
Fitness Program of Guided Activities
Final Report

1stAyyub Abdulrezak
EECS Department

Massachusetts Institute of Technology
Cambridge, MA
yubzak@mit.edu

2nd Esha Ranade
EECS Department

Massachusetts Institute of Technology
Cambridge, MA
eranade@mit.edu

Abstract—Our project lays the groundwork for developing a
wellness module that can assist people in performing various exer-
cises through positional feedback. Using the camera sensors and
our FPGAs, we detect a user’s positioning based on placement
of specified body parts. Using chroma red colored labels on the
user, our system identifies blobs corresponding to various joints
(wrist, elbows, shoulders, etc.) on a user’s body and performs
image processing to assess their pose and draw a stick-figure-
like rendering on a screen. Future work may include matching
this to a desired pose and providing feedback to the user on
how to correct their poses to match, which could be used to
assist users in correcting their stretching form to avoid injuries,
help direct guided physical therapy routines, or learn new fitness
techniques.

Index Terms—FPGA, camera, image processing, blob detection

I. BACKGROUND INFO (ESHA)

The system has 3 primary subproblems: reading and pro-
cessing camera output, identifying distinct labels and catego-
rizing them as body parts, and rendering a drawing of the
user’s pose.

The first part of the system builds off of the camera lab
from class, taking in camera information and processing it to
produce a thresholded pixel of a selected mask. The camera
sensors are particularly successful in detecting the chroma red
colorspace so we chose to use chroma red labels to mark
body parts on a user in the forms of sweatbands – or in our
case, on a mannequin doll with duct tape. This is a relatively
inexpensive way to simulate the kind of joint tracking that
is done in movies with green-screen technology. We perform
a mask on the red chroma channel and threshold with some
high value such that fewer than 1000 pixels remain in order to
reduce noise. The row and column of these thresholded pixels
are loaded into a BRAM using the mask loader module so
that we can have access to all of them at once in a buffer,
ready to be input into the second part of the system.

Once the thresholded pixels have been identified, the next
steps include distinguishing the distinct concentrations of
thresholded pixels and mapping them to the specific body
part that they are likely to represent. The blob detection
module reads in the buffer input containing the masked and
thresholded image and performs k-means clustering with K=8
to classify the distinct blobs into eight clusters representing

a user’s two wrists, two elbows, two shoulders, neck, and
forehead. Due to the nature of random initialization in the
k-means clustering algorithm, there may be cases in which
multiple centroids represent the same cluster. However, be-
cause the algorithm runs repeatedly until a set MAX ITERS
iterations or the centroids converging, they will likely be
drawn to distinct clusters by the end of the run. Ultimately,
the centers of mass of each of the clusters is returned. The
body part identification module takes in these centers of mass
to identify the body parts that each blob corresponds to using
geometric considerations and heuristics.

The third part of the system is responsible for rendering
the user’s pose. It takes in the labeled locations of each body
part and creates a drawing of a “stick figure” that resembles
the user’s pose by connecting the correct pairs of points, and
transmitting it using the HDMI connection to a screen.

The majority of our time was spent on implementing the
blob detection algorithm in Verilog as that was the most
intensive and novel part of the system.

II. DESIGN INFORMATION (ESHA)

The logic for our design was split in several different
modules. The overall structure is visualized in Fig. 4.

The pixels are first read and processed using the camera,
recover, rgb to ycrcb, and threshold modules. One major
change from the lab 05 code (upon which they were based)
is that our rgb to ycrcb module only outputs the chroma red
color channel, preventing the need for a channel select module
in between. Once processed, the thresholded pixels are loaded
into a BRAM. These pixels then go through the full image
pipeline, described in more detail below. Ultimately, they are
adapted to be rendered through an HDMI connection with the
video sig gen, scale, rotate, and point on line modules. The
point on line module determines whether a specific pixel is
either a centroid or falls on one of the lines joining them, and
assigns it an RGB value accordingly such that the final display
is entirely black, aside from these specific pixels.

A. Full Image Pipeline Module

The full image pipeline module controls the flow of full
frames of image data through each of the following mod-
ules: mask loader, blob detection, body part detection, and

Fig. 1: State machine used within the full image pipeline
module

line calculator. This allows feedback to be sent back so that a
new frame from the camera is only accepted when processing
of the previous frame is complete and manages the timing
of each module. An internal state machine with the states
shown in Fig.2 manages the timing, with start and stop
signals from each of the module indicating whether or not
to move on. The goal of this module is to capture a full frame
whenever it is available, send it along through the various
full-frame transformations, and output the necessary rendering
information so that it may be used by the display modules.

B. Blob Detection Module

The majority of the logic is done through the blob detection
module which runs a K-Means Clustering algorithm, provided
the thresholded image’s masked pixel (row, col) “coordinates”
as inputs. Internally, the logic is done using a state machine
with the following states, as shown in Fig.2:

• IDLE: The state machine will remain in this state while
waiting for the coordinates of the masked pixels from
a full frame to be processed and loaded into a BRAM,
ready to be used by the blob detection module. Upon
receiving a mask done signal, it will transition to the
INIT state.

• INIT: The INIT state sequentially sets the initial centroid
locations. We tested several different options of initial-
izing them. Originally, we went with pseudo-randomly
selected row and column values anywhere in the image
bounds. This was done by combinationally generating a
random number with a 16-bit LFSR module, selecting a
set bit range from it, and scaling the value such that it
would cover the majority of the image’s pixels. However,
after realizing that intelligent initialization may result
in significantly better results, we chose to change our
strategy. We considered that the centroid would ideally
fall on a masked pixel, and switched the function of our
LFSR module to generate a random value, init index,
that could be used to index into the BRAM containing
our masked pixel coordinates. This resulted in additional
clock cycle counting logic within the INIT module so that
we could wait for the specific row and col coordinates
of each of the centroids to be read from the BRAM. We
scaled the init index to be in a range within our expected
value of num bram elems, but ultimately concluded that
it would be unlikely for all 8 centroids to be initialized
to distinct clusters. Ultimately, we decided to initialize
the 8 centroids to be equidistant within the mask buffer
BRAM, with the assumption that each cluster would
produce approximately equal numbers of masked pixels.

Fig. 2: State machine used within the blob detection module

Once all 8 centroids are initialized, we transition to the
ASSIGN state.

• ASSIGN: The ASSIGN state sequentially retrieves each
masked pixel’s coordinates from the BRAM and cal-
culates its squared Euclidean distance to each of the
centroids to determine which centroid the pixel is closest
to. Because the squared Euclidean distance calculation
consisted of several operations – namely, calculating the
difference in row and column values between the pixel
and centroid, squaring each value, and taking their sum
– and was repeated for each of the 8 centroids, we
split them up into being calculated over 4 clock cycles
each: 1 for taking the two differences, 1 for squaring the
row diff, 1 for squaring the col diff, and 1 for finding
the sum of row diff squared and col diff squared. The
row and column values of a given pixel are then added
to a running sum of the rows and columns of each
pixel for the centroid that it is closest to using the run-
ning coordinate sum submodule. This submodule keeps
track of all eight centroids’ nearest pixels using three
array of size 8: one for the row sum, one for the col sum,
and one for a count of how many pixels were assigned to
it. Once all pixels have been retrieved from the BRAM
and properly processed, indicated by the number of pixels
seen being equal to num bram elems, we will transition
to the UPDATE state.

• UPDATE: The centroid coordinates will be recalculated
sequentially by calculating an average of the row and
column values for each cluster. This is done using two
divider modules, one for the row value and one for
column value, which are fed the running coordinate sum
values for the specific cluster. If a certain cluster has
fewer than 5 pixels assigned to it, instead of dividing,
the centroid will randomly be reassigned by generating a
new BRAM index using the lfsr 16 module. Once each
cluster’s centroids have been updated, we move into the
EVALUATE state.

• EVALUATE: This stage determines whether to transition
back into IDLE or ASSIGN, depending on whether or not
the algorithm has terminated. If the maximum number of
iterations has been achieved or the centroids have not
updated since the previous iteration, the state machine
will return to IDLE, ready to accept a new frame of
masked pixels. Otherwise it will return to ASSIGN and
continue iterating to improve the centroid location.

Fig. 3: All detectable poses must satisfy the constraints of the
labeled body in the image above.

C. Body Part Detection Module

The body part detection module assigns each of the eight
centroids found to its corresponding body part. We decided to
narrow the scope of poses that can be detected by the system
to only include those that satisfy the following assumptions: in
order, from left to right, we should have left wrist, left elbow,
left shoulder, right shoulder, right elbow, and right wrist. The
forehead and neck must fall between the two shoulders, such
that the forehead is above the neck. One such pose is visualized
in Fig. 3.

With these assumptions in mind, we first sorted the centroids
by their column values using a bitonic sorter in 6 cycles.
Afterwards, the 2 centroids deemed to fall in the center are
sorted by their row values. Once this full sorting process is
complete, the sorted centroids are assigned to body parts in the
following order: left wrist, left elbow, left shoulder, forehead,
neck, right shoulder, right elbow, right wrist.

D. Line Calculator Module

The line calculator module takes in pairs of points to
be connected (left wrist to left elbow, left elbow to left
shoulder, left shoulder to right shoulder, right shoulder to right
elbow, right elbow to right wrist, and forehead to neck) and
computes necessary values to represent the line segments in
between them. We use the standard form for linear equations
to represent our lines: A ∗ x + B ∗ y = C. This prevents
us from having to conduct unnecessary division operations,
which would be required for slope-intercept form. This module
outputs the coefficients and constants (A, B, and C) of each
line, along with the row and column bounds of each line
in order to properly represent them as segments rather than
having them continue across the screen. These values will later
be used to compute whether a specific pixel falls on a line
when rendering to the screen.

III. TESTBENCHING (AYYUB)

In order to visualize the Verilog hardware module and
benchmark its speed, we created System Verilog testbenches
to send all of the required signals and analyzed the waveform
using the gtkwave software. Simulating with the testbenches
provided us with a means of viewing both the Verilog module’s
outputs and time markers indicating how long it took.

We took a fairly thorough testing approach, which sepa-
rated the process int two parts: unit (or module) testing, and
integration testing. The unit tests tested specific modules, and
were designed with edge cases for those specific modules in
mind. Some modules that were unit tested in simulation thor-
oughly include the blob detection and body part identification
modules. However, there are often issues integrating modules
together, e.g. in top-level modules that go in hardware. We
solved this problem both by making wrapper submodules that
encompassed more of our module logic and made testing
easier (full image pipeline) and by writing integration tests
that combined the modules together and ensured that they
behaved. Figs 12 and 13 depict GTKWave visualizations of
our testbenches.

IV. PYTHON REFERENCE (AYYUB)

In order to evaluate our design, we began by implementing
the full pipeline on a still frame in software to have a
comparison metric for the hardware components.

Our reference image processing is done in Python. We feed
in a still, RGB image (as seen in FIG. 2) with dimensions
320x240, in order to be consistent with the future output
from the camera sensor. We then convert the image from a
RGB color scheme to YCrCb, to be able to work with the
chroma red channel. We then mask it with a threshold to get
a binary image; we chose a high mask threshold of 238 (out
of a maximum of 255) for our initial testing. This resulted
in 55 pixels above the threshold, to be ultimately classified
into eight clusters. These masked pixels are visualized in
FIG. 4 and FIG. 6. The pairs of (row, col) “coordinates” for
each of the masked pixels are then passed into scikit-learn’s
sklearn.cluster.KMeans algorithm, with a K-value of 8, since
in our image there are 8 joints to be detected. From this, their
center-of-masses are extracted and visualized.

V. EVALUATION RESULTS (AYYUB)

Creating the Python reference provided us with a well-tested
reference, in terms of both correctness and speed (scikit-learn
is a battle-tested and efficient library).

Scikit-learn’s sklearn.cluster.KMeans algorithm took ap-
proximately 0.04381 seconds to run with 20 iterations and
random initialization of centroids. Under the same constraints,
our working implementation of K-Means Clustering in Ver-
ilog resulted in the following runtimes: 679 clock cycles =
0.00000679 seconds to get through one iteration of the K-
Means Clustering algorithm, which includes the processing of
the ASSIGN, UPDATE, and EVALUATE states. 21385 clock
cycles = 0.00021385 seconds to get through the full K-Means
algorithm (20 iterations).

With max iter = 20, random initialization of centroids, & 55
masked pixels, the following cluster centroids were generated
by each of the algorithms. These pixels are also visualized in
FIG. 4, 5, 6, 7 below.

Python K-Means Centroids:
[[55 197]
[50 87]
[56 127]
[46 163]
[48 274]
[11 171]
[44 47]
[9 150]]
Verilog K-Means Centroids with random initialization

of centroids:
[[48 172]
[190 98]
[54 196]
[10 162]
[48 274]
[44 47]
[55 124]
[50 87]]
In the general case, we saw roughly between 400 and

1000 masked pixels when a subject was in frame. When the
fully integrated pipeline ran on this, it resulted in a centroid-
updating frame rate of approximately 15-20 fps, which was
more than enough for our use case. We observed substantial
improvements by initializing to pixels within the range, as well
as streamlining many of the modules to be combinational.

In the end, our TNS was 0.0 and our WNS was about
0.6. This meant that not only were we meeting the timing
constraints given, but also that we used the combinational logic
we could reasonably fit in a cycle. This helped us reduce the
cycle count substantially. We also did empirical measurements
for parameter tuning, e.g. the threshold for masking and
the maximum allowed iterations of the K-means clustering
algorithm. For the iterations, we found 10-15 iterations to
be more than enough for convergence in most of our cases.
Tuning these things lead to substantial speed-ups as well.

VI. FUTURE WORK (AYYUB)

On visual inspection of our produced clusterings, we see
some interesting results. Our algorithm has some shared
clusters with those of the reference, but many are distinct,
to varying degrees. The algorithm seems to struggle with
assigning all 8 clusters to distinct groupings of pixels, which
is a weakness of K-means itself, especially when you have
clusters of varying depth and get unlucky with your random
initialization. There are two different ways that we plan to
tackle this moving forward.

The first is to increase the number of masked pixels to give
more resolution to each cluster and reduce the effect of outlier
pixels. This needs to be balanced with speed, as each masked
pixel in the input increases the number of cycles by a large
factor.

The second way is to simply do more trials. One of the
recommended ways to improve K-means, even with unlucky
initializations, is to simply do it multiple times, score each
result, and take the best looking one. This is something we
will explore further, and have tested this to work quite well at
improving performance in Python with T=5 trials.

Another component we would like to explore more is
the visualization of the information. We tried two different
approaches, rendering lines between the relevant body parts,
and drawing body blocks over the resulting image. The body
blocks were simpler and had less overhead. The lines would
be cleaner, but are trickier to get to display well. We would
like to explore different line rendering algorithms, such as
Bresenham’s, further in future work.

VII. APPENDIX

Link to the Github repository for the project:
https://github.com/esharanade/fpga-yoga

VIII. DIAGRAMS

Fig. 4: block diagram representing the flow of data through the system.

Fig. 5: Lunge pose used for testing the blob detection algorithm.

Fig. 6: Seed 1 chroma red image with visualized centroids. Color scheme: green pixels depict centroids determined by scikit-
learn’s machine learning package for k-means clustering, blue pixels depict centroids determined by our Verilog algorithm,
yellow pixels depict centroids identified by both.

Fig. 7: Seed 1 thresholded image with visualized centroids.

Fig. 8: Seed 2 chroma red image with visualized centroids.

Fig. 9: Seed 2 thresholded image with visualized centroids.

Fig. 10: Visualization of pose with body blocks superimposed

Fig. 11: Centroids displayed, roughly representing the doll’s pose

Fig. 12: Unit testbench

Fig. 13: Integration testbench

