
Crappy Car Simulator
1st Teonezcayotl GutieRuiz

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
tmgutier@mit.edu

2nd Jose H. Cerritos Arevalo
Department of Physics

Massachusetts Institute of Technology
Cambridge, MA, USA

joseca@mit.edu

Abstract—This paper presents the design and implementation
of a driving simulator utilizing a Field-Programmable Gate
Array (FPGA) platform. The simulator integrates an Inertial
Measurement Unit (IMU) for steering input, a pedal system with
an Analog-to-Digital Converter (ADC) for velocity control, and
outputs the simulated environment through an HDMI interface.
The FPGA-based approach allows for real-time processing and
control, providing an immersive and responsive driving experi-
ence.

Index Terms—FPGA, Driving Simulator, IMU, ADC, HDMI

I. INTRODUCTION

Motivated by the increasing demand for realistic virtual
experiences in the field of simulation and training, driving
simulators have gained popularity in both entertainment and
professional applications. Traditional driving simulators often
rely on complex software simulations running on powerful
computing systems. In this paper, we propose an innova-
tive approach by implementing a driving simulator on an
Field-Programmable Gate Array (FPGA), leveraging its par-
allel processing capabilities to achieve low-latency and high-
performance real-time control.

II. PROJECT OUTLINE

Ideally, the user is able to interact and play the game
through the use of a steering wheel, pedal, and button inputs.
The user uses the steering wheel to control where the car
is, the pedal to control the speed, and the button to control
the difficulty. Obstacles are procedurally generated and move
down the screen. The rate at which these are generated and
the speed at which they move are controlled by the difficulty,
or button presses. Additionally, the car will occasionally break
down at higher difficulties, and this will require a quick time
event to ‘fix’ the car to return to driving. The quick time event
involves a sequence of button inputs on the FPGA board to
complete.

III. PHYSICAL CONSTRUCTION

The driving simulator system is comprised of four main
physical components: the AMD-based Spartan 7 Urbana
FPGA Board [1], the MPU 9250 [2] Inertial Measurement
Unit (IMU), a Pedal [3], the AD7705 [4] Analog-to-Digital
Converter (ADC), and an HDMI connection from the FPGA
Board to a monitor.

A. IMU

The MPU 9250 is an IMU that produces 3-axis gyroscope,
3-axis accelerometer, and a 3-axis magnetometer data, all of
which are 16 bit and conveyed MSB first, that can then be
conveyed using either the Inter-Integrated Circuit (I2C) bus
interface connection protocol or the Serial Peripheral Interface
(SPI) protocol. For the purposes of this project, we decided to
utilize the SPI protocol for easier implementation and the fact
that the ADC also utilizes SPI.

In order to interface the IMU with SPI, communication
begins with the main device (the FPGA board) asserting the
Chip Select line with an active low, signaling the IMU to
listen; the FPGA then sends a 1MHz clock signal down the
Serial Clock (SCLK) line, and data is transferred simultane-
ously across the Main Output, Secondary Input (MOSI) and
Main Input, Secondary Output (MISO) lines. The FPGA sends
a command or register address on the MOSI line, and the
IMU responds with the requested data on the MISO line.
The MPU 9250 has a set of registers that control its various
functionalities and store sensor data, such as I2C IF DIS (bit
4 of the USER CTRL register 106) which disables the I2C
module and puts the serial interface in SPI mode only.

For the purposes of this project, we only need to calculate
the angle of the IMU to act as a steering wheel, so the FPGA
gathers the High and Low Bytes of the gyroscope x and y
directions and then calculates the angle based on a simple
integration approach. This data is then converted into a 2-
bit “right, left, or still” signal based on angle thresholds to
determine whether the car is moving to the right, left, or
staying still.

B. Pedal and ADC

The Pedal itself is a Hall-effect device that collects pedal
angle position data without contact; it is powered with 5V
and outputs 1V to 4V based on the 0 to 30 degree position
angle change from compression. Since this outputs an analog
voltage, we decided to utilize the AD7705 ADC to convey the
voltage value digitally to the FPGA utilizing the SPI protocol
in a similar manner to the IMU. Since both peripherals utilize
SPI, we are able to share the MOSI, MISO, and SCLK
lines, while only having separate Chip Select lines going to
each apparatus, thus removing the need for additional wires.
In the project implementation, the FPGA oscillates between
gathering pedal and IMU data.



The AD7705 itself is a 16-bit Sigma-Delta ADC which
involves oversampling the analog input and feeding the result
through a feedback loop. The ADC also provides a status bit
that indicates when the conversion is complete, so the FPGA
monitors this bit to determine when to read the converted data.
The FPGA then takes in this 16-bit voltage data and converts
it into 16-bit velocity data which corresponds to the speed at
which the obstacles come at the player.

IV. GRAPHICS

The aesthetic of the game should ideally be retro/4 bit to fit
the style of gameplay. To display the graphics onto the screen,
we are using Block RAMs (BRAMs) and an SD card. The SD
card will be used for the start and end screens since those are
not required to be updated as quickly as the sprites during the
gameplay. The gameplay will use BRAMs for the obstacles
and character as well as the side images to give an effect of
moving forward.

Fig. 1. Model of what Gameplay would look like

Fig. 2. Sample Gameplay

In Figure 2, the blue square represents the player car, and
the pink square represents the obstacle. The blue square is able
to go up, down, left, or right, and the pink square location is
randomly generated at the top of the screen and then moved
vertically towards the bottom.

A. Sprite, Background, and Track Storage

Due to the limited on-chip resources of the FPGA, the
Urbana board comes with built-in BRAMs that can be used
to store and access sprite data efficiently. The following struc-
tured approach was utilized to allocate memory efficiently:

• Color Palette: the color palette incorporates 256 colors,
represented by 24 bits per color (8 bits for each RGB
value), so the BRAM would be of size 24x256 which
results in approximately 6.2 kbits of storage.

• 8x8 Blocks: Since storing and writing to each pixel on
the screen would utilize too many memory resources,
Image Sprites and the Background would be composed of
8x8 groups of pixels, aptly named “blocks,” that can be
stored on a single BRAM; in other words, Image Sprites,
the Background, and Track would be formed by smaller,
modular image sprites in order to conserve memory on
the FPGA. There would be, at most, 64 unique blocks,
so the BRAM width would be 8 bits wide for the palette
address and (64x8x8) bits deep, resulting in about 32.8
kbits of storage.

• Image Sprites: As of the writing of this paper, we have 6
unique image sprites in mind: a tree, shrub, three possible
choices for the player car, and one enemy car. These
sprites would be composed of 16 blocks, so each sprite
would be stored in a BRAM that is 12 bits wide for the
block address and (6*16) bits deep, resulting in roughly
1.2 kbits of space.

• Background and Track: The screen resolution is
720x1280 pixels, so it can therefore be composed of
14,400 blocks, meaning the Background and Track would
be a BRAM of size 12x14,400 bits, utilizing about 172.8
kbits of storage.

This particular scheme utilizes roughly 213 kbits of the total
1 Gbit of memory on the FPGA, which allows for efficient
storage and retrieval of graphical data within the constraints
of available FPGA resources, ensuring optimal performance
for the driving simulator and allowing for further expansion
in either layer of the scheme.

B. Graphics Module

The Graphics Module of the project incorporates several key
features to enhance the visual experience; dedicated BRAMs
are assigned for the Palette, 8x8 Blocks, and the composite of
Background, Track, and Sprites. Most notably, the BRAMs
for Background, Track, and Sprites employ addresses that
reference 8x8 blocks, which, in turn, point to the color palette.
The design of the sprites, including obstacles and the car,
follows a retro style aesthetic. Moreover, a unique aspect of the
module is the option for players to switch between 3rd person
(top-down view) and 1st person perspectives, adding an extra
layer of complexity to the gaming experience; however, the
first-person view has not yet been implemented. Additionally,
a pause function can be implemented for extended user control
during gameplay; in addition, the inclusion of a Quicktime
function pauses the screen, allowing for user inputs to continue



on in the game. These design elements collectively contribute
to a dynamic and customizable graphical interface for the
game, enhancing both aesthetics and user interaction.

V. GAME LOGIC

The game uses a Finite State Machine (FSM) to keep
track of the difficulty. The initial state has no obstacles being
generated so as to give the user a chance to get a feel for
the game. The later stages have more obstacle generation and
random instances of the car breaking down triggering quick
time events.

To represent this in Verilog we have a register routed to
3 bits to encode varying difficulties of game states. This
register is able to be incremented to the next difficulty by
pressing the button one on the FPGA board. This register is fed
into a gameplay module which handles sprite generation for
obstacles, and movement for the car. The module procedurally
generates the obstacles by taking in the game state to decide
how frequent obstacles should be generated and how fast they
should move. The obstacles are generated at different parts of
the track at random by using a Linear Feedback Shift Register
(LFSR) module as an input. The car is controlled by switches
on the FPGA as of the writing of this paper, but later will
be controlled by the steering wheel and pedal when they are
interfaced.

We had the idea of encoding the game state to show the
start screen and end screen. Encoding the game state this
way allows for effortless switching between screens as well
as prevent the gameplay module from doing unnecessary
calculations while on these screens. This will also help when
we implement the quick time events and pause the game,
where the FPGA would just have to switch to another screen.

The gameplay module will also handle collision checking
since it updates the sprites movements every new frame in.
If there is any overlap between the player sprite and obstacle
sprite, the game state will change to trigger the game to stop
playing and display a new screen: game over. To achieve this,
we have an if-else chain with priorities. The first priority is
the rst in, then it would be the start screen game state, pause
game state, or end screen game state to prevent unnecessary
calculations from happening. After these are checked, then it
would be the various gameplay states, with different difficul-
ties.

To make it clearer, the game state will be enumerated as
follows:

TABLE I
GAME STATE

Bits State
000 Start Screen - No gameplay
001 Gameplay
010 Gameplay with obstacle generation
011 Gameplay with faster obstacle generation
100 Gameplay with obstacle generation and quicktime events
101 Quicktime event screen
110 Quicktime event screen
111 End Screen

Quicktime events were created by making a timer and
having another module check for completion of the event. The
quicktime events are triggered by the lfsr in input to simulate
a random jump to a quicktime event. We had to adjust the
if statements that checked the input such that they were not
triggering every second by checking the lfsr in for more of
its bits. We created a quicktime module that takes in signals
to check if it was active, and FPGA inputs to check if the
action was completed. The quicktime event module also has
a select signal which can be expanded on in future iterations,
but, at this point, the module only has two options that require
different FPGA inputs to create some sort of variety. From
there, we had to make a timer module to see if the quicktime
event was completed within the allotted time. To do this, we
made a nested counter and adjusted to see what would be a
good amount of time. The quicktime and timer modules are
both activated when the lfsr in inputs are triggered when in
the game state bits value 100.

Moreover, we incorporated a scoring function into the game
dynamics. The player’s score is visibly displayed on the seven-
segment display and undergoes updates every few frames. The
scoring mechanism is tied to the current game state, intro-
ducing variability in scoring based on gameplay conditions.
Specifically, at the start of the game and during the initial
game difficulty, the score remains fixed at zero. At the next
edifficulty level that introduces slow, random obstacle gener-
ation, the score increases at a certain rate. Subsequently, as
the game difficulty level increases, the score update increases
in rate as the obstacle generation increases, intensifying the
competitive aspect of the game. During testing, we observed
that this scoring system added an extra layer of challenge and
engagement to the gaming experience.

The implementation of the gameplay module presented
some challenges, particularly in handling button inputs to
facilitate changes in the game state. In the beginning, we
considered making the game state an input to the gameplay
module, intending to complete the logic for incrementing
the game state and holding it at a specific value at the top
level. However, this approach proved less intuitive and intro-
duced complications, particularly in having multiple writes
to the game state in the same clock cycle, leaving us to
abandon the idea. Subsequently, we explored an alternative
option by checking for the btn pulse in every game state
and incrementing the game state from there. During testing,
though, we encountered an issue where despite confirming
the functionality of the button pulse, we observed no visible
changes. Upon investigation, we pinpointed the problem to the
unsynchronized nature of btn pulse and nf in operating on
different clocks. To address this, we adjusted the priority in
the game, utilizing a signal to retain the value of the btn pulse
and checking this held value to determine whether the game
state should be incremented. Despite concerns about potential
screen glitches, thorough testing revealed no adverse effects
on the video output. Beyond these challenges, the gameplay
module acts as a finite state machine, with the game state
dictating the displayed content on the screen and influencing



various gameplay mechanics. Notably, we incorporated a timer
module activated during the end game state, looping back to
the start screen game state and enabling the finite state machine
to operate in a cyclical, and therefore recurrent, manner. This
design choice enhances the overall coherence and replayability
of the game.

Fig. 3. Gameplay Mechanics Finite State Machine

Fig. 4. Top-level Block Diagram

VI. EVALUATION

A. Project Commitments and Goals

At the start, our main goal was to set up a basic game state
and make the gameplay work. We wanted to use a top-down
view and include physical devices as controllers for some parts
of the game; although we managed to implement the former,
we found some difficulty in the latter. Despite our efforts,
getting the physical peripherals working didn’t quite pan out
as we hoped.

B. Physical Peripheral Reflection

If we were able to redo the physical peripheral implemen-
tation to our project, we would have focused more on asking
for help in the synthesis and execution of the communication
between the peripherals and FPGA, rather than spending hours
to no avail on the same problem.

C. Graphics Reflection

If we had the chance to redo our graphics, we would have
preferred to start off with an SD card to store Start and Game
Over images. This choice stemmed from the challenges we
faced when setting up the BRAMs, as pipelining proved to
be quite resource-intensive, and we encountered limitations in
the early stages of the project in terms of memory usage.

D. Game Logic Reflection

If we were able to redo game logic, the preferred method
would have been to start by modularizing the code from
the beginning. Instead of creating a lengthy module, which
turned out to be susceptible to easy bugs and errors throughout
the pipeline, breaking down the code into more manageable
and independent modules would have been a more effective
strategy. This would have enhanced the overall robustness of
the game logic and minimized the likelihood of encountering
issues in the development process.

E. Future Implementations

Other than completing our project commitments, we wanted
to add a function to turn off the sprites in the game so that we
could add more obstacles at higher difficulties. Right now, in
order to hide the sprites, we send them to the front and back
porches of the raster screen. We also wanted to add multiple
lives that would be shown on screen and use the filter idea
from previous labs to indicate when there was a collision. We
also wanted to make the quicktime events more engaging with
more variety, and different inputs needed besides the switches
on the FPGA. We wanted to also experiment more with the
gameplay to see what parameters provide the best gameplay
for the user. Another possible idea was to perhaps add a
drifting mechanic given the steering wheel input, which would
heighten the experience and improve the overall enjoyability
of the simulator.

VII. CODE BASE

The code base can be found here.

VIII. CREDITS

Teonezcayotl focused on the Graphics and Game State
Module. Jose initially focused on the physical peripheral
implementation, but then pivoted to helping with the Graphics
and Game State after he could not get it to work in the interest
of time. Teonezcayotl also focused on quantitative evaluation
and producing images, while Jose focused on writing the
reports and creating figures. Group 32 gives special thanks to
Darren for all the help over the semester, and Joe Steinmeyer
for being such a great Instructor!

REFERENCES

[1] “Urbana board,” RealDigital, https://www.realdigital.org/hardware/urbana
(accessed Nov. 21, 2023).

[2] “MPU-9250,” TDK InvenSense, https://invensense.tdk.com/products/motion-
tracking/9-axis/mpu-9250/ (accessed Nov. 21, 2023).

[3] Amazon.com: MgcSTEM Variable Speed Pedal Electric pedal foot
switch ..., https://www.amazon.com/MgcSTEM-Variable-Accessory-
Replacement-Connectors/dp/B0BFQNSVR6 (accessed Nov. 21, 2023).

https://github.mit.edu/tmgutier/6.2050-Final-Project


[4] “AD7705,” AD7705 Datasheet and Product Info | Analog Devices,
https://www.analog.com/en/products/ad7705.html#product-overview
(accessed Nov. 21, 2023).


	Introduction
	Project Outline
	Physical Construction
	IMU
	Pedal and ADC

	Graphics
	Sprite, Background, and Track Storage
	Graphics Module

	Game Logic
	Evaluation
	Project Commitments and Goals
	Physical Peripheral Reflection
	Graphics Reflection
	Game Logic Reflection
	Future Implementations

	Code Base
	Credits
	References

