

• AND: Bitwise AND function
• OR: Bitwise OR function
• XOR: Bitwise XOR function
• Shift Right: Shifts the first operand and shifts in the

second operand. Sets the shifted-out bit as the carry out
bit.

C. Decimal Mode

Decimal mode is implemented using binary coded decimal
(BCD), which uses binary 0000-1001 to represent digits 0-
9. The basic module to implement decimal mode summation
is a four bit BCD adder that operates on the logic that if
the immediate output of the summation of the two operands
and the carry is greater than 9, then add 6 to make the
BCD representation equal to the binary representation. If the
immediate output is less than 9, than the BCD representation
is already equal to the binary representation. For subtraction,
the second operand input to the BCD adder is inverted and
one is added to the inverted input to allow for re-use of the
adder.

D. ALU Logic

We chose to implement the ALU logic combinationally as
a series of case statements based on the opcode. While the
rest of the processor will be clock driven, we decided it is
more optimal for the ALU outputs to be available as soon
as possible instead of requiring one extra clock cycle. Given
the original MOS6502 had a relatively slow clock compared
to what is typically used today, we did not want to add any
intentional delay to the ALU.

The input opcode is an enum of the six operations to indicate
which operation the ALU should perform. This allows for
simplicity and ease of adding operations if necessary. It also
allows for easy readability and use of the ALU. Additionally,
the default is that every output is set to 0.

E. Testing

We tested our ALU by creating a thorough testbench that
runs through each possible valid pair of input operands -128
to 127. The testbench also covered cases when certain inputs
would have carry in set to one or decimal mode set to one.
Additionally, the testbench covered cases of overflow. The
testbench did not cover cases of illegal inputs such as an input



of -129 because the system has unspecified behavior at that
point.

V. MEMORY

Every module that uses memory was implemented with
BRAMs. The amount of memory needed was implementable
with BRAMs. Additionally, BRAM memory allows for fast
access compared to other types of memory, thus adhering to
our goal of an efficient processor.

The overall processor uses a dual port BRAM with read and
write access. Dual port allows for easier interfacing between
the manta module and with the processor. The processor
memory has a RAM width of 8 bits for an 8 bit word size and a
RAM depth of 216 bits to represent all possible addresses given
by addressing with two 8-bit registers. This uses approximately
0.52 Mbits.

For the processor BRAM, the xilinx dual port ram was used
for the memory module with default high performance to allow
for an output register. The memory module has a two clock
cycle latency. If write enabled, the memory module writes
the input data to the address specified. The memory is first
initialized to all zeroes prior to any writes. We use the clogb2
function to calculate the address width based on input depth.
As we specified the default to 216, as long as the default is
not overridden, the address width should be 16.

The authentication module also uses memory in the form
of BRAMs. One read-only single port BRAM is used to store
64 32-bit constants and is initialized with the constants. One
read-and-write single-port BRAM is used to store the 64 32-bit
results of the calculations during authentication. Both BRAMs
have a RAM width of 32 bits and a RAM depth of 64 bits.

VI. CONTROL LOGIC

This section introduces the instruction set of the processor
(Appendix A) along with the supported addressing modes.
Additionally, the way each instruction is broken down to over
multiple clock cycles is described, which provides a general
idea how the FSM of the control logic looks.

A. Addressing modes

• Implicit:
Used for instructions which do not need an argument (e.g.
CLC, PHA).

• Accumulator:
Use the accumulator instead of a value from memory (e.g.
ASL, ROR).

• Immediate:
Use the value directly following the instruction - the
argument (e.g. ADC, LDA).

• Zero Page:
Absolute addressing to an address in the range 0x0000-
0x00FF, requires only one byte of address.

• Zero Page X / Zero Page Y:
The instruction provides one byte of address. Register X
or Y is added to this value (ignoring carry) to get the
actual address.

• Relative:
Used by branch instructions. The argument is a one byte
of signed offset, which is added to PC if the branch is
taken.

• Absolute:
Takes two bytes of the address as an argument.

• Absolute X / Absolute Y:
Takes two bytes of the address as an argument. Register
X or Y is added to this 16 bit value to get the actual
address.

• Indirect:
Used only by JMP. Takes two bytes of the address as
an argument, and fetches a new address (also two bytes)
from the location the argument pointed to. Sets PC to this
second address.

• Indexed indirect:
Takes one byte of argument. Register X is added to
this argument (ignoring carry) and a new 2 byte address
is fetched from the location this sum points to. The
instruction acts on the value in memory at this new
address.

• Indirect indexed:
Takes one byte of argument. Fetches a 2 byte value from
where that argument points to and adds register Y to this
value to calculate the actual address. The instruction acts
on the value in memory at this new address.

For the most part, any sensible combination of an instruction
and addressing mode is recognized (some examples of instruc-
tions understandably not recognized are ADC with implicit
addressing or STA with immediate addressing).

B. Execution cycles

The basic principle for determining how many clock cycles
an instruction takes is one cycle per memory access. For
example an instruction with Zero Page addressing needs to
fetch the instruction, fetch the one byte of address and fetch
the value from that address, which all takes 3 clock cycles.
Performing the actual operation on the data (e.g. an ALU
operation) is in most cases pipelined i.e. executed during the
fetch stage of next instruction.

There are, however, exceptions from this rule. Some of
these are easily understandable, for example instructions with
implicit addressing still take 2 clock cycles, because they need
to go through both fetch and decode stages. One less obvious
reason an instruction might take more cycles is page crossing.
Page crossing might happen when a instruction acts on a 16
bit address calculated at runtime (e.g. Absolute X addressing).
Because of the 8 bit word size, the added value is always a
single byte, so such calculations are first carried out for just the
lower byte of the address. In many cases this will be enough
to calculate the address (i.e. there is no overflow from the
addition), so the processor predicts that and starts fetching
from the address. In the case of overflow, that fetched value
is discarded, the higher half of the address is incremented and
fetched in the next cycle. This prediction cannot, however, be



done for store instructions, because the processor cannot store
a wrong value in memory.

C. Control logic

The control logic is implemented in Verilog as a finite state
machine with states corresponding to sets of actions that the
processor might do in a clock cycle. Most of the states focus
primarily on fetching a value from memory and deciding
the next state to move to. There is also a number of states
which are often more general (i.e. used by more different
instructions) and perform more actions like using the ALU
or storing a value in memory.

Many of the states are reused for multiple instructions to
reduce the size of the processor and avoid large amounts
of repeated code. The tradeoff for this decision is the more
complicated logic relative to a design using a separate set of
states for each instruction-addressing mode combination (e.g.
deciding what state to move to requires careful consideration
in the first, but is very straightforward in the second approach).

D. Bus

One major (but necessary on an FPGA) design difference
from the original is the lack of buses. The FPGA does not
allow implementation of tristate logic, which is necessary
for a bus. Instead, our implementation simply assigns values
to registers based on current state and instruction, which is
equivalent to using muxes wherever input would normally be
taken from the bus.

VII. AUTHENTICATION

The goal of the authentication module is to address the
threat model of unauthorized users who may try to run
unauthorized code on the processor. We aim to authenticate
a user prior to the user being able to run software. With
the authorization module, we are able to address the issue of
processor security as well as adding more modern functionality
to an older processor. The authorization module uses SHA-2
with standard 256 bit-length output. SHA-2 is also commonly
known as SHA-256.

A. Overview

Hash functions are functions that map data to an output,
typically a fixed sized output. Hash functions need to be
collision resistant, meaning that two inputs should only have a
very small probability of hashing to the same value. A one-way
hash is a hash function that is easy to compute in the forward
direction, but very hard to compute in the reverse direction.
This means it’s very easy given an input to calculate the hash
of the input, but given a hash, it’s very difficult to compute
the input that resulted in the hash. While hash functions have
many applications, in this context they are used for security
purposes.

Passwords are crucial to maintaining security. We aim to
keep our processor secure by only allowing software to be run
after the correct password has been entered. However, the issue
of password storage still remains. If we store a password in its

original state on the processor, it’s possible for an adversary to
determine the password by looking at the source code. To solve
this issue, we store the hash of the password. We compare the
hash of any input password to the correct hash to determine
authorization.

Fig. 3. Connecting authentication to the rest of the processor. If the password
is correct, the processor is allowed to run.

The authentication module follows the SHA-256 algorithm,
a cryptographic hash function. A cryptographic hash function
is one-way, collision resistant, and a small change in the input
results in a very different output hash. These properties make
it difficult to determine the password through brute forcing
random inputs.

B. Design

We followed the standard SHA-256 implementation with
one key modification. Typically, SHA-256 is able to hash
an input of any size to the 256-bit length output. This is
regulated by the preprocessing stage where the number of
zeros appended ensure that the output is a multiple of 512.
Then, it divides the entire preprocessed input into chunks of
512 and performs hashing on each chunk. However, we opted
to limit our implementation to one iteration on a preprocessed
input of length 512 to prevent increasing latency and BRAM
usage. This limited input password size to 446 bits, which still
provides 2446 bits of variability, and is enough to be secure.

SHA-256 was chosen due to the constraint on size and
iterations. While there are newer variants of cryptographic
hash functions that are more secure, they require more it-
erations and/or more memory usage. Other implementations
may require memory access which would add a minimum of
two clock cycles per iteration. This implementation balanced
security, memory usage, and latency.

C. Inputs and Outputs

Inputs
• Clock: The clock driving the module. Operates on the

same clock as the rest of the processor.
• Reset: Input to reset the module. Used when receiving a

new password to reset the hash.
• Password: An input of length determined by the param-

eter password length. The input to hash
Outputs
• Valid: 1 if the input password hashes to the correct hash,

0 otherwise. Checks if the input password is correct.
• Hashed Password: Hashed input password of standard

size 256 bits.



Parameters
• Password Length: Length of the input password. Cannot

be more than 446 bits due to the constraints of the
module.

• Correct Hash: The hash of the correct password, stored
as a parameter

D. Authentication Finite State Machine
The authentication module is a state machine with several

main stages: Preprocessing, Initialization, Calculation, Com-
pression, and Reporting.

• Overall FSM

Fig. 4. Module FSM with five main states

– Preprocessing: The input password must be
processed so that the rest of the module is able to
operate on a standard size input. Preprocessing is
done by appending a 1 to the original input, then
enough 0s to make this intermediate 448 bits. Then
the length of the input password is appended as a
64 bit integer such that the final preprocessed input
is 512 bits. In the module, preprocessing takes one
clock cycle to append the necessary information to
the original input and report the output to the rest
of the module.

– Initialization: SHA-256 uses a message schedule
of 64 32-bit messages to operate on. The first 16
messages are obtained from the preprocessed input.
The preprocessed input is divided into 16 32-bit
messages and placed into the message schedule. As
the message schedule is stored in BRAMs, each
individual message takes two clock cycles to be
written into memory, resulting in 32 clock cycles
for the entire preprocessed input to be placed into
memory.

– Calculation: This is the main calculation portion of
the hash function. For the remaining messages on
the message schedule, each message is calculated as
follows:
s0 = (w[i-15] rightrotate 7) xor (w[i-15] rightrotate
18) xor (w[i-15] shift right 3)
s1 = (w[i-2] rightrotate 17) xor (w[i-2] rightrotate
19) xor (w[i-2] shift right 10)
w[i] = w[i-16] + w[i-7] + s0 + s1
where w[i] is the current message and w[i-x] is the
xth previous message. For example, to update the
17th message, calculate s0 = (2nd message rightro-
tate 7) xor (2nd message rightrotate 18) xor (2nd

message shift right 3) and so on. The indexing of
w is used to determine which address to access the
BRAM at, such that w[3] indicates access BRAM at
address 3.
Each message retrieval takes two cycles to access
from BRAM and must be written to a register to
store the values to be used in calculation, resulting
in each retrieval state taking three cycles. This
is done four times per iteration. The calculation
state has substates to manage the retrieval of each
message within an iteration. The calculation state
additionally divides the message retrieval stage from
the calculation stage.

– Compression: The compression part takes in the
messages calculated previously and produces 8 32-
bit messages. The new messages are a function of
constants and outputs from the previous calculation
stage. Compression iterates 64 times, with each
iteration updating the 8 32-bit messages. Similar
to the calculation state, the compression state
has substates to manage data retrieval, as the
constants are stored in a BRAM as well. For
each iteration, data retrieval and writing to a
different register takes three cycles, and three more
cycles are needed to finish the compression iteration.

– Reporting: When the hash has been computed,
this state reports whether the final computed hash
matches the parameter correct hash and reports
the final computed hash as well. The final hash
is computed as a concatenation of the 8 32-bit
messages from the compression state.

• FSM - Calculation

Fig. 5. The first four states within calculation are responsible for obtaining
32-bit messages from the calculation memory while the last one calculates
the resulting 32-bit message

The calculation portion of the authentication module
requires accessing the calculation memory for four
values. As we opted to use a single port BRAM, this
required four separate states to obtain each value from
memory and store the value in a register. For further
optimizations, we calculate s0 and s1 when w[i-15]
and w[i-2] are ready. The last state is where w[i] is
calculated as s0 + s1 and then written to the calculation
memory at address i. The calculation stages are iterated
through 48 times.

• FSM - Compression



Fig. 6. The compression state accesses memory then updates the initial hashes
iteratively to effectively mix the results from the calculation stage

The compression portion of the module relies on predeter-
mined constants. One set of predetermined constants are
the initial hashes, h0-h7. Another set of predetermined
constants are the round constants used in each round of
compression. These are stored in memory as 64 32-bit
constants. Both the hash constants and round constants
are standard to the SHA-256 algorithm.
The calculations involved in the compression stage are
divided into two separate stages because the calculation
of temp1 and temp2 depend on the results from the
previous stage. In each iteration, the temporary hashes are
updated with the results of the previous iteration and the
calculated results of temp1 and temp2. After 64 iterations,
the 8 hash values are updated with the temporary hashes.

E. Memory Usage

The calculation state results in 64 32-bit messages and the
compression state requires 64 32-bit constants. We opted to
use BRAMs to store this information to avoid using too many
logics and registers and causing timing issues. The constants
are stored in a single-port read only BRAM and are initalized
with a file containing the constants. Read-only ensures that no
accidental writes will occur to protect data integrity.

The results from the calculation state are stored in a single-
port read and write BRAM. We limit write access to only
certain states. One design consideration is that increasing the
number of BRAMs to two and making each BRAM dual
port would reduce the number of cycles needed during the
calculation state by allowing for four simultaneous reads.
However, the priority in the authentication module was ac-
curacy and by extension, data integrity. To avoid any chance
of race conditions or mismatched data across BRAMs, only
one BRAM was used.

The authentication module is run very infrequently and
optimizations made on latency would be unnoticeable to the
user. The current implementation results in a hash in 15200
nanoseconds. Consequently, the constraints on BRAM usage
are greater than the constraint on module latency.

F. Verification

The module itself uses big endian, which is compatible
with the rest of the processor. However, the module was
converted to little endian for testing purposes. Testing the
module relied on using a previously developed C program
[8] that implemented SHA-256 but only runs in little endian.
We used the C program to verify the intermediates of the au-
thentication module. While the implementation still has slight

inconsistencies, the outputs of the module are deterministic
and incorporate the avalache effect, as explained below.

One key property of cryptographic hashes is that a small
change in the input results in a very different hash. This is
known as the avalanche effect. This is demonstrated below
with a small change in the input by changing the first bit from
a 0 to a 1 resulting in a very different output hash.

Fig. 7. Changing one bit in the input results in a very different and incorrect
hash

VIII. MANTA

In order to interact with our system (run programs, pass
inputs, receive outputs) we use a manta module, which
communicates with the processor using MMIO. The module
controls the reset and hold signals for the processor, the
password and the inputs to the second memory port. It takes in
the output of the memory port and the result of authentication
(accepted or rejected). Some additional inputs and outputs
were included for debugging purposes, but are not necessary
and can safely be removed.

A typical interaction with the processor starts with halting
and resetting the system using appropriate signals. Then, the
password is passed to the authentication module. After the
password is accepted, the program and its inputs are written
to memory byte by byte using the second way. Finally, the
halt signal is set to 0 and the processor is allowed to run the
program. After it is finished, any output written to memory
can also be retrieved using manta.

IX. TESTING

The testing of our system was done in the following stages:
1) Separately testing all of the modules:

This includes the ALU and the authorization module.
The testing for these is described in their respective
sections.

2) Unit testing in simulation:
We developed a set of small programs aiming to test spe-
cific instructions and addressing modes. These programs
where then assembled using xa (an open-source 6502
assembler) and used as the initial values of the memory.
After running the program, the result is placed in the
accumulator register and verified against the expected
output.

3) Unit testing on hardware:
After finishing the entire design, the same set of unit
tests was used on hardware to check for any errors not
caught by the simulation.

4) Testing complex programs:
Lastly, some longer and more complex programs were
run on the processor to check if it behaves correctly in a



more realistic setting. These programs were taken from
the internet and were written for the original 6502.

Throughout the testing process we developed a set of scripts
in python and bash to make it more efficient and easily
replicable. These include:

• assemble.sh - takes a 6502 assembly program as an
argument and uses the xa assembler to produce the binary
in a text format which can be used as initial memory state

• test single instruction.sh - runs through all unit tests
either in simulation or on hardware

• libtalk.py - initializes manta and implements functions
for easy interfacing with the processor (e.g. read mem(),
write mem())

X. DISCUSSION

We evaluate our system based on latency, efficiency, and
correctness. We aim for a processor that is fast and correct,
and does not exceed resource capabilities within the FPGA.
As discussed previously, we have tested the correctness of our
processor with test suites and benchmarks.

In terms of memory usage, the design is very optimal. One
key design choice with regards to memory is storing constants
in BRAMs in the authentication module. This is better than
having 64 parameters and/or logics of 32 bits each. Storing the
intermediate calculation values from the authentication module
incurred extra BRAM usage as well but is more optimal in
terms of resource constraints. In total, we use one dual port
BRAM with an 8-bit width and a 216-bit depth for the main
processor, and two single port BRAMs with a 32-bit width
and a 64-bit depth for the authentication module. The total
usage is approximately 0.528 Mbits which is well within the
2.7 Mbits provided on the FPGA.

The main processor adheres to the original MOS6502 cycles
per instruction and the original timing specifications as well.
While the FPGA is run on a 100 MHz clock, the original
processor uses a 1 MHz clock. To achieve this, we implement
an internal signal that activates every 100 cycles to change
state.

We evaluate the main processor overall by examining basic
requirements such as worst negative slack (WNS) and total
negative slack (TNS). Every WNS was positive with zero total
negative slack when run with a 100 MHz clock.

Additional custom modules result in increased latency. One
key source of added latency in the system is the security
module. The module itself takes approximately 15200 clock
cycles to complete, both calculated and verified in simulation.
While this is a very large overhead, the authentication module
is only run once each time a new program is loaded to the
processor. However, despite the overhead, the module provides
the added benefit of security and provides a safeguard against
malicious users.

Overall, the processor covers the minimal goal of having a
working MOS 6502 processor. The processor is able to run
programs in MOS 6502 assembly. Additionally, the security
module addresses the threat model of unauthorized users and
covers scenarios that require a secure processor. An example

would be the processor memory storing confidential data with
an unauthorized user that runs a program to retrieve the data.
This implements our ideal goal of adding the specialized
security module. We modified our original stretch goal from
pipelining to producing a visual component. Although the
processor is not fully equipped with visuals, such as HDMI,
the processor is capable of displaying outputs from programs
through the use of manta.

By implementing a processor on FPGA, the processor is
easily customizable and additional modules that extend use
cases could be added. One example is cached memory to allow
for optimizing programs that require a lot of repeated memory
access. Another example is including a data compression
module that allows for storing large quantities of data. A data
compression module could be added by taking in a large input
and writing it to a specialized BRAM. This could be attached
to the processor in a straightforward manner.

Implementation-wise, a key change would be to implement
more separate sub-modules for the SHA-256 module. Prepro-
cessing was done separately in case there was a need to add
more stall cycles due to the large input. However the other
states were not implemented in separate modules. This would
have made it easier to debug, rather than trying to debug a
very large system with many iterations within.

Fig. 8. This is approximately a third of the uut variables involved, and
there are two more BRAMs with 64 addresses not shown here. Additionally,
approximately 15 microseconds are required for the hash to complete.

Additionally, it’s important to consider endianness while
interfacing and testing outside of the immediate system. Other
systems that the processor may be interfacing with may not
have the same endianness.

XI. CONTRIBUTIONS

While this was a group effort, we each contributed to
the processor implementation in different ways. Kelly im-
plemented the ALU module, security module and provided
evaluation and overviews of the system. Jan implemented
the control logic, integrated all the modules, and created the
interface for testing and running programs on the processor
through manta.

XII. SOURCE CODE

Source code is here: https://github.mit.edu/jstrz/6502-fpga



XIII. ACKNOWLEDGEMENTS

We want to thank the 6.2050 staff members for their
support during the class. Thank you to our professor Joe
Steinmeyer for providing us with the information to build
our own processor on FPGAs and providing feedback on our
designs. We also want to thank our TA Darren for helping
us get our processor working and providing guidance on our
design.

REFERENCES

[1] http://6502.org
[2] http://6502.org/tutorials/decimal mode.html
[3] http://6502.org/tutorials/vflag.html
[4] http://6502.org/users/obelisk/6502/reference.html
[5] https://archive.org/details/mos microcomputers programming manual
[6] https://fischermoseley.github.io/manta/
[7] https://www.geeksforgeeks.org/bcd-adder-in-digital-logic/
[8] https://github.com/amosnier/sha-2
[9] https://en.wikipedia.org/wiki/SHA-2

[10] https://llx.com/Neil/a2/opcodes.html

XIV. APPENDIX

A. Instructions

Instructions implemented in the MOS6502 processor

TABLE I: Instructions

ADC ACC <= ACC +MEM + CFLAG

SBC ACC <= ACC −MEM − (1− CFLAG)

AND ACC <= ACC&MEM

ORA ACC <= ACC|MEM

EOR ACC <= ACC ⊕MEM

ASL MEM <= MEM << 1

OR

ACC <= MEM << 1

LSR MEM <= MEM >> 1

OR

ACC <= ACC >> 1

ROL {CFLAG,ACC} <= {ACC,CFLAG}
OR

{CFLAG,MEM} <= {MEM,CFLAG}
ROR {ACC,CFLAG} <= {CFLAG,ACC}

OR

{MEM,CFLAG} <= {CFLAG,MEM}
DEC MEM <= MEM − 1

DEX X <= X − 1

DEY Y <= Y − 1

INC MEM <= MEM + 1

Instruction Description

Continued on next page

TABLE I: Instructions (Continued)

CMP FLAGS <= ACC −MEM

CPX FLAGS <= X −MEM

CPY FLAGS <= Y −MEM

BIT FLAGS <= ACC&MEM

LDA ACC <= MEM

LDX X <= MEM

LDY Y <= MEM

STA MEM <= ACC

STX MEM <= X

STY MEM <= Y

JMP PC <= MEM

JSR STACK <= PC

PC <= MEM

RTS PC <= STACK

BCC if CFLAG = 0 then PC <= PC +MEM

BCS if CFLAG = 1 then PC <= PC +MEM

BNE if ZFLAG = 0 then PC <= PC +MEM

BEQ if ZFLAG = 1 then PC <= PC +MEM

BPL if NFLAG = 0 then PC <= PC +MEM

BMI if NFLAG = 1 then PC <= PC +MEM

BV C if V FLAG = 0 then PC <= PC +MEM

BV S if V FLAG = 1 then PC <= PC +MEM

BRK trigger interrupt

RTI retrieve values from stack after interrupt

PHA STACK <= ACC

PHP STACK <= FLAGS

PLA ACC <= STACK

PLP FLAGS <= STACK

TAY Y <= ACC

TY A ACC <= Y

TAX X <= ACC

TXA ACC <= X

TSX X <= SP

TXS SP <= X

CLC CFLAG <= 0

CLD DFLAG <= 0

CLI IFLAG <= 0

CLV V FLAG <= 0

Instruction Description

Continued on next page



TABLE I: Instructions (Continued)

SEC CFLAG <= 1

SED DFLAG <= 1

SEI IFLAG <= 1

NOP do nothing

Instruction Description


