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Abstract—We present VOXOS, a high-fidelity synthesizer and
vocoder implemented entirely on FPGA without any use of
IP. The synthesizer supports pitch-bend, vibrato, attack-decay-
sustain-release (ADSR) envelopes and four waveform types with
control via an external MIDI keyboard. The vocoder mixes this
synthesized signal with the human voice or arbitrary line-in
through 24 fourth-order infinite impulse response (IIR) filters
to produce a high-fidelity 24-bit vocoded output at 48kHz.

Index Terms—vocoder, synthesizer, audio, digital signal pro-
cessing

I. MOTIVATION

A vocoder is an instrument that performs speech synthesis
by “projecting” a vocal audio signal’s features onto a car-
rier signal. Originally intended for voice compression during
wartime, the vocoder has seen extensive use in popular music
for its robotic effect. Yet, there is no prior open source art
we could find on implementing the instrument on an FPGA.
The effect is not challenging to understand and implement
mathematically, and offers an informative first-look into digital
signal processing while balancing audio quality and resource
utilization.

II. OVERVIEW

Fig. 1: Full vocoder system with typical audio production
usecase

The VOXOS system consists of:
• A RealDigital Urbana FPGA board compatible with Dili-

gent’s Arty S7-50 board

• A SPH0645 MEMS microphone from Adafruit
• A Pmod I2S2 module from Diligent
• A MIDI keyboard

Figure 1 demonstrates a typical usecase where VOXOS’ output
is recorded in a digital audio workstation (DAW). Since
the output is analog line-level, it can be used directly with
headphones or downstream amplifiers and effects chains. A
computer is necessary to VOXOS to receive MIDI messages.

III. AUDIO PROCESSING

The vocoder was invented in 1928 at Bell Labs by Homer
Dudley as means of speech compression and resynthesis.
It was later integrated into SIGSALY, an encrypted voice
communication system during World War II [1].

The theory is relatively simple: human speech usually
resides in the range of 50–5000Hz. By routing this signal
through many band-pass filters spanning this range and de-
tecting its envelope, we have the approximate vocal spectral
content over time. This binned spectral content is more effi-
cient to transmit than the original vocal signal. Critically, we
can resynthesize this vocal signal by mapping this spectral
content onto a carrier signal. This is done by using the same
filterbank on the carrier signal and then amplifying each band
by the height of the corresponding vocal band envelope.

Dudley originally implement his vocoder through a se-
ries of high-Q analog bandpass filters and voltage-controlled
amplifiers. In the digital domain, we can achieve a similar
result through infinite impulse response (IIR) filters and a dot-
product between the carrier and vocal envelope.

A. IIR Filter Design

Our bandpass filterbank consists of N = 24 fourth-order
Butterworth IIR filters covering the range 50–7000Hz shown
in Figure 2. This range is logarithmically split into 25 bins,
with each filter’s 3dB cutoff on either side set to each
frequency bin endpoint. The higher 7kHz limit was chosen
to accommodate all the synthesizer’s fundamental frequencies
without an additional highpass filter. These filters were realized
as cascaded biquads via MATLAB.

We chose to implement IIR filters for their well-behaved fre-
quency response to accurately estimate vocal spectral content.
While finite impulse response (FIR) filters have greater sta-
bility, they require higher order, and thus FPGA resources, to
achieve comparable frequency response. Specifically, fourth-
order Butterworth IIR filters were chosen for their maximally



Fig. 2: Frequency response of 16 fourth-order Butterworth
filters covering 50–7000Hz

Fig. 3: Envelope detection on the first 3 filtered bands of a
speaking sample

flat frequency response over the band of interest and increased
rolloff within FPGA resource constraints.

B. Envelope Detection

We implement envelope detection on the vocal signal bands
by using a fourth-order lowpass Butterworth filter with cutoff
frequency of 100Hz on the rectified signal. The cutoff was
determined by trying many values from 20–250Hz and picking
the one with best detection results. See Figure 3 for visual
results.

C. Noise Generation

Some sounds are not well-suited for this type of resynthe-
sis. In particular, purely consonant sounds, unvoiced sounds
(plosives, sibilants, fricatives) that involve stopping the vocal
cords are hard to capture via frequency band analysis. This is
due to their high frequency, like /s/, or low energy content,
like /n/ at the end of ”sun.” In Dudley’s original vocoder, he
added a noise generator which became the fundamental carrier
when it detected high frequency input.

We experimented with a similar approach by combining a
highpass filter and 31-bit LSFR noise generation. But through
testing an preliminary implementation on MATLAB, we found
this to not produce any better sounding output. Depending
on the final mix, this would also greatly obscure some other
sounds. Given that during testing, square and sawtooth carriers
produced good clarity for these sounds, we theorize that these

waveforms already have enough harmonics, and that the 7kHz
endpoint is sufficient to track and reproduce these speech
artifacts. We did not finish implementing this in the VOXOS.

IV. DSP IMPLEMENTATION

A. Coefficient Generation

VOXOS performs all digital signal processing in fixed-
point arithmetic. Biquad filter coefficients were generated in
MATLAB first in variable-precision arithmetic, scaled by 220,
rounded to the near whole number, then stored in a memory
file as 32-bit signed integers. The scaling factor was chosen
to give comfortable precision to the smallest coefficients of
the envelope lowpass filter. Intermediate calculations are sign-
extended to 64-bits to prevent overflow and right-shifting to
remove the scaling factor is performed as late possible to
maximize resolution.

B. Pipelining and Timing

Bit growth and timing become larger considerations when
working with wide multiplication, addition, and shifting op-
erations. In particular, VOXOS computes with 24-bit audio
samples and 32-bit coefficients with 64-bit intermediates. To
satisfy timing constraints, each cascaded biquad performs just
one multiply, add, or shift operation per clock cycle.

Furthermore, the RealDigital Urbana FPGA has only 120
DSP48 slices. In experimentation, this equates to at most
28 cascaded biquads synthesized at once. To achieve voice,
envelope, and carrier filtering, we serially timeshare these
biquads. In particular, to allow for future filter extensibility, we
require at least 35 ·N clock cycles between vocoded outputs
where 35 is the number of pipeline stages for one filter based
on our implementation and N is the number of desired filters.

We have a system clock of 98.304MHz, or 2048 times our
48kHz sampling rate. Through testing, we found that we must
run our filterbank at most at 98.304MHz / 2 to meet timing
constraints. Therefore the current upper bound on the number
of filters is

98.304/2MHz
48kHz

= 1024 ≥ 35 ·N =⇒ N ≤ 29. (1)

This is a potential source of improvement in a future im-
plementation by removing pipeline stages until exhausting
available slack.

C. Mixing

When performing the dot-product on the 24-bit filtered
carrier signal and the 24-bit envelope over N different filter
bands, we have high probability of clipping. Much like how
we pipelined the biquad filters, we pipeline the mixing process
to first perform just one multiplication, addition, or shift per
cycle.

Products, which are 48-bit, are saved to a 64-bit temp. On
the next cycle, they are added to a 64-bit accumulator. After
each band product is summed, the signal is potential 48 +
log2 N ≈ 53 bits wide. We finally do a arithmetic right shift by
24, an experimentally determined amount that prevents most
clipping and has satisfactory volume. Note that we do not



shift by 29 back to 24-bit because filterbands are not perfectly
correlated. Different filterbands would never produce a mixed
result that would saturate the given width and the resulting
audio would be too quiet.

V. SYNTHESIZER

The second part of a vocoder is carrier signal generation
via a synthesizer. We implement a synthesizer capable of gen-
erating sine, triangular, square, and sawtooth waves through
direct digital synthesis (DDS).

A. Sine DDS

Instead of the complexity of calculating sinusoidal values,
we store a lookup table of precomputed values and index into
these values based on a phase that increments depending on
the desired synthesized frequency.

In order to achieve high-fidelity synthesizer output, we
require cent-resolution, i.e. 1/100 of a semitone, at 20Hz, the
general lower-bound on human hearing. Therefore we need at
least

(21/12 − 1)Hz/semitone
100 cents/Hz

· 20Hz = 0.012Hz resolution.

If we want to produce up to 20kHz, the general upper-bound
on human hearing, we need log2(20, 000/0.012) ≤ 21 bits
to achieve this resolution. We round up to 24 bits at 192kHz
which gives 192kHz / 224 ≈ 0.011Hz resolution. Therefore,
to produce a desired frequency f , we use a phase increment

increment = f

/(
192kHz
224

)
(2)

that is added to the phase accumulator at 192kHz.
Our ideal phase is 24-bit and ideal output at a given phase

is 24-bit. But a BRAM lookup table of width 24 and depth
224 is prohibitively large for the FPGA. Instead, we store 214

samples of a quarter-period with amplitude 223 to span the
entire 24-bit width. Then, using the 2 MSBs from the phase,
we index backwards and/or negate the sample to achieve a full
period. Therefore we achieve 216 effective phase resolution for

214 samples · 24 bits per sample ≈ 393Kbits.

These samples were generated via a Python script as 23-bit
values, stored in a memory file, and synthesized as DRAM
via SystemVerilog’s $readmemb. The sign MSB was added
in the module output through symmetry.

Square, triangle, and sawtooth waveforms are implemented
as counters exploiting symmetry as well, then scaled to match
the root-mean-square amplitude of the sine wave.

VI. AUDIO I/O

VOXOS makes use of two external peripherals to enable
voice or arbitrary input and mixed output. We maintain two
base clocks: 98.304MHz and 36.864MHz, and implement I2S
according to provided datasheets. Due to resource constraints,
we support only mono audio I/O.

Using a switch, the user can choose between microphone
input or line-in input as the vocoder’s modulator. This, along

with the synthesizer carrier output, is routed to the filterbank
and mixer before the mixed result is routed to line-out.

A. Microphone

The SPH0645 I2S MEMS microphone has a builtin anti-
aliasing filtering for voice capture, so we only handle the I2S
driver implementation. For mono input, we set word-select
to 0. Microphone samples are then 18-bit twos-complement
clocked in MSB first every 64 bit times so. Therefore, we
run its serial clock (SCLK) at 48kHz · 64 = 98.304MHz / 32.
These values are then left-shifted by 6 to produce 24-bit signed
values.

B. Line In and Out

We also implement an I2S driver for the Pmod I2S2 module.
The line-out driver has a master clock (MCLK) at 36.864MHz
to allow for an SCLK of 36.864MHz / 16 = 48kHz · 48 to be
generated for 2-channel 24-bit audio to be clocked in at the
sampling rate. The same mono output is sent to both channels
via a 48kHz left-right clock (LRCK), but this clocking scheme
is necessary to communicate with the device correctly. The
line-in driver shares a similar structure. The MCLK, SCLK,
and LRCK are shared and we only sample the right-channel
output.

VII. MIDI CONTROL

VOXOS implements a portion of the MIDI protocol to
support common musical usecases. These include:

• Note on/off events for notes 12-108 (C0 to C8), a slight
extension of the standard piano keys

• Pitch-band update events
• Modulation update events for vibrato
• Attack, decay, sustain, and release update events

Due to setbacks with trying to implement a driver for the
MAX3421E USB host controller, we were not able to imple-
ment a EQ control for the vocoder frequency bands.

A. UART Communication

We originally intended to write a hardware driver for the
onboard MAX3421E USB host controller to directly commu-
nicate with MIDI devices. Without a working USB packet
analyzer, this was extremely hard to debug, especially when
we followed the documentation and programming guides very
closely. More details on our efforts and possible future work
is listed in the Appendix.

Instead, we connect a MIDI keyboard to a computer, use its
software drivers to receive raw MIDI packet bytes in Python,
then transparently send them to the FPGA over UART. See
Figure 5 for an example of the Python script sending note
events. We used Manta’s UART receiver module [4] to receive
messages at a 3Mbps baudrate.



Fig. 4: Condensed block diagram. Pipelined double biquad modules are not shown for brevity.

Fig. 5: Python script that sends MIDI bytes to the FPGA

TABLE I
SUPPORTED MIDI PACKETS

Type Status Byte Data Bytes
Note on 1001 CCCC 0PPP PPPP 0VVV VVVV
Note off 1000 CCCC 0PPP PPPP 0VVV VVVV

Pitch bend 1110 CCCC 0LLL LLLL 0MMM MMMM
Modulation wheel 1011 CCCC 0000 0001 0MMM MMMM

Attack time 1011 CCCC 0100 1001 0MMM MMMM
Decay time 1011 CCCC 0100 1011 0MMM MMMM
Sustain time 1011 CCCC 0100 1000 0MMM MMMM

B. MIDI Module

MIDI packets consist of a status byte and data bytes. The
following is a table of status and data byte values for the
packets VOXOS supports [2].

Here, C represents part of the channel number, P is pitch
from 0−127, V is velocity, L, M are least and most significant
bits respectively. This is necessary for pitchbend which is a
14-bit value where 0x2000 is the center.

The MIDI module detects when the packet bytes change and
processes the new event. When it receives a Note On event,
it registers the pitch value between 12-108. This value is used
to look up the corresponding phase increment to send to the
synthesizer. This lookup table was generated in Python with
a reference frequency table [3] and rounding the results from
equation 2 and synthesized as DRAM.

When a Note Off event is received, we check if the event is
for the most-recently-pressed note. This allows for smoother
note transitions especially when playing faster. Currently, we

only support one key pressed, but this is easily extensible.

C. Pitchbend

Pitchbend involves changing the pitch of a synthesizer given
an intensity value. The AKAI MPK mini keyboard we use does
not use the least significant bits of the intensity, so we have
127 possible pitchbend values. We chose to map these onto
a ±1 semitone range, where an intensity of 64 = 0x20 is the
center.

Pitch is proportional to the phase increment, so we can
multiply the phase increment by 2±1/12 to achieve the desired
effect at the extremes. The rest of the values were mapped
logarithmically to produce a smooth variation. Using fixed-
point arithmetic with scaling factor 220 again, we produced
pitchbend factors for intensities 0 to 127. When a pitchbend
event arrives, we update the factor and right-shift to remove
the scalar. These were also synthesized as DRAM.

D. Modulation and Vibrato

The modulation wheel was mapped to vibrato. Vibrato
is essentially an oscillating pitchbend, with greater intensity
mapped to faster oscillation. We used our sine module as
a low-frequency oscillator (LFO) with varying frequency
between 0 and 10Hz. Another DRAM lookup table was
generated for 127 phase increment values corresponding to 0
and 10Hz. On receiving a modulation wheel event, its intensity
indexes directly into this table.

Because the LFO output is 24-bit, we right-shift, convert
to unsigned, then add an offset to map the sine wave onto
values [32, 96] which index into the pitchbend table. This
gives the vibrato effect half-semitone range. The pitchbend
and vibrato multiplication and shifts are all combinational to
reduce complexity, but can be pipelined for timing.

E. ADSR Envelope

An ADSR envelope allows for amplitude control over time
so that the synthesizer output can grow and decay over time.
See Figure 6 for a visualization. The MIDI module also
implements a state machine for attack-decay-sustain-release



Fig. 6: ADSR envelope that controls amplitude over time.
Image from Wikipedia.

Fig. 7: Attack-Decay-Sustain-Release state machine, with con-
ditions to prevent overshoot

envelope support illustrated in Figure 7. This generates a 0-
127 volume scalar that is applied to output of the mixer before
a right-shift by 7 to maintain unity gain.

Attack, decay, and release are units of time. A higher attack
time setting corresponds a longer time until the synthesizer
reaches its maximum volume after key press. Similarly for
decay and release. Therefore when we receive these events
we set an attack, decay, or relase increment that is 128 − V
where V is the event value in the packet. In contrast, sustain
is a level setting, so we directly set V .

When a note on event is received, we increment the vol-
ume scalar by the current attack increment up to 127, then
decrement by the decay increment until we reach the sustain
level. When a note off event is received, we decrement until
we reach 0 for release. See Figure 7 for the state machine,
which includes conditions to prevent volume overshoot and
clipping. To perceive this envelope on human timescales, we
perform an increment every 220 master clock cycles with a
counter. This gives us a maximum attack time of up to

1 increment
98.3MHz/220

· 128 increments ≈ 1.4 seconds

VIII. EVALUATION

A. Project Success

One of the main goals for this project was audio quality.
A lot of effort was put into investigating bit-growth, rounding

techniques [5], filter stability, and comparing against commeri-
cial options like the Roland VP330, Behringer VC340. With
respect to usability, the instrument can be used effectively
as a performance instrument with enough functionality to be
interesting in our opinion.

We met all goals except for the vocoder band EQ stretch
goal. We did not fully implement noise-generation due to its
lack of benefit for output quality. Through testing, VOXOS
performs best when the carrier has many harmonics, such
as with the square and sawtooth waves, to allow for better
unvoiced feature capture.

Another goal that often made this harder was using as
little IP as possible. This was the author’s first time working
extensively with audio DSP, HDLs, and MATLAB. All drivers,
with exception of the UART RX module, were testbenched
and written manually. Additionally, filters were designed and
implemented from first principles. These designs were evalu-
ated against filters generated via MATLAB’s HDL Coder and
empirically had better sound results.

With these in mind, VOXOS still has room for future work.
In particular:

• Better handling of clipping. VOXOS produces satisfac-
tory results with occasional almost-resonant clipping with
certain waveforms and certain frequencies.

• Standalone USB MIDI support with a hardware driver
• Multi-touch support to play chords
• Real subtractive synthesis support with adjustable synthe-

sizer filters

B. Resource Utilization

Fig. 8: Vivado resource utilization report

Our final design had 4.206ns of available slack and used
nearly 90% of the DSP48s onboard for 24 cascaded biquad
filters. This is very close to the practical maximum without
optimizing the 64-bit temps and accumulators very carefully,
as we observed 28 filters would take up 123 blocks through
an attempted synthesis. Any effort to further timeshare the
synthesized filters would involve more pipeline stages further
restricting the bound given in inequality 1. Additionally, we
cannot run the filters directly at the master 98.304MHz without
massively violating timing.



IX. RETROSPECTIVE

Overall the project was incredibly valuable for the learning
experience besides creating a fun instrument. A few key
takeaways:

• Testbench always. Especially if you’re writing finnicky
drivers. YOLO’ing and hoping for the best will lead to
lots and lots of pain in the future when you spend a week
debugging a weird ”filter stability issue” that turns out to
be a cycle-off error that you should’ve caught three weeks
back.

• Hardware isn’t software. You can’t just write 5 64-bit
multiplications in a row for 24 modules and expect to
meet timing. You also can’t expect a fast iteration cycle
when builds take 10 minutes. Ensure you fully understand
a timing diagram or datasheet before sinking a ton of
time.

• Implement AXI. VOXOS two different base clocks and
many different clock domains that become hard to keep
track of even with extensive comments. Weird pipelin-
ing bugs between clock domains will inevitably arise.
We should have implemented AXI early on for all our
modules to make this problem a lot more manageable, or
at least some kind of shared registering and valid/ready
scheme.

X. APPENDICES

A. USB Host Controller Driver

The first three weeks of the project were spent on developing
a hardware driver for the onboard MAX3421E USB host
controller. This effort was almost successful, but without a
packet analyzer we hit a wall. For the sake of posterity, we
will describe our progress.

• The MAX3421E communicates over SPI. It has 32 in-
ternal register that allow you to handle interrupts for
USB connection, speed probing, data receive and transmit
status, among others. We wrote an SPI controller to do
multi-byte register reads and writes.

• One should follow a software driver as a reference as
the provided programming guide [8] is lackluster (and
contains errors). We relied on a few implementations [6]
[7].

The general setup flow involves:

1) Set the MAX3421E to operate in full-duplex mode.
Therefore, you can read USB status and registers while
also writing data and you don’t have to deal with tri-
stating things.

2) Perform a hardware reset unless you can’t set the HOST
bit to operate as a USB host

3) Check if the oscillator is ready after the reset with the
OSCOKIRQ bit

4) Set GPOUT0 high which enables 5V for peripherals
5) Set HOST bit, DPPULLDN, DNPULLDN for connec-

tion detection

6) Set the SAMPLEBUS bit then read J, K states in the
USB status bits to see if a USB was connected and what
speed it operates at

7) Wait 200ms for the USB bus to settle
8) Wait for SOF interrupts to come in, so the bus is ready

to use
9) If you know your peripheral’s USB descriptors, you

can skip enumerating the device. Otherwise read up on
GET DEVICE and GET CONFIGURATION requests

10) Set an address for your peripheral by clocking in the 8-
byte SET ADDRESS SETUP packet into SUDFIFO to
endpoint and address 0, and write 0 to HXFR to trigger
a SETUP packet send

11) Read the USB status bits and wait until you get a clean
HXFRSTATUS bit. If you get a busy or NACK, retry.

12) Then write 0x80 to HXFR to trigger a STATUS packet
send which ends the SET ADDRESS command.

13) Wait 20ms for the peripheral to actually change its
address

14) Do 10 but now with a SET CONFIGURATION com-
mand, and with the address you just set and still endpoint
0. This is where we got stuck. No matter what we tried,
the peripheral would always respond with a 0xE status,
or J-state error. There wasn’t any documentation on this
so without a packet analyzer we could not find out where
in the transaction we went wrong.

15) Theoretically, after you set the configuration, you can
now send in periodic BULK IN packets, which would
return back the 3-byte MIDI packets we needed. Alas,
we were so close!

This entire flow is documented in more detail in
max3421_spi.sv and usb_controller.sv.

B. Code Repository

The code is on GitHub at https://github.com/Li357/voxos
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