
6.2050 Final Report
FPGA Video Dithering

Nadia Frieden
nfrieden@mit.edu

Erin Zhang
ewzhang@mit.edu

I. INTRODUCTION

The goal of this project was to create a real-time video
compressor by dithering the images that make up each frame.
“Dithering” is an image compression technique that com-
presses pixels one by one while spreading the quantization
error of this rounding onto a subset of its neighboring pixels.
Going from 8-bit grayscale to 1-bit dithered output uses an
eighth of the space (quite a significant reduction!) and the
FPGA’s capability for video signal processing makes it a
fantastic candidate for this task.

Dithering images is a well-covered topic, but when it comes
to dithered video, we were in relatively uncharted territory. We
had no idea whether the quality of the compressed video would
be acceptable or useful, or what techniques we could use to
improve it if it wasn’t.

What’s more, the way dithering modifies registers would
require a ridiculous amount of inefficient storage if not for
the line buffers, which had to be very carefully integrated to
interact perfectly with the needs of the dither module.

We went into the project with the following checklist:
• Commitment: Camera output with Floyd-Steinberg
• Goal: Dithered looping gifs off SD Card, improve live-

feed visual appeal and try more dithering algorithms
• Stretch Goal: Filtering (changed during final stretch meet-

ing to be automatic adjustment instead)
In the end, our commitment was met, along with the live-

feed aspect of our goal and an attempt at our stretch goal.

II. SYSTEM OVERVIEW

The system diagram included on the last page of this report
shows the path that data must take throughout each module to
end up as visual output on the monitor.

Data from the camera are first sent through processing
modules that sync them with a 74.25 MHz clock and add
corresponding signals detailing their horizontal and vertical
locations in the frame (referred to hereafter as “hcount” and
“vcount”). The pixel values are converted to a chosen flavor
of black and white output and then written to the “line buffer,”
a module containing four lines of Block Random Access
Memory (BRAM, with a finite size and two read/write ports)
that efficiently stores the data in the specific format needed
by the dither module. Any 1 bit dithering process must be
centered around a “threshold” value (above or below which

pixels are rounded to be full white or full black): our system
has three modules to control this value that are also connected
to the FPGA’s seven segment display and LEDs for ease of
tracking. The dither module will dither each frame with a
chosen algorithm, write error-diffusion-affected pixels back
to the line buffer, and send dithered pixels off to a second
instance of BRAM called a “frame buffer” (of width 1 and
depth 320*240 to contain a full frame of dithered pixels).
From there, video signal generation will pass them through
the scale, rotate, and Transmission Minimized Differential
Signaling (TMDS) modules and place them in differential
signaling output buffers (OBUFDS). This data can then be read
by the HDMI receivers and displayed on our 720p monitors
at 60 fps.

We also left the original width-8 frame buffer in place and
muxed it in alongside the other to provide users the ability to
compare the dithered and non-dithered input.

III. COMPONENTS

We will now embark on a more detailed dive into each
aspect of our system.

A. Camera & Recover

The input data for our dithered video is a live camera
feed through the OmniVision OV7670/OV7171 CameraChip
Sensor. This camera outputs 320 * 240 pixels at 30 frames
per second in a raster pattern using all the vsync, hsync, and
href signals we are familiar with.

This output is then sent through the camera and recover
modules, which sync the signals coming out at 24MHz with
our 74.25 MHz clk pixel and assign them hcount and vcount
values to be used throughout the rest of the module.

B. Color Modification

To get the camera’s 16-bit RGB565 output to the 8-bit
grayscale format needed for this task, we created a module
that outputs 7 different types of 8-bit grayscale based on user
input to switches [4:2]: the average of R G B, just R, just
G, just B, Y, Cr, and Cb. Certain types will show up better in
different environments, so we wanted to have as many options
for visual clarity as possible. This black and white output value
is saved into the critical 8-bit register bw.

 



C. Dither module

Although data must be sent through the line buffer before
the dither module, we will explain dithering first because the
line buffer’s behavior doesn’t make sense on its own.

This project includes two options for dithering algorithms:
Floyd-Steinberg and minimized average error dithering by
Jarvis, Judice, and Ninke (JJN). In both algorithms, an in-
dividual pixel will be dithered as 0 if its 8-bit-grayscale value
is under some given threshold, and 1 if above. But what makes
dithering dithering is that this quantization error (original

value � rounded value) will be scaled and pushed onto the
neighboring, upcoming pixels.

To demonstrate how this was done on the FPGA, we
will analyze the process for Floyd-Steinberg in depth and
then show how this methodology was extended to the more
complicated JJN.

Each step of Floyd-Steinberg can be implemented with 5
main registers: A and B represent neighboring pixels on the
same line, while C, D, and E are three pixels on the next line
down that will all be affected by dithering A.

When the dithering of A is complete, pixels B through E
will take on a new value equal to their previous value plus the
quantization error scaled by the fraction they are labeled with
above.

We dither pixels in a frame from left-to-right, top-to-
bottom, so the next pixel up to be dithered is B. To do this,
we must bring in two more pixels (the next one to the right
on both relevant lines). This will be the “new B” and the
“new E,” represented in the diagram below with dotted circles.

When the line buffer has sent along these two new values,
the “old B” becomes the “new A” to be dithered, “old D”
becomes “new C”, and “old E” becomes “new D”. In the
diagram below, all pixels shaded in with grey are now updated
values that do not match what came out of the camera/SD Card
and was written into the line buffer.

The “old A” is now a 1-bit value and is sent off to the frame
buffer. The “old C” won’t be needed by the dither module until
it gets read in as B many cycles later: its updated value will

be written back to the line buffer. Thanks to the nature of this
rotation, the new C, D, and E values will all eventually be
written back with their (repeatedly) updated values, and then
later be read back out to be dithered themselves as A. This
cycle continues until every line in the frame has been dithered,
then restarts at the top of the next frame.

The process for JJN is very similar, except that the quan-
tization error gets pushed onto far more pixels, forcing the
process to involve three lines. Instead of 5 primary registers,
it requires 13, labeled below with the scaling factor for the
quantization error.

JNN results in fewer visual artifacts than Floyd-Steinberg,
but on our 320-by-240-pixel frames, it is a noticeably courser
dithering.

D. BRAM line buffer

We created a line buffer module to abstract away the
complications of all the pixels coming in and out of the
dithering process. The line buffer module consists of four
individual lines of BRAM, all of width 8 (to store the 8-bit-
grayscale values coming from the camera or SD card) and
depth 320 (for our default image size of 240 x 320 pixels).

When a user flips switch [13] to select Floyd-Steinberg
dithering, only three of the four lines will need to be used.
Each line rotates through three different roles, visualized in
the diagram below:

• Role 1 : Write in pixel bw at location bw hcount, which
will be read out when the line is later assigned a different
role.

• Role 2 : Read out pixel B at location bw hcount for the
ditherer, which was written in as bw at an earlier time
when the line had the previous role.



• Role 3 : Read out the pixel E at location bw hcount for
the ditherer, written in as bw at an earlier time. Write in
updated pixel C at location bw hcount - 2.

Each time bw hcount traverses a full line (goes from 0 to
320), the lines rotate roles. Since every value from the line
with role 2 has been read into the dither module and sent
to the frame buffer in its new 1-pixel form, these values no
longer need to be stored in the line buffer and can be written
over by assigning this line role 1. The line with role 3 that
was writing in updated c values is next up to be dithered, so
it takes on role 2. Finally, the next line of pixels just written
in by role 1 will naturally take on role 3.

If the user flips switch [13] to select JJN dithering, all
four lines will be in play. The pattern of roles is essentially
the same, but each time a pixel is dithered, you are reading
out three pixels and updating two (instead of two and one,
respectively).

The interaction of these roles is the perfect partner to the
dither module, efficiently dealing data out of a small amount
of structured BRAM so that the dither module only has to
hold values in five/thirteen 8-bit registers at any given time.

Although of course the line buffer may spit out garbage
on the edge cases, its steady-state behavior results in a
clear enough HDMI output that agonizing over the math for
starting/ending each frame was not a top priority.

E. Thresholding

A large amount of the work since the preliminary report
was concentrated on everything related to thresholds: how to
edit them, display them, and even algorithmically choose them
live.

The “threshold buttons” module is the first method of
control. It uses buttons [2] and [3]; pressing one will increment
the threshold by the amount represented on switches [11:5]
(mirrored on the seven segment display for easier viewing),
pressing the other will decrement it by that same amount.

Using the manta module, you can move the threshold value
around by simply running a Python script that assigns it any
given value. One cool application of this is using time.sleep(x)
to systematically adjust the threshold every x seconds, al-
lowing the user to view what many different thresholds’

outputs would look like without having to manually move
them around.

Finally (and least reliably), the threshold calibrator. The
adjusted stretch goal of this project was to come up with a
module that would output the best threshold for the environ-
ment at a push of a button. The only reasonable measurement
we could think of was to count bit transitions per frame,
thinking that the higher the transitions, the more defined the
dithered output. When the project is flashed or the reset button
is pressed, the threshold calibrator runs through x frames,
incrementing the threshold for each frame by 256/x and
keeping track of which one had the most transitions. You can
see whether it made a good choice by pressing button [1] and
setting the dither module’s threshold to that value.

Sometimes this module works pretty well, and sometimes it
works horribly (which is why we allow the user to not upload
the module’s threshold suggestion: sometimes you can tell
from the LEDs that it output garbage). As of project turn-
in I have not yet managed to get it to where I wanted it to
be, but at least most of the time, it gets you to a point close
enough to the correct threshold that you can use the buttons
to make small adjustments from there. It should also be taken
into account that the best threshold is not always where the
most transitions occur, so you’d have to find some other, more
complicated heuristic to get it working perfectly.

Luckily, these modules can all be used at the same time;
for example, you can set a threshold value using manta, move
it around from that point with the buttons, decide you want to
re-calibrate to a different value, and continue to adjust with the
buttons from there. Dithering has a narrow threshold “sweet
spot” where the output will look as expected, so being able to
adjust to the environment is incredibly important.

F. BRAM frame buffers

The two frame buffers we have both work very similarly to
how they were used in labs 4 and 5. They both have depth 240⇤
320, but one has width 8 (to hold values directly from the b&w
module) and the other has width 1 (to hold the dithered version
of the image). A switch-controlled mux determines which of
these frame buffers will be used to generate the HDMI output.
Since pixels come out of the camera/SD card at a different rate
than the video sig gen module sends them to HDMI output,
the frame buffer acts as a critical layer of separation.

G. Path to HDMI output

The pipeline from the frame buffer to the monitor is also
a simplified version of what we used in labs 4 and 5: the
rotate, scale, and video signal generation modules, along
with the TMDS encoders/serializers and OBUFDSs, are all
unchanged. The only key difference is that because we are
doing everything in black in white instead of RGB, either all
0s or all 255s will be fed into the TMDS modules for any
given pixel.

IV. HAPPY ACCIDENTS

Due to a bug in the line buffer module where line roles were
rotated even when a new pixel wasn’t ready, the 1-bit output



for most of the project wasn’t actually dithering, just another
unique type of compressed video. Because of its novelty and
cool artifacts, this version is still easy to access within the
project (set switch [14] to high).

V. DESIGN EVALUATION

Because there’s no need to reinvent the wheel, many of
our timing constraints arose from our desire to reuse many
of the modules from the video generation pipeline. What felt
especially important to maintain was the path of hcount and
vcount throughout the system, driven by the recover and video
signal generation modules.

Both the line buffer and dither modules work very closely
with the hcount value coming out of recover: as long as they
are able to do all their work for a pixel at a given hcount
before that hcount changes, no data will be lost and the image
will display as intended. However, since both modules do their
work for each pixel in one cycle (reading it in or writing it
out for the line buffer, editing the pixel value and assigning it
to its new destination register for dither), there is no risk of
pixel information being lost. Even if hcount was changing as
fast as it could (every cycle, which it does not), both modules
are designed to keep up.

Of course, even if the throughput is unaffected by our
modifications to the system, latency certainly is. The worst
case delay for any given pixel traveling through the modules
we’ve added to the system are as follows:

• 3 cycles for color modification module (integrates the 3-
cycle rgb to ycrcb module from lab 5)

• ⇡ 14 500 cycles between when a pixel gets written into
line buffer and when it is next up to be read out to be
dithered (3 full lines for JNN, Tline from camera specs
= 65072 ns = 4834 cycles at 74.25 MHz).

• 2 cycles for it to be read out of BRAM and sent to dither
• 2 cycles to get through dither (1 to transition from b to

a, 1 to be dithered)
Each pixel in the dithered output has to go through this

pattern, so they will come out the other side at the same rate
they came in. And although 14 500 cycles seems like a lot, this
is just over a ten-thousandth of a second at clk pixel, and the
remaining modules in the pipeline that we built our project
off of will hardly affect this. There will be no perceptible
difference to the human eye; when you shake your hand in
front of the camera, you will see its movement in “real time.”

When it comes to space utilization, our design is quite light:
we only have a couple instances of block RAM that are as
small as they can be to hold all the pixels in a line or a frame.

In terms of project checklist, the live feed dithering easily
met our goal of solid visual quality with multiple dithering
algorithms, and even foraged into the stretch goal region with
the automatic threshold adjuster.

For additional use cases, it wouldn’t be too difficult to get
video from other sources up and running as well: if you made
a module that matched the output format of the recover module
to release pixels from pre-saved video, no changes would need
to be made to any other part of the pipeline.

Overall, I am quite happy with how everything related to live
feed dithering went; the visual quality of the dithered output
turned out far better than I expected, especially taking camera
quality into account. If I were to do it again, I think I’d just
start thinking about thresholding earlier so I could have really
nailed that automatic adjuster down.

VI. SD CARD INTEGRATION

Another way our project could have taken in input is through
a series of images placed on an SD Card, strung together to
form a several-frame gif. Although this part of our original
goal was never realized, we’ll include a short run-through
below.

{Erin}
We use a Python script to get images from a computer into

8-bit grayscale by taking the average of each pixel’s R, G, and
B values. To get the data on the SD card using MacOS, we
can save it by first unmounting the disk using diskutil, and
then flashing the data onto the card with the line “sudo dd
if=“imagedata” of=“diskpath” bs=1m.”

With the SD card plugged into the FPGA, we use a modified
version of Fischer Moseley’s SD card controller (read only
capability) from course documentation to read that data onto
the FPGA. The sd controller module reads in 512 bytes at a
time, and the specified read address (addr) must be a multiple
of 512. It sends a trigger through byte available whenever the
sd out output has a valid new byte.

To handle the timing, we use the FIFO IP. It outputs
high on s axis tready (ready for sd data) when there are
512 available bytes to be written to. Reading from the FIFO
syncs with when the camera recover module outputs data
(data valid rec) so as to maintain a similar frequency to the
camera output. With every read from the FIFO, a counter
(read count) stores the location of the pixel out of all frames
in order to derive the hcount and vcount.

Finally, a mux gives our system the capability of switching
between video and SD output on the same build. Based on a
switch, the inputs to the line buffer change from data either
from the camera or the SD card.

Work to do: The SD card integration hasn’t been tested,
and the timing of the very start of the card read might take
some work – reading from the FIFO must wait until there is
sufficient data written to it. The switch for muxing between
the camera and SD card must also be included.

VII. REPOSITORY

https://github.com/nfrieden25/fpgifa

REFERENCES

[1] https://en.wikipedia.org/wiki/Floyd-Steinberg dithering
[2] https://en.wikipedia.org/wiki/Error diffusion#minimized average error
[3] https://web.mit.edu/6.111/www/f2016/tools/OV7670 2006.pdf
[4] https://www.haoyuelectronics.com/Attachment/OV7670%20+

%20AL422B(FIFO)%20Camera%20Module(V2.0)/OV7670%20
Implementation%20Guide%20(V1.0).pdf



VIII. GLOSSARY

Switches:
• sw[15] �! 0 = regular b&w output, 1 = dithered output
• sw[14] �! 0 = correct dithering, 1 = wrong dithering
• sw[13] �! 0 = Floyd-Steinberg, 1 = JJN
• sw[12] �! 0 = live camera feed, 1 = freeze frame
• sw[11:5] �! amount that threshold will incre-

ment/decrement on button press (also shown in hexadec-
imal on the seven segment display)

• sw[4:2] �! type of black and white output (0-6 in order
are RGB, R, G, B, Y, Cr, Cb)

• sw[1:0] �! HDMI output size (same as lab 5)

Buttons:
• btn[0] �! reset (also triggers threshold calibration)
• btn[1] �! set threshold to the value calculated by the

threshold calibrator
• btn[2] �! increment threshold
• btn[3] �! decrement threshold

LEDs:
• led[7:0] �! what threshold calibration thinks the thresh-

old should be
• led[15:8] �! what the threshold currently is


