
FPGesture–Controlled Video Enhancement
Soojung Bae

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, U.S.A.
sjb565@mit.edu

Jorge Tomaylla Eme
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, U.S.A.

tomaylla@mit.edu

Abstract—We present a design for a Hand Gesture Controlled
Video Enhancement device implemented in hardware in FPGA.
Through a special glove with pink strips on the fingertips, we
design a process to solve the blob detection problem, which aims
to recognize all present fingertips, mark their center of mass,
and encode their relative position into defined commands. These
commands will then dictate the behavior of the video upscaling,
which upscales the video resolution by a factor of four with
bicubic interpolation method. Thus, with only hand gestures and
two cameras, we can manipulate video output in exciting ways.
Moreover, by fully serializing the computation in pixel-level, we
demonstrate our implementation highly optimizes the usage of
memory and computing resources on FPGA.

Index Terms—Computer Vision, Field Programmable Gate
Arrays, Video Enhancement, Blob Detection

I. INTRODUCTION

The project is divided into two primary components: Hand
Gesture Recognition and Video Enhancement. Hand Gesture
Recognition encodes hand movement like pointing up or down
to be correlated with commands like zoom out and shift.
We tackle the hand gesture component by solving the blob
detection problem where we uniquely label continuous groups
of valid pixels, referred to as blobs. We then compute the
center of mass of these blobs and send the centroid locations to
the hand_command module to encode the relative positions
x and y of each centroid - which corresponds to fingertips - to
a useful command that will be fed to the video enhancement
component.

In addition, Video Enhancement module upsamples the
128 × 128 sized low-resolution video stream to 512 × 512
high-resolution output on the fly. We utilize a bicubic spline
algorithm for the enhancement, which in general outperforms
bilinear and nearest-neighbor algorithms at the cost of compu-
tation complexity [1]. However, by pipelining the convolutions
into smaller image patches scanning through the screen with
HDMI’s raster pattern, we greatly reduced the amount of
memory and arithmetic units used on FPGA. Moreover, Video
Enhancement module improves the color depth of the pixels;
the upsampled image displays a smoother color transition with
224 bit depth, whereas the original image frames from OV7670
camera has a bit depth of 216.

II. PHYSICAL CONSTRUCTION

A. Two AMD Spartan 7 XC7S50-CSG324A FPGAs

We isolate the implementation of Hand Gesture Recognition
and Video Enhancement modules into two FPGA boards.
This enables us to modularize our system into two primary
components running independently. In addition, the boards
communicate with each other with physically wired Pmodb
ports.

B. Two OV7670 Camera Modules

Each FPGA board has a separate OV7670 Camera Module
communicating via Pmoda ports. The camera outputs 30 fps
320× 240 resolution video with 16-bit wide color depth.

C. A Glove with Color-Marked Fingertips

We used a thick, dark winter glove as the base, and sticker
5 pink strips with tape to the fingertips. The pink strips came
from a well tested pink envelope whose threshold values had
already been tuned. The glove’s pink visibility was then tested
against the camera output, as explained in Section III-A.

III. HAND RECOGNITION

The Hand Gesture Recognition component comprises 5
main modules that allow us to perform crucial operations:
filter out screen for valid pixels, downsample them in size to
reduce BRAM usage, label connected groups of valid pixels,
visualize their centroids, and transform these locations to
hand commands. In addition, we make a glove prototype and
perform initial tests on possible user test cases.

A. Glove Test Cases

In Fig. 3 we can see 4 recurrent patterns in user cases. In
cases (a) and (b) we can see our ideal scenario where the
camera output fully captures non overlapping continuous pink
areas in the gloves’ fingertips. Notice that (a) and (b) occur in
a well-lit environment and there is a slight angling backwards
in the palm plane and the vertical plane. In cases (c) and (d)
we tilt the glove forward to see if the pink fingertips are still
accurately captured. In (d) we used longer pink strips, so when
tilting the glove, the camera outputs 2 blobs in the fingertips
separated by a very thin row of non valid pixels. Similarly,
case (c) has shorter pink strips that, when tilted, output gaps
in the pinkness of some blobs. To solve this, we have two
approaches: down sampling the pixels to eliminate the effect



Fig. 1: Hand Recognition High-Level Block Diagram.

Fig. 2: Blob Detection Algorithm.

of the gaps, and further adjusting the upper and lower threshold
values.

B. Top Level Pipeline

Fig. 1 displays the top level flow of the blob detection
component and the multiple modules that help calculate the
blobs’ centroids as well as how we send the information
to the second FPGA for video upscaling. Our camera saves
the video in a frame buffer, which is then thresholded for
valid pink values. We then apply a 5x5 filter that outputs
1 if within this 25 pixels there are at least 10 valid pixels.
THis reduces the frame from the original 320x240 to 64x48.
The justification for this downsampling is that in the original
frame we need to process 76,000 pixels to classify into 5
blobs, which takes more cycles to compute as well as double

the BRAM, as we would exceed the BRAM height limit.
Now, with a downsampled buffer, we only need to process
3072 pixels, easily stored in half the BRAMS, and requires
only 2 cycles per processed pixel to update the blob groups
and running sums. In addition, the signal_controller
module regulates the interaction of the integral modules; for
instance, when to trigger the blob detection algorithm, when
to wait for a fresh downsampled frame, and what values to
read from the downsampled buffer. The blob detection output
is then printed on the LEDs for visualization purposes and is
also processed in the hand command module to be encoded
into readable commands. WE then send these commands via
SPI transmitter to the other FPGA. We only need to send 3
bites of information so SPI controller is sufficient for cross
communication.



Fig. 3: Glove Strips. Resulting PSNR for this sample is denoted beneath each sample.

C. Downsampling

As noted in the glove test cases, there are instances of
scattered single valid pixels in the environment that are not
from the pink fingertips. These occur as the reflection of some
pink object nearby or not a tight enough thresholding for valid
target colors. Furthermore, when we incline the gloves forward
by an angle greater than 45◦, blobs often divide into 2 blobs
separated by a thin row of non valid pixels. To address these
issues, we incorporate a down sampling module that takes 5x5
pixels and stores a 1 if there is a majority of valid pixels (at
least 10) or 0 otherwise. This filters out most isolated pixels
as well as keep blobs connected if they are subtly separated.
Since we reduce the number of pixels by a factor of 25, we
also need much less BRAM capacity. In fact, we came up with
ways to delete some unnecessary BRAMS by replacing them
with running x sums, y sums, and total number of pixels in
each blob.
As explained before, the downsampled buffer ports are con-
trolled by the signal_controller module.

D. Signal Controller

The signal_controller manages the interaction be-
tween the blob detection module and the downsampled
frame buffer. We trigger the blob detection algorithm - and
therefore the reading of the downsampled buffer values - when
we reach the vcount value 320. This is because with every
new frame, we need to scan through the original sized frame
to apply downsampling. Additionally, this module generates
the x in and y in valued to read from the downsampled
buffer, and it alerts the blob detection module when
this downsampled frame read has finished, which is integral to
triggering the DIVIDING state in the algorithm state machine.
Finally, the blob detection module sends a ”next pixel
ready” signal to the signal controller, which indicates that the
downsampled pixel has been properly labeled and all relevant
BRAMs and sums have been updated, so we are ready to
analyze the next downsampled pixel.

E. Threshold

The threshold module takes in 2 8-bit numbers and
outputs 1 if the pixel we are looking at falls within the
threshold boundaries.In context to our project, we first filter the
camera through the Chroma Red channel to target the bright
pink of the glove’s fingertips. We then pass in the values 0xF0

and 0x20 as upper and lower thresholds. As seen in the glove
test cases, sometimes there are isolated pixels or a blob is
bisected by a single row of non valid pixels, so a further tight
tuning of the threshold values will increase the accuracy of
the camera’s valid pixels.

F. Blob Detection Module

This is the module in charge of solving the blob detection
problem. It is a flow diagram with 3 states: WAITING,
COUNTING, and DIVIDING.

1) WAITING: We cannot begin the algorithm right away
at the start of a new frame because we must first wait for
the original 320x240 frame to be properly downsampled. This
state keeps the algorithm dormant so that it does not start
reading pixels from the downsampled buffer until we have
made sure the downsampled buffer BRAM has been properly
updated, at which point we transition to the COUNTING state.

2) COUNTING: Fig. 2 illustrates the flow of the blob
detection algorithm. In short:

• We read an incoming downsampled pixel p, is it a valid
threshold value? If not, we do not update any BRAMs or
sums and we wait for the next pixel. If yes, we continue.

• We will write the pixel in the VALID BRAM as a valid
pixel.

• We then proceed to check the valid bits of the neighbors
of the current pixel. Specifically, the 3 pixels above the
current pixel and the one directly to the left. If no valid
neighbor pixels are found, we can start a new label
and put the current pixel in the next available BLOB
BRAM. If there is only 1 type of valid neighbor label,
the current pixel will inherit that label, updating both the
VALID and BLOB BRAMs. Lastly, if there are 2 valid
neighbor labels, it means that the currency pixel is the
intersection between 2 existing blobs. Therefore, we will
inherit the smallest label and link the 2 blobs in an array
so that we avoid rewriting all pixels’ labels. In the actual
implementation, we arbitrarily choose the label of the
neighbor to the left.

3) DIVIDING: Once we finish going through the down-
sampled pixels, the signal controller will trigger an end of
downsample frame signal which will trigger the DIVISION
state. The division module takes an undetermined amount of
cycles so there is a state machine regulating the process to
move on only when we are done calculating all centroids. An



important detail, and source of stressful hours of debugging,
is that we must make sure that all labels that were linked
throughout the COUNTING state are properly combined into
1 blob and that the linked labels’ center of mass are not
calculated. In the implementation, we created an array that
maps label to label if they are merging. We limited this array to
only map to 1 value. This means, when DIVISION is triggered,
we look into this array, add the x sum, y sum, and pixel total
to the first label, and stop the calculation of the label that was
linked to by the original label. A clear problem with this is that
the second label could in turn be linked to another label, which
in turn could be linked to the next one and so on. We did not
think we would encounter such cases based on our user cases,
but it turns out a pixeled slope in the shape of y = x performs
badly. This is because the shape of the blob is a stair case,
and when encountering a new step, the algorithm will give
the step a new label, which will be then linked to a previous
label. The lack of linked list handling in the algorithm yields
to erroneous blob counts for such blobs (output of 5 when
there is truly 1 poorly slanted blob). This is a feature needed
for a more robust performance in the future. //

Once we are done calculating all blobs’ centroids, we output
the x and y locations of the blobs’ centroids, as well as a 5
bit valid blob array that indicates if the ith blob was present
in the frame. .

G. Crosshair

This module allows us to visually evaluate the accuracy of
the center of mass calculation for each blob. It displays one
thin green cross pattern in the screen per label detected. In
our design we have defaulted the maximum number of blobs
or labels to be 5. In practice, we found it more helpful to link
the valid blob array output to the LEDs and 7 segment display
for easier debugging and examination of blob test cases.

H. Hand Command

The valid blob array output is sent to this module for hand
encoding. For simplification, we encode 5 commands:

• 0 : NOTHING
• 1 : UP
• 2 : DOWN
• 3 : LEFT
• 4 : RIGHT
• 5 : NEXT FILTER

We sum the number of blobs present in the screen to calculate
this result, although more mathematical formulas are encour-
aged for more specific commands in future iterations.
This data is then send to the next FPGA for video enhancement
through an SPI controller. We do special wiring of the camera
device and pmodb and pmoda ports to facilitate communica-
tion between both FPGAs. This can be shown in the video
explanation for the project https://www.youtube.com/watch?
v=FiGxE-KXj5g.

IV. VIDEO ENHANCEMENT

The Video Enhancement module consists of several sub-
modules that enable serializing the bicubic convolution of the
entire frame into a series of convolutions of 4 × 4 image
patch. Specifically, 4×4 image patch scans through the frame
in left-to-right, top-to-bottom order, calculating the arrays of
upscaled pixels on each step. The resulting upscaled pixels are
buffered in 4 Block RAMs, which are then retrieved whenever
requested by the HDMI display signal.

A. Upscale Signal Generator

As upscaled pixel values are constantly rewritten and
buffered on the Block RAMs, it is important to control the
timing to separate buffer read and write operations. Therefore,
upscale_sig_gen module inputs the current HDMI con-
trol signal (horizontal/vertical coordinate, active draw bit, etc.)
and returns (1) valid signal which initiates BRAM writes, (2)
first read address to access frame buffer for image filtering,
and (3) second read address to access filtered frame buffer
for image upsampling. Controlled by the valid signal, image
filtering and upsampling only takes place when HDMI is not
actively drawing pixels on the monitor.

B. Image Filter

image_filter module demonstrates how arbitrary kind
of 3 × 3 image filters can be integrated into our design.
Since image filters may contain both positive and negative
coefficients, the problem arises from clipping the output into
the right value since merely using two’s complement would not
differentiate value overflows and underflows. Thus we divide
each filter into two non-negative filters each containing only
positive or negative components. The result is obtained by
simply subtracting and clipping the output of two filters, which
will be stored in filtered_frame_buffer as shown in
Fig. 7. Our implementation includes 3× 3 image patches for
Gaussian blur, Gaussian sharpening (f = 0.5), and Sobel
derivative (∇x, ∇y) filters.

C. Pixel Shifter

As shown in Fig. 5, upscale_sig_gen module scans
through the filtered_frame_buffer in column-major
order to construct 4 × 4 image patches for convolution. In
addition, since the size of the four-times upscaled frame
(1280×960 pixels) exceeds the HDMI display size, the module
shifts the offset read address in accordance with the control
signal from the hand recognition module.

Once the pixels are retrieved from the camera’s frame
buffer, the serialized pixel values are stored in pixel_shift
module which acts as a secondary buffer. As shown in Fig. 5,
when 4 × 4 patch scans through the frame, it is sufficient to
only replace the first and last column to form the next patch.
Thus we utilize a FIFO buffer, pixel_shift, that stores
16 most recent pixel inputs and outputs a valid bit every four
cycles whenever the valid image patch is ready.

https://www.youtube.com/watch?v=FiGxE-KXj5g
https://www.youtube.com/watch?v=FiGxE-KXj5g


Fig. 4: Video Enhancement High-Level Block Diagram. Output pixels are encoded and serialized in accordance with
the HDMI specification before connected to a VGA monitor. Buffers for storing temporary frames are colored in orange.

Fig. 5: Pixel values read from frame buffer in the raster pattern
depicted with black arrows, where 4×4 patch for convolution
is formed every four cycles.

D. Bicubic Interpolation

In the next pipeline stage, 4×4 image patches are upscaled
both in spatial dimension and color depth. As we use bicubic
spline algorithm, each output pixel is a result of multiply-
accumulate between input pixel array and the predetermined
kernel coefficients. Theoretically, this requires 16 different
kernels for the 16 upsampling locations, whereas the total
number of arithmetic operations required will be:

Noutput pixels × (Naddition +Nmultiplication)

= 16× (16 + 16) = 512.
(1)

Although the number of operations is greatly reduced owing
to pipelining, it is intractable to transport the logic on Spartan7
FPGA which at most provides 120 DSP48 blocks for complex
multiplications. In addition, floating point arithmetics will
double the data width of each pixel from 16 bits (camera

output) to 32 bits floating point without gaining any benefit
on the accuracy.

Therefore, several design choices are made to resolve such
issues: First, we approximated floating point operations to
integer multiplications. As the image is upsampled by a
factor of four, kernel coefficients are rational numbers with
denominators expressed as the power of two. Thus non-
integer operations are replaced by integer operations and bit
shifts in the final stage. Second, integer multiplications are
further replaced with bit shifts and chained additions. For
instance, we utilized the equivalence n × 385 = (n <<
8) + (n << 7) + n (∀n ∈ N). Finally, the sum of 16
output values of multiplications is calculated through multiple
pipeline stages to meet the clock constraints. As a result,
bicubic_interpolation consists of four pipeline stages
and utilizes only two DSP48 blocks.

E. Upscaled Frame Buffer

As the output image is upsampled four times larger, a basic
FIFO structure can’t resolve the timing mismatch of produc-
tion and consumption of pixels. The essential difference from
the situations using ordinary buffers is that our upsampling
module produces four rows of pixels simultaneously. Thus we
decided to use four dual port Block RAMs to store each row
of pixels on each Block RAM.

V. EVALUATION OF BLOB DETECTION

The entire code can be found in the fol-
lowing git repository: https://github.com/sjb565/
Fpgesture-controlled-video-enhancement.

https://github.com/sjb565/Fpgesture-controlled-video-enhancement
https://github.com/sjb565/Fpgesture-controlled-video-enhancement


Fig. 6: Comparison of upsampling methods. Resulting PSNR for this sample is denoted beneath each sample.

Fig. 7: Sample Images of Hardware Implementation Results. The photos of upsampled results are taken with external
camera device (not directly from the VGA monitor). The image filters (e.g., ∇x,∇y) are applied independently on each RGB
color channel.

A. Centroid Visualization

The video explanation of this project showcases the perfor-
mance of the blob detection module. For a small number of
pixels we accurately label blob counts, but for bigger numbers,
the algorithm fails to correctly merge labels and blobs together,
especially in the staircase blob case. The hand commands were
accurately deterministic and sent consistent information to the
Video enhancement module, as displayed in the video.

VI. EVALUATION OF VIDEO ENHANCEMENT

A. Software Verification on Real-Life Data

As our upsampling implementation uses hard-coded nu-
merical coefficients as parameters, it is essential to test and
compare the performance of the method with reliable software
implementations. To test on real-life data, we extracted 35,000
random samples from the ImageNet Dataset and scaled down
the samples’ sizes to 512× 512 [2]. Note that each method’s
performance relies heavily on the choice of the dataset, and
hence ImageNet Dataset with real-life objects and scenes is
used for this experiment. In addition, we compared our hard-
coded numerical kernels with the upsampling methods from
the OpenCV Python Library [3].

As shown in Tab. I, our upsampling method shows similar
level of Peak Signal-to-Noise Ratio (PSNR) compared with
the OpenCV’s bicubic interpolation method and outperforms
Bilinear and Nearest-Neighbor algorithms. The sample result
of the experiment can be found in Fig. 6.

TABLE I: Performance of Upsampling Methods

Interpolation Method PSNR (dB)
B-Spline (Ours) 25.63

Bicubic Convolution 25.79
Bilinear 25.04

Nearest-Neighbor 24.23
* α = −0.75 for Bicubic Convolution

B. Hardware Realization

Fig. I represents the sample results from the hardware
implementation of our system. Due to the external lighting
condition, upsampled images have different color temperature
and brightness compared to the digital ground truth image.

TABLE II: Resource Utilization

Type Site Type Used Available Util [%]

Slice Logic Slice LUTs 6852 32600 21.02
Slice Registers 8362 65200 12.83

DSP DSP48E1 2 120 1.67

Memory RAMB36 48 75 64.00
RAMB18 5 150 3.33

Tab. II shows the summary of our system’s resource uti-
lization. As described in Section IV-D, the video enhancement
module utilizes 21% of available LUTs while using only two
DSP blocks, by substituting bit shifts for multiplications. On
the other hand, our system utilizes 67.33% of available Block
RAMs. The details of memory allocation are presented in



TABLE III: Block RAM Allocation

Buffer Type Data Width Depth RAMB36 RAMB18
Frame Buffer 16 bits 320× 240 48 -
Filtered Buffer 16 bits 131× 4 - 1
Upscaled Buffer 24 bits 512× 4 - 4

Tab. III, which indicates most of the resources are allocated
to frame_buffer. The realization of actual components for
video manipulation suffice with only five RAMB18 blocks.

For the system’s latency, our system performs upscaling at
the rate of 60 fps since its operations are synchronized with
an HDMI signal. Specifically, hardware signals besides the
TMDS signal run on a 74.25 MHz clock rate, or 13.468 ns
clock cycle. The timing requirement is satisfied with an
8.839 ns data path delay.

REFERENCES

[1] D. Han, “Comparison of commonly used image interpolation methods,”
in Proceedings of the 2nd International Conference on Computer Science
and Electronics Engineering (ICCSEE 2013). Atlantis Press, 2013/03,
pp. 1556–1559. [Online]. Available: https://doi.org/10.2991/iccsee.2013.
391

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[3] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

https://doi.org/10.2991/iccsee.2013.391
https://doi.org/10.2991/iccsee.2013.391

	Introduction
	Physical Construction
	Two AMD Spartan 7 XC7S50-CSG324A FPGAs
	Two OV7670 Camera Modules
	A Glove with Color-Marked Fingertips

	Hand Recognition
	Glove Test Cases
	Top Level Pipeline
	Downsampling
	Signal Controller
	Threshold
	Blob Detection Module
	WAITING
	COUNTING
	DIVIDING

	Crosshair
	Hand Command

	Video Enhancement
	Upscale Signal Generator
	Image Filter
	Pixel Shifter
	Bicubic Interpolation
	Upscaled Frame Buffer

	Evaluation of Blob Detection
	Centroid Visualization

	Evaluation of Video Enhancement
	Software Verification on Real-Life Data
	Hardware Realization

	References

