
Aurras: Active Environmental Noise
Cancellation Using an FPGA

Matthew Caren
Massachusetts Institute of Technology

Cambridge, MA, USA
mcaren@mit.edu

Bryan Jangeesingh
Massachusetts Institute of Technology

Cambridge, MA, USA
brytech@mit.edu

Jonas Rajagopal
Massachusetts Institute of Technology

Cambridge, MA, USA
jrajagop@mit.edu

Abstract—There exist many systems capable of actively re-
ducing outside noise in closed, acoustically-optimized systems,
such as headphones and car interiors. However, few systems are
capable of reducing noise in arbitrary unfamiliar environments.
We introduce a dynamic noise cancellation system capable of
significantly reducing environmental noise in any space using a
Field-Programmable Gate Array (FPGA). The system is able to
calibrate its behavior to the time-domain and frequency-domain
characteristics of the space using an impulse. Then, it monitors
the environment to ascertain the requisite output from a speaker
near the user to destructively interfere with the incoming pressure
wave.

I. OVERVIEW

Active noise cancellation is a technique that attenuates
sound by introducing a secondary sound source designed to
neutralize the original source. Ideally, this secondary source
emits a sound wave (an “anti-noise signal”) that is the exact
inverse of the incoming wave (the “noise signal”), thus achiev-
ing complete destructive interference with the original pressure
wave. In systems where the secondary source is co-located
with the user, such as active noise-canceling headphones, the
influence of the surrounding environment can be reasonably
ignored, since the point of detection, the point of cancella-
tion, and the point of perception are all very close together.
However, this approach relies on positioning sound sources
extremely close to the user’s ears and is typically effective for
only one user. We developed a more versatile system capable
of canceling single-source noise in a variety of environments.
The system achieves this by measuring and adapting to the
acoustic characteristics of the surrounding environment.

The physical setup, as detailed in Fig. 1, consists of an input
microphone, output speaker, and feedback microphone, as
well as an additional speaker-microphone pair for calibration.
All computation is performed on an AMD Spartan-7 FPGA
clocked at 98.3MHz, running 24kHz 16-bit audio.

The speaker/microphone pairs are configured colinearly and
are fixed at a distance of 34.5cm from each other. To ensure
consistency, we constructed an MDF housing that secures
the speakers, microphone, audio amplifier, FPGA, and all
necessary wiring. A perfboard layout manages signal wiring
to the board, and matches the desired pin configuration for
each microphone and associated components. To counteract
the feedback behavior between the microphone and speaker

Fig. 1: Overview of physical system layout

output, acoustic decoupling foam is used to mount the micro-
phone to the wooden enclosure—the system is capable of a
stable output of up to 88 dB of sound intensity output before
feedback.

The system has two modes: a core noise cancellation mode
and a room-adjusted mode. The core noise cancellation mode
operates independently of the characteristics of the room. In
this mode, the input microphone signal is first preprocessed
with a DC-blocker, anti-aliasing filter, and decimator from
48kHz to 24kHz. This signal is then delayed by the time-
of-flight for a sound pressure wave to travel from the system
microphone to the system speaker. Finally, an inverted (i.e.
negated) version of the signal is outputted, to destructively
interfere with the original noise.

The room-adjusted mode builds on this by taking into
account the environment. In this mode, the microphone input
is similarly preprocessed, but the signal is then convolved
with a measured impulse response of the room to account
for the time-domain and frequency-domain behavior of the
surroundings. The signal is then again delayed and negated.
Hardware switches on the FPGA board configure the state of
the system.

All code is stored in a public GitHub, which can be accessed
at https://github.com/matthewcaren/aurras.

II. INPUT

A. Reading Data From Microphone

The microphones used are MEMS microphones1 interfaced
via the I2S protocol over the onboard pmod pins. The micro-
phones are natively driven at a 48kHz sampling rate and output
18-bit samples, which are down-sampled on arrival to 16 bits

1https://www.adafruit.com/product/3421



to match the rest of the system. An I2S manager module is
responsible for both deserializing the incoming bitstream, as
well as managing the outgoing clock and word-select lines.
I2S requires a clock to be sent to the microphone at 64 times
the sampling rate, where the first 32 cycles correspond to the
first channel and the latter 32 to the second channel. For each
channel, the first 18 bits represent the 18-bit audio, and the
latter 14 bits are not used. In the system, the data line is
clocked at 3.072MHz. The channel select pin is grounded since
the two microphones in the system operate separately. The
word-select pin operates 64-times slower than the data clock
and crucially changes on the falling edge of the data clock.
The power supply and ground take up the last two pins. A
100kΩ pull-down resistor removes any capacitance that has
built up.

B. DC-Blocker

The MEMS microphones used tend to have significant DC
offsets. All microphones tested had a baseline of approxi-
mately −900 (a normal-volume conversation would produce
samples on the order of 100−300). This baseline is generally
very stable and does not drift, but must be addressed to prevent
unexpected output behavior, as well as to prevent intractably
large DC components in the downstream convolution stage
(which will effectively square the DC offset).

To correct for the offset, a module computes the average
offset over 215 microphone samples (∼ 0.68s) by taking a
running sum of the inputs, and then right-shifting the result
by 15 bits. All audio samples are thereafter shifted by the
offset to neutralize the DC component. This is controlled by
BTN1 on the board.

C. Anti-Aliasing Filter

The microphone is sampled at 48kHz, however, the system
audio runs at a sampling rate of 24kHz. To downsample
without aliasing, we precede decimation with an anti-aliasing
lowpass filter with a cutoff at 11500Hz. The filter was built
using Vivado’s FIR Compiler IP with coefficients designed via
the Parks-McClellan algorithm to have a ripple of less than
0.4dB in the passband.

D. Decimation

Lastly, the audio is decimated from a sampling rate of
48kHz to a sampling rate of 24kHz. Since the input has already
been antialiased, we can simply take every other sample from
the anti-aliasing filter output.

Once the above steps are complete, the raw input from the
Adafruit microphone has now been converted into 16-bit, zero-
centered, downsampled 24kHz audio.

III. DELAY MODULE

The delay module is used to align the computed response
of the input signal at the microphone (the “anti-noise signal”)
with the incoming original noise. Without introducing this
delay, the input-to-output latency would be just a few clock
cycles on the FPGA, and the output of the anti-noise signal

would preempt the arrival of the corresponding noise signal
by almost the entire time-of-flight from the input microphone
to the output speaker.

The delay module’s design leverages the inherent capabili-
ties of the Block RAM (BRAM) of the FPGA. We configure
the BRAM in dual-port mode, which offers concurrent access
through two independent sets of data and address lines, and
therefore simultaneous read and write operations.

We treat the BRAM as a circular buffer. The delay module
accepts samples in real-time from the input microphone, which
are immediately written into memory. Simultaneously, an
access pointer offset by a specified delay value reads from
the BRAM and outputs the corresponding sample. The delay
parameter is calculated to be the desired delay time (measured
in audio-clock cycles) offset by the latency introduced by the
memory operations to achieve sample-correct accuracy. It can
be adjusted in real-time to modify the time interval between
the original sound and its delayed reproduction.

In the system, the delay value is set to be equal to the time-
of-flight measured by using the distance between the input
microphone and output speaker, 34.5cm, and dividing by the
speed of sound in air, giving a flight time of 1.01ms, which
corresponds to 24 audio samples. The delay is programmed
using SW15-SW10 on the board.

IV. ROOM-ADJUSTED NOISE CANCELLATION

This set of modules is only used when the system is in
“room-adjustment” mode. The high-level objective is to antic-
ipate how the input sound will interact with the surroundings,
and incorporate this into the predicted ‘anti-noise’ sound.
Since each room responds differently, the system must be
calibrated each time it is used in a new location.

A. Impulse Response

To measure how a sound behaves in a space, an impulse is
played from the calibration speaker, and the resulting impulse
response (IR) is recorded using the calibration microphone.
This provides a model of the transfer function of the space.

First, an impulse generator module outputs an impulse from
the speaker by bringing the output from 0 to a large value
for a few cycles and then pulling it back down to 0. It also
generates internal trigger signals to achieve sample-correct
timing alignment with other modules.

After the impulse is played, the system waits for the number
of cycles specified by the delay module to account for the
time it takes the impulse to travel from the calibration speaker
to the calibration microphone. Then, a 1-second IR (which
is sufficient for most common spaces) is recorded from the
calibration microphone and stored in the IR memory buffer
subsystem. The IR generation and measurement process is
triggered by BTN3 on the board.

B. Convolution Outline

This process involves performing mathematical convolution
of the audio input with the measured IR. This requires an audio
input buffer of equal size to the IR buffer, so we maintain a



running buffer of the last 24000 audio input samples. Then,
in the time limited by the audio sampling period, we perform
the required multiplications and additions: each audio sample,
denoted as the ith sample, is multiplied with the corresponding
IR value indexed at 23999 − i, followed by a sum of all
the resulting values. In other words, the convolutional result
at any given timestep is the dot product of the input buffer
with the reversed IR buffer. Because the audio sample rate
is 24 kHz and the system is clocked at 98.3 MHz, each
sampling period contains 4096 clock cycles, in which all
24000 required multiply-add operations must be completed.
This mandates a more complex approach than simply iterating
and completing one multiply-add per cycle. However, the
constraints of the dual-port memory preclude parallelizing
more than two computation streams, so this demands a more
complex memory system.

C. IR Memory Management

To meet the timing constraints, we designed a memory
architecture for storing the IR buffer using 4 Xilinx Dual-Port
memory buffers operating in unison, allowing for 8 reads per
clock cycle. Each sample of the IR is written into memory
only once in reverse order to enable homogenous indexing
of both buffers in the convolution logic. Each buffer stores
a contiguous 1/4 of the IR data, where the first of the four
buffers stores the last 6000 values and so on. This allows
for a streamlined reading process: in each cycle, two adjacent
indices are read from each of the four buffers, with the buffers
being accessed sequentially. This method allows the system
to read the entire set of 24000 IR values in 3000 clock
cycles, comfortably less than the 4096 cycles available within
the audio sampling period. This design not only optimizes
memory access, but also aligns with the system’s processing
capabilities and time constraints.

D. Audio Buffer Memory Management

To successfully perform the convolution within the requisite
period, our audio buffer must also support 8 read operations
per clock cycle. This design is inherently more complex
than the IR memory, as it requires updating with each new
audio sample. From an algorithmic perspective, every time we
receive a new sample it becomes the last value in the buffer,
and we shift each existing value by one position to make room
for it (discarding the oldest sample in the process). Reading
and rewriting all 24000 values upon receiving every audio
sample is infeasible, so we must use a more efficient strategy.

The audio buffer, similar to the IR memory, is segmented
into four sub-buffers, each containing 6000 consecutive audio
samples. Buffer 3 represented the newest 6000 audio samples
and buffer 0 represented the oldest 6000 of the 24000 samples.
However, now we maintain a pointer to the most recent value
and treat the memory block as a circular buffer, where the
newest value of each buffer is located at the pointer and the
oldest at the index just after it, wrapping around the end of the
buffer. For example, if the pointer is at 2500, then index 2500
is where the new value gets added. Indices 2501 to 5999 of

Fig. 2: Diagram of the live audio buffer memory management
structure

buffer 3 represent the oldest 3499 samples of the third audio
buffer. Index 2501 will be overwritten in the next cycle, and
the value in its location will become the newest index of the
next buffer up. Index 2499 contains the audio sample which
was received one cycle previously.

This means that when a new sample is received, the value
in the spot of the pointer in buffer 3 is transferred to the same
index in buffer 2. This represents moving what was the last
sample from the third buffer - the most recent 6000 samples
- into the buffer representing the audio samples from 12000
cycles ago to 6000 cycles ago. Similarly, the previous value
at the pointer index in buffer 2 is written to the same spot in
buffer, and so on as the previous samples ‘cascade’ upwards.
When the first buffer is reached, the sample from the pointer
index is removed from the buffer since this is the audio sample
from 24000 cycles ago. Once the convolution is complete, the
pointer is incremented by 1. This process is outlined in Fig.
2.

This structure requires only three reads and four writes when
the system receives a new audio sample while still keeping
track of the 24000 most recent audio samples. It also enables
more streamlined convolution computation, since two samples
can be read at a time from each buffer starting at the index
one after the pointer, since we start convolving with the oldest
values.



E. Convolution Module

Using the memory structures outlined above, the convo-
lution process becomes much more simplified. Each time
the system receives a new audio input, the module spends
roughly 3000 cycles to compute the convolved output. Since
the impulse buffer is written in reverse order, the convolution
becomes the dot product of the two stored buffers with the
audio buffer starting at one more than the index of the pointer
- the oldest value in the buffer. Each cycle, we read 8 addresses
from the audio buffer and 8 addresses from the IR buffer. Two
adjacent indices are read from each buffer. Three cycles later,
we receive the corresponding values, where we multiply them
and add each result to one of eight running intermediate sums.
This summing structure enables more efficient operations
(since adding the 8 values from a single cycle together cannot
be synthesized in parallel). This process is then run with eight
multiply-add blocks completely in parallel for the 3000 cycles.
Once all 24000 multiplies have been computed, the module
spends seven more cycles summing the eight intermediate
sums to produce a final convolved output. We take the 13th
to 28th bits of this result as the 16-bit output to maintain a
signal magnitude similar to the input audio (these values can
be tweaked, but were experimentally found to be effective, and
a similar effect can be achieved by changing the gain of the
amplifier).

F. Convolution Example

Let’s say the system is in a state where the IR has already
been recorded and the audio buffer pointer is at 2500. First,
the 2500th element of buffers 3, 2, and 1 are read. Then
these values are shifted “up” a buffer, so they now represent
the 2500th elements of buffers 2, 1, and 0, respectively. The
new audio sample becomes element 2500 in buffer 3, and
the pointer indicates index 1000 is the start index. This is
represented by the upward arrows in 2.

The convolution iterates from oldest to newest, so the
elements from indices 2501 and 2502 of each audio buffer
are multiplied by the elements from indices 0 and 1 of the
corresponding IR buffer. Each of these eight products is added
to a separate intermediate sum. Then, each of the indices is
incremented by 2 and this repeats until the 2499th and 2500th
element of each audio buffer is multiplied with the 5998th
and 5999th element of the impulse buffers. Then, the eight
intermediate values are summed, producing the result of the
convolution, and the audio buffer pointer is incremented by 1.
The system waits for the next audio sample and repeats the
same process.

V. OUTPUT

To output the anti-noise pressure wave, we are using 4-inch
full-range speakers2 driven by a low-latency stereo digital am-
plifier (speaker selection is performed by simply writing to the
left or right channel). The output signal is synthesized through

2https://www.daytonaudio.com/product/1534/tcp115-4-4-poly-cone-
midbass-woofer-4-ohm

pulse-density modulation (PDM) via an onboard Delta-Sigma
modulator at 6MHz. The calibration speaker solely outputs
the impulse and the system speaker outputs either an anti-
noise signal (for either operating mode), a pass-through signal
from either microphone or a test tone depending on the
configuration of SW2-SW8.

We use a first-order PDM to synthesize audio. We noticed
that an undesirable chirping noise was present if the DC
component was close to zero. To combat this, we offset the
output by a constant value to avoid this noise. A higher-order
PDM may also fix this issue.

A. Output Phase Correction

The phase responses of speakers are highly nonlinear,
which must be accounted for to achieve successful destructive
interference with the sound source. This is accomplished with
an all-pass FIR filter that estimates the inverse of the phase
response of the speaker. Finding these FIR filter coefficients
is highly non-trivial; an extensive discussion of this problem
and the developed solution is included in Appendix A.

VI. SYSTEM EVALUATION

The system runs on the provided RealDigital FPGA. The
synthesized result meets timing with a slack time of 3.283ns
(compared to the clock period of 10.17ns, it meets timing by
a significant margin). The longest propagation delay for the
logic portion of a single cycle is only 3.856ns. The system
uses only 13 of the 150 DSP blocks and 5.28% of the LUTs
on the board. The system does use a considerable amount
of memory, using 50 out of 75 of the on-board BRAMs.
However, about 1/3 of the memory used by the system is
used for a debugging module which outputs audio delayed
by a full second, which could eventually be removed if the
system requires more memory.

Considering these metrics, the system could feasibly run at
an audio rate of 48kHz. This would require twice the memory
usage since both buffers would store 48000 samples. The con-
volution would also have half as many clock cycles between
audio samples, 2000 cycles to do 48000 multiplications. So, it
would need to do four times as many operations, 32 multiplies
per convolution cycle instead of 8. We believe this is possible,
but it would be pushing the limit of the onboard memory.

VII. PERFORMANCE

We measured the system in the controlled environment
of an acoustically-treated studio. Our setup consisted of a
static sound source placed opposite a Shure SM57 dynamic
microphone, with the system placed collinearly in between.
In each trial, we played a constant sound and measured a
10-second average baseline sound pressure level from the
microphone. Then, we engaged our system and measured the
resulting steady-state attenuation. The results for the level
reduction of sinusoidal test tones by frequency are cataloged
in Fig. 3. The overall level reduction of the system over the
frequency range of 100Hz–3000Hz (measured with the same
setup) is plotted in Fig. 4. We were able to consistently reduce



Frequency (Hz)
Level

Reduction (dB)
Acoustic Power

Reduction

50 0.0 0.0%
100 1.5 29.2%
200 7.7 83.0%
300 7.6 82.6%
400 4.4 63.7%
500 15.5 97.2%
600 6.2 76.0%
700 7.2 80.9%
800 5.7 73.1%
900 12.1 93.8%

1000 6.5 77.6%
1500 7.1 80.5%
2000 4.4 63.7%
2500 1.0 20.6%
3500 0.0 0.0%

Fig. 3: Measured dead-room noise reduction by frequency

Fig. 4: Plotted dead-room noise reduction by frequency

the acoustic power level of incoming noise by about 75% in the
target frequency band of 200–2000Hz, with especially good
performance in the “sweet spot” of 500–900 Hz. At peak
performance at 500Hz, the system was consistently able to
cancel over 15dB of noise despite the speakers adding some
noise to the system—which means the system is reducing the
power of the sine wave by over 97%.

In a fairly reverberant space (a dorm room with tile floor and
windows), we used a sound level meter on a mobile phone as
a portable setup to perform a similar test of noise levels with
and without our system engaged, and in both modes. Even
in the significantly non-ideal conditions, we achieved between
3 and 12 dB noise cancellation at 500Hz in room-adjusted
mode. This corresponds to anywhere from a 35% to 93.7%
decrease in acoustic power. In many trials, it even performed
a few dB better in “room-adjustment” mode compared to the
core mode despite the impulse response buffer inducing a lot
of noise into the system.

The system’s behavior is more inconsistent in room-adjusted
mode because the impulse response measurement process adds

Fig. 5: Frequency-domain error of IR modeling

noise and variability, so getting a good impulse is crucial. It
sometimes takes a few impulses to get a sufficiently good
measurement. Despite this, the system performs about 5dB
better in room-adjusted mode than in its core mode in a room
that was not acoustically-treated. This shows that using the IR-
based modeling to predict how the input sound will interact
with the environment in real-time helps the system cancel more
noise.

We also tested in an extremely reverberant space (a large
multi-level mezzanine), where performing a similar test in
room-adjusted mode yielded approximately 2dB of noise
cancellation compared to the baseline. This trend of more
reverberation resulting in less ideal cancellation behavior is
expected, as the acoustic characteristics of a space become
increasingly complex and more difficult to accurately model.

To measure the efficacy of the impulse response-based
acoustic modeling itself, we measured the system’s simulated
response to an external impulse and compared it to the actual
space’s response in the 50–10,000Hz frequency band. The
system’s simulated response was able to model the frequency-
domain characteristics to 94.87% accuracy, with an RMS error
between the two normalized frequency responses plotted in
Fig. 5. Note the particularly low error in the “sweet spot” of
500–900 Hz.

Though we initially considered performing explicit
frequency-domain analysis of the environment with a fre-
quency sweep, the high accuracy of the IR-based modeling
rendered it unnecessary.

VIII. CONCLUSION & NEXT STEPS

Overall, the system operates very effectively in its core noise
canceling mode, and achieves significant—though sometimes
inconsistent—results in reverberant spaces as well. Using the
core noise cancellation mode in an acoustically-treated studio,
the system is able to reduce the power by up to 97% and by
75% across a broad range of frequencies. In a reverberant



room, the system is able to reduce the noise level by 3–
12dB when in “room-adjustment” mode. The system generally
performs better in “room-adjustment” mode when it is in a
reverberant room because it is able to predict how the sound
will interact with the room and counteract this in the anti-noise
output.

With the current architecture, we could still tune the delay
to be more precise in order to better align the anti-noise signal
and achieve more ideal destructive interference.

One next step we would like to pursue is a tool to visualize
the measured IR and cancellation metrics using the HDMI
output from the FPGA. This could involve showing the sound
before and after cancellation, a temporal diagram of the
measured IR of a space, or a frequency-domain plot of either
the audio before and after cancellation or the IR itself. While
this tool would not increase the system’s functionality, it would
create an engaging data tool that helps to monitor the status
and effectiveness of the system.

Upgrading to higher-quality equipment would also help
cancel more of the input noise. With the current setup, the
speakers and mics both introduce a significant amount of noise,
which not only adds undesirable sound to the system’s oper-
ation but also contaminates the IR since the recorded impulse
response also contains noise. The data shown in 3 would show
even larger decibel drops if the speakers did not add additional
noise to the system. We could also automatically measure
the distance between the system microphone and the system
speaker by sending an impulse and measuring the number of
cycles until it is received. This would add flexibility, however
in the current system, the speaker and microphone are fixed
so delay never changes and this is unnecessary.

Given the relatively low memory, LUT, and flip-flop usage,
the system could presumably be improved by running the
audio at 48kHz and modifying the memory systems to run
faster, as well as the convolution algorithm to do 32 multiply-
adds per cycle. As mentioned above, this is feasible, but would
push the onboard memory to its limit.

The DC-blocker algorithm could also be modified to be
time-adaptive instead of being a calibration that happens when
turning the system on. This would help if the microphone’s
baselines drifted, and could be implemented with a one-pole
IIR filter. However, we did not find this to be necessary as the
microphones have steady baselines.

Lastly, a big upgrade to the system would be the imple-
mentation of a self-adjustment mechanism via a feedback
microphone next to the user. For example, this could be used to
automatically tune the output audio level of the system instead
of doing this manually (as currently done). It could also be
used to tune the IR algorithm based on what the users hear
and even adjust specific frequencies using a gradient-descent
algorithm. This would make the system more flexible as it
would learn the optimal parameters for operation in real-time.

ACKNOWLEDGMENTS

The authors extend their heartfelt gratitude to the course
staff of 6.205 for their invaluable assistance and support.
Special thanks go to Joe Steinmeyer, whose guidance during
office hours and on Piazza was invaluable. We would also like
to express our sincere appreciation to Adam Hartz and Alan
Oppenheim for their advice with the design and implementa-
tion of the all-pass filter.

This project was a remarkable example of collaboration,
where each author contributed significantly to each aspect of
the system. Because of the highly integrated nature of the
system, each author was equally involved in designing the
system.

APPENDIX

A. Allpass FIR Coefficient Calculation

This section deals with the problem of finding FIR coef-
ficients for an arbitrarily-specificied allpass filter; that is, for
a specified phase response ϕ(ω), we wish to find a function
with the spectrum specified by

Ĥ(ω) = 1ejϕ(ω).

We encountered this problem while accounting for the phase
response of the speaker, which is non-negligible and does not
match any common analytical functions at a glance. The target
phase response of our speaker correct (which is the opposite
of the phase response of the speaker) is plotted in Fig. 6.

Fig. 6: Target allpass phase response (opposite of measured
speaker phase response)

It is intuitively tempting to approach this problem by taking
inverse discrete Fourier transform of the desired response.
However, this does not result in the desired results, as it forces
a linearly increasing phase and matches spectrum coefficients
by phase-wrapping (i.e. phasing the input signal by a full
2π radians between each matched phase response in a naive



Fig. 7: Comparison of filter phase responses for various
coefficient-estimation algorithms

implementation, though more complex methods can be used to
avoid this, usually introducing other artifacts in the process).3

The Parks-McClellan algorithm, which is often used to
design real FIR filters, offers an analytical solution for co-
efficients for frequency-domain responses of stopbands and
passbands. It is efficient and widely implemented, but strictly
produces linear-phase results, which are also ill-suited for this
purpose.

It turns out that no one has yet discovered a satisfactory
analytical solution for this problem, so in applications it is
solved on a case-by-case basis. One approach is to apply the
Remez exchange algorithm by separating the complex problem
into two real ones—this is essentially an extension of the
Parks-McClellan algorithm into complex filters—but it suffers
from several failure modes and only solves a constrained
subset of the problem space. In our specific application,
the multiple zero-crossings in the target response made it
infeasible.

The best general solution, which is what we used to find the
coefficients for the filter in our system, is by using parameter-
estimation algorithms like least-squares—where parameters
are the FIR coefficients and the cost function operates over
the magnitude and phase of the frequency responses.

At this point, we should also note the secondary con-
sideration of transient preservation, which we would also
like to optimize in the design of our filter. Because we are
introducing a significant amount of nonlinear-phase distortion,
signal components in different frequency bands are delayed by
different amounts, causing them to be pushed out of alignment
with each other and “smearing” sharp transients. While this
is inconsequential in some applications, this was an important

3It’s worth noting that the frequency sampling method for FIR filter
design does something similar to this by estimating the response for specific
frequency buckets without any sort of explicit optimization—its result is
included in Fig. 7, but was not optimal for our case.

consideration in our system, as too much phase misalignment
would result in the system “missing” transients and creating
unpleasant sharp noises at the onset of sounds.

This results in a trade-off between transient behavior and
correcting of the phase response of the speaker. The error
function we used encourages optimization towards both the
inverse phase response (full phase correction) and perfect
transient behavior (zero phase / group delay) equally, and is
weighted by a factor of 6 in our target frequency band of
200-2000Hz.

A comparison of the filter responses generated with this
least-squares process, a nearly-identical filter with added co-
efficients to encourage equiripple behavior, a filter designed
via filter sampling, and the actual phase response of the
speaker is given in Fig. 7. We ended up using the least-squares
result, which provides a good balance between effective phase-
correction and transient preservation.

B. Block Diagram

See Fig. 8 on the following page.



Fig. 8: System block diagram


