Finding, Parsing, and Generating Audio
Transcriptions

https://github.com/woxsao/6.111-Music-Transcription-Project

Monica Chan

Cynthia Zhang

Department of Electrical Engineering and Computer Science Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, USA
mochan @mit.edu

Tan Hueston
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, USA
ianh7095 @mit.edu

Abstract—This is a music transcription system. Provided music
tones, the system is able to detect and determine which note was
played, and then transcribe it live on a musical staff, displayed
on a monitor via HDMI. The system will be able to transcribe
notes ranging from C4 to AS, rhythms from eighth notes or
rests to whole notes or rests. The system will be able to handle
music up to 124 BPM. The system is comprised of three main
components: audio processing, note and rhythm determination,
and visual display.

Index Terms—Digital systems, Field programmable gate ar-
rays, signal processing, audio processing, Fourier Transform

I. INTRODUCTION

A music transcription system is one heavily dependent on
signal processing. A large part of the risks of this project
project lie in the audio pre-processing stage, where it is critical
that audio data filtered properly, or else excess frequencies
may muddle the audio data. Because the project depends
on precise detection of frequencies, it is also essential that
the FFT is highly accurate. To accomplish these tasks, we
implemented an FIR low-pass filter that will filter out any high
frequency content that our system does not want or need. We
then implemented a Hanning window to improve the accuracy
of our frequency domain analysis. This process was the main
challenge we foresaw, as our team has little to no experience
with signal processing. The rest of the system involves figuring
out notes, note values, and where to display each note.

II. HARDWARE COMPONENTS/OVERVIEW

This system requires little hardware. The primary compo-
nents are the Real Digital Urbana FPGA board, and a monitor,
connected via an HDMI cable. The microphone will be the
default digital PDM microphone on the Urbana FPGA board.
The block diagram for our system can be seen in Appendix 1.

Massachusetts Institute of Technology
Cambridge, USA
zcynthia@mit.edu

III. CLOCKING/SAMPLING RATE SUMMARY

The majority of the audio processing system runs on a
69.632 MHz clock. This value is determined via the sampling
rate, as it is 32 times greater than the microphone sampling
rate of 2.176 MHz. The digital display system runs on a 74.25
MHz clock.

The main design constraint we had was a maximal BPM
which we chose to be 160 BPM. This corresponds to a
frequency of 2.667 Hz, so we designed the audo preprocessing
to be able to output note information to the image processing
stage at around 4Hz. The justification for each of the samples
is as follows:

o Audio Processing Clock rate: 69.632MHz. This was cho-
sen to be 32 times the microphone sample rate because
the low pass filters require 32 clock cycles to compute a
filter output for a single microphone sample.

e Microphone Sample rate: 2.176MHz

o Input frequency FFT: 17KHz. This is because we are
downsampling a factor of 128 from 2.176MHz.

e Output of peak finder: 4.15Hz. The FFT has 4096 bins,
and so the peak finder has to find the maximum of the
4096 bins. So 17000/4096 = 4.15Hz.

Since the output of our peak finder is at 4.15 Hz, we meet the
design requirements.

IV. SAMPLING AND DATA PREPROCESSING
A. Microphone, Low-Pass Filter, and Decimation (Chan)

Our microphone will sample at a rate of 2.176MHz, with a
clock of 69.632 MHz. This sample rate and clock frequency
was chosen because the filter we designed requires 29 clock
cycles to calculate the output from a single input from the
microphone. The clock cycle is 32 times the microphone

Data [15:0]
Mic_data @ “FIRLPF 1 Vvaid @544kHz FIR LPF 2
2.176MHz |

Valid @136kHz Data [15:0]
Data [15:0]
Data [15:0] -)
FIRLPF 4 valid @34kHz FIR LPF 3

Valid @17kHz -

Fig. 1. Diagram of the chained FIR filters with sample frequencies. Notice the
first 3 decimators downsample by a factor of 4, but the last one downsamples
by 2, giving a total dowsampling of 128.

sample rate to give us sufficient clock cycles to calculate the
filtered output before a new microphone sample comes in.

28
F(s) =Y _c(i) - s(28 — i) (1)
i=0

The goal of the filter is to filter down to a rate of 17kHz
and filter out all audio higher than 8kHz, since the range of
frequencies we are representing are between 261.63 Hz and
880 Hz. We do this by creating 4 29 tap FIR (Finite Impulse
Response) filters, each with a cutoff frequency of 0.125. Eq.
1 shows the math for a FIR filter, where ¢ is the coefficient
array, and s is a length 29 array that stores the last 29 samples
recorded by the microphone. Three of the four decimators
downsample by a factor of 4, and the last one downsamples
by a factor of 2. Together, chaining 4 of these filter/decimators
together downsamples by a factor of 128, to give us a sampling
frequency of 17kHz. Fig. 2 shows this cascaded chain of filters
with the frequencies.

Each individual filter was a 29 tap filter, whose taps were
designed with TFilter, an online FIR filter designer. The cutoff
frequency is at 0.125 the sample rate, with a roll-off starting
at 0.06 the sample rate [*. This gives us an overall cutoff of
2})6 the input sample rate, around 8.5kHz.

Our system is designed to represent an 8 bit amplitude
wave, but the decimator stages all have an output of 16 bits
to account for bit growth between the stages of the filter. At
the output of the fourth filter, we take the top 8 bits of the 16
bits as the input into the Hanning Window module.

The testbenched output of our FIR filter can be seen in
Fig. 3. Since we’re using a PDM microphone, the actual input
signal from the microphone looks like our pdm_out signal on

Time |
pdm_out =@ =

decl_out[15:0] =254

dec2_out[15:0] =1016

dec3_out[15:0] =4064
dec4_out[15:0] =16951

Fig. 2. Current cascaded decimator output

the diagram, and our filters successfully reconstruct the sine
wave.

Significant time was spent debugging audio quality on the
output of the filter/decimation chain. This problem is three-
fold: Bit growth, bit selection of the fourth decimator, and
input ternary to the filter chain. The latter 2 are discussed in
section III-E. For bit growth, we discovered that the filter we
chose leads to a gain of 4 at every filter stage, that is, for an
input of value 1, the FIR filter would output 4. Therefore, by
the end of the 4 filters, we would end up with a total gain of
256. Initially, we designed each filter stage to downshift by
2 (divide by 4). However, this led to removing critical audio
information at each stage. Ultimately, we decided to preserve
the bit growth between stages and take the top 8 bits at the
very end.

B. Hanning Window (Zhang)

The FFT will use 4096 samples. The purpose of the Hanning
window is to pinch down the corners of the window of
samples in order to prevent any windowing artifacts and
prevent spectral leakage. For a given window of samples, we
multiply each value by a coefficient. The following equation
generates the coefficients for a Hann window:

w(n) = 0.5(1 — cos(?w%)), 0<n<N (2

n represents which sample number we are on (e.g. 2106th
sample in the window). N relates to the size of the window
L, where L — 1 = N. Because our window width is 4096,
N = 4095.

To implement this in SystemVerilog, we needed additional
memory. While the original approach to calculate coefficients
was to use real types (to accommodate non-integer values), this
was eventually shot down as we discovered that reals cannot be
synthesized. We then pivoted to pre-calculating the coefficients
and storing them in a BRAM. The values are scaled up in order
to do integer math. The coefficients are calculated and scaled
as follows:

w(n) = round(0.5(1 — cos(ZWL)) 924y,

0 < n < 4095
4095 ==

3)
The coefficient is scaled by 24 to ensure that extremely small
coefficients will still be reflected when stored as an integer.
These calculated coefficient values are then stored in hex as a
6 digit value. The BRAM has a width of 28 (an extra 4 bits
of 0 are prepended to the beginning to prevent signage issues)
and depth of 4096. When calculating the output value of the
Hanning window, the audio data value is multiplied by the
corresponding coefficient retrieved from the BRAM, and then
arithmetically shifted to the right by 24 (to undo the scaling).
The two-cycle delay for fetching from the BRAM presented
an alignment challenge. In order to maintain proper alignment
of audio data to coefficient, we pipeline the audio data sample
so that it remains within the system while the BRAM is
retrieving a coefficient.
The resulting calculation is a scaled value according to Hann
coefficients, where within a window of 4096, the corners are
pinched to zero, as seen in Fig. 3.

S e e
| ——-cosessosssseserem— |

Fig. 3. Window of data before and after the Hann windowing filter.

V. NOTE DETERMINATION

A. FFT (Zhang)

The FFT module uses the Xilinx IP, generated by Vivado as
an *.xci file. The inputs are 16 bits wide, comprised of a real
part that is the 8-bit wide outputs from the Hanning window
and an imaginary part that is 8-bits of 0. The output is 48 bits
wide, with 24 bits real, 24 bits imaginary. The following is
the specified Vivado configuration:

o transform length: 4096

« target clock frequency: 70 MHz

o target data throughput: 1 Msps

o data width and phase factor width: 8 bits.
« scaling options: unscaled

« output order: natural

With audio samples at 17kHz as input to the FFT and 4096
samples per FFT, the system achieves a bin width of 4.15Hz
and output frequency resolution of 4.15Hz. This should be
sufficient for identifying notes from C4 to A5, where the
narrowest difference in frequency is about 16Hz.

We chose the unscaled option as the output at 8 signed bits
for imaginary and real was not precise enough to determine
peaks. The unscaled option results the output in being 24
bits each for imaginary and real. This allowed for sufficient
precision for determining peaks.

B. Peak Finder (Zhang)

The peak finder module determines which frequency bin the
input audio belongs in. The module takes the 4096 samples
of 48 bit data from the FFT and outputs an index representing
the bin that the audio data best fits in. To determine where the
peaks are, we need to take the magnitude of the outputs of
the FFT. To implement this, we simply square the top 24 bits
and the bottom 24 bits by performing signed multiplication.
Performing unsigned multiplication was an unfortunate bug
that took significant time to debug.

To find the peak of the 4096 outputs of the FFT, we keep
a running counter up to 4096 for each output sample of the
FFT, a running maximum that keeps track of the max value
seen so far, and a running maximum index that keeps track of
which index has thus far been the largest in magnitude.

While the FFT outputs 4096 bins, we do not need to observe
each of these. The magnitude calculations and running tallies
only run for 300 of the values, as the range of frequencies we
are interested in are limited to 261.63Hz (C4) to 880Hz (AS).
This means we are only interested in the first 213 bins. As a
result, the peak finder module outputs a frequency bin index
after processing 300 of the FFT output values.

C. Integration of the Audio Processing Pipeline (Zhang,
Chan)

The low-pass filter and decimators were developed sepa-
rately from the FFT portion of the audio processing pipeline.
In the development phase, the low-pass filter and decimators
were frequently tested with audio output in order to ensure
that the filters were performing as expected to a listener. The
Hanning window, FFT, and peak finder were tested using
testbenches to observe the general shape of the wave. However,
during the integration stage, we found that there is often a
mismatch in expected shape and audio output.

For example, for audio output, taking the bottom 8 bits
was necessary for clear audio output. However, the Hanning
window required the output to be the top 8 bits instead, as the
bottom bits would break the shape of the wave. The difference
in wave forms can be observed in Fig. 4.

Another instance of mismatched expectations was the input
to the FIR Filter. Since the microphone is a PDM microphone,
we wrote a ternary statement that changed the input to the
filter based on whether the input was a 0 or a 1. To achieve
clear audio output, we would threshold values of 0 from the
microphone to 0, and 128 otherwise. However, for the FFT
to work as intended, we needed to threshold to -127 in the
case the microphone input was 0. We suspect the 127 / 0
combination did not work due to filter biasing, although we
never found the exact reason.

To test the audio processing pipeline without the visual
display output, we utilized the seven segment display on the
FPGA board. This was used to observe intermediary values of
the pipeline, such as the output of the fourth decimator, the
output of the Hanning window, and output of the peak finder.
This helped isolate problems when trying to troubleshoot on
hardware. It also allowed us to verify the FFT was outputting
correct values, as we could verify that the expected index was
produced by the peak finder based on various input tones.
The troubleshooting process involved feeding 750 Hz waves
directly into various points of the pipeline, and then pivoting
to using the microphone with pure tones.

D. Note Lookup Table (Chan)

A Python script was used to generate all the bin cutoff
indices for each note. First, we copied all the 22 notes’
frequency values into an array, and then applied the following
equation to determine its bin b

b= |f/4.15) @)

dec4_out[15:0] =-17603
shifted[7:0] =-69
truncated[7:0] =00111101

Fig. 4. The top wave is the output of the fourth decimator. To observe the
16-bit waveform as an 8-bit wave, we tested the shape of taking both the top 8
bits (arithmetic shift right by 8) and bottom 8 bits (truncating the top 8 bits).
The shifted shape can be observed in the second row, while the truncated
shape can be observed in the third. Clearly, the second row better maintains
the shape of the wave, but for some reason, the third row sounds better as an
audio output.

where f is the frequency, and 4.15 is the bin width of our
FFT. We saved these bin indices and made a 2D array in the
System Verilog module. This was stored as a 2D array rather
than a BRAM because the array itself is quite short so we did
not need the capabilities of the BRAM. Since each item in
the lookup table stores the lowest bin index corresponding to
a certain note, we would look up the largest bin index in the
lookup table that the input was still greater than.

VI. SPRITES AND IMAGE REPRESENTATION (HUESTON)

To be able to display the notes on a screen, a sprite sheet
was made to represent all note types that were needed. The
sprite sheet contains 11 32x100 pixel sprites representing the
notes, rests and other features used in the display Fig. 5. The
sprites used include whole, half, quarter, and eighth notes
and rest, the sharp and natural symbols, and the treble clef.
The sprites are arranged vertically and the memory address
is shifted by a factor of 32*100 depending on what frame is
displayed.

A. Image Sprite

Image_sprite is the main module that handles the image
representation in the system. It takes in notes and processes
the information it has to display pixels for the HDMI signal.
This module includes writing notes to BRAM and determining
which type of note to display and where, along with any
additions such as sharps, naturals, treble clefs, and staff lines.
The module then outputs a color to be sent in the HDMI signal.
The sequence of how the output is determined is as such: based
on what area of a measure hcount and vcount are currently on,
that measure is pulled from the BRAM. Based on what area
of eighth note block hcount and vcount are in, the note in
that block of the measure is compared with other notes in the
measure to determine if this block should be shown and if so,
which note/rest type should represent it. From that it shifts
the note by its displacement from middle C and reads from
memory to get the color to be sent to the screen.

B. Staff Lines

There are 5 systems in our sheet music, each made up of
4 measures. The writing area covers (96,100) to (1152,600).
The staff lines appear on any line in the writing area where
veount == x33, x41, x49, x57, and x65, with smaller ledger
lines appearing above(x25) and below(x73) the staff of A4 and
C4/C#4 respectfully. The measure lines appear within the staff
lines at every the end of each measure in the drawing zone.
There is also the treble clef which is rendered a block before
the note writing blocks begin.

- -t @
o d 4 4 o o

Fig. 5. Sprites used in the image_sprite module. Each sprite has dimensions
100 x 32. They’re stored in the sprite_mem BRAM.

C. Note Writing

The image sprite module takes in notes and stores them in
BRAM. This BRAM is 8*6 bits wide, for the 8, 6 bit notes
in a measure, and 20 entries deep, for the 20 measures. Given
the input BPM, in which 60, 80, or 120bpm can be chosen
via switches, the module will take in the current note at eighth
note intervals and add it to the current written measure, then
it moves to the next eighth note. There is a also a metronome
that flashes an led at each eighth note to help keep people in
time with the transription. When a measure is completed, the
module starts writing to the next measure in the BRAM. This
writing automatically stops writing when all possible notes
have been written. This note writing process is catalyzed by
flipping a switch on the FPGA. When reactivated, the BRAM
is reset to prepare to be written again.

D. Note Locator

The note locator module inputs the note that is currently
being displayed in the frame, and determines where on the
staff the notes should be. All of the note sprites are placed
at C4 by default, and for each note above in letter of C4, its
displacement is increased by 4, which increases the address
looked at by 128. For C4/C#4 and rests, displacement is 0.

E. Duration Detection and Memory Addressing

The image_sprite module can display any sequence of
notes! it is given in whole, half, quarter, and eighth notes
and rests. Each note is a 6-bit number, in groups of 8 for
each measure. In a 6-bit note, bits 0 to 4 represent one of our
22 notes, 6’b100000 for C4 up to 6’b110101 for AS. Bit 5
represents whether a given note is a note or a rest, 1 for notes
and O for rests. When hcount and vcount are at a certain note’s
block, that note is compared to all of the other notes in the
measure to determine if the note should be shown, and if so,
which type of note should be displayed.

Consider a measure such as in Fig. 6 with a note sequence
of C,C,C,C,D,D,0,D. In this case, these notes are displayed as
a half note C, a quarter note D, an eighth rest, and an eighth
note D. There are some restrictions upon which notes can be
shown at certain parts. The general rule is that a note type can
appear if the nth eighth note of the measure mod the eighth
note value of the note (eg. 1 for eighth note, 4 for half note)
== (. This is generally for musical cleanliness, so there aren’t
quarter and half notes starting on ands and the like. When a
note larger than an eighth note is displayed, the first note in
that note’s group is shown and the other blocks that are part
of the note are not shown.

There is also the possibility of showing a sharp or natural
symbol. These symbols adhere with the rules of sharp and
natural symbols. For a given note, it will look backward in
the measure to look for other notes of the same letter. For a
sharp note, if the last played note of that letter in the measure
is sharp, no symbol will be displayed, and if the last played
note of that letter in the measure is natural, or there is no

" notes” refers to notes or rests

Fig. 6. Test notes to show the duration detection working.

previous note of that letter, the sharp symbol is shown. This
is well shown in Fig. 7 For a natural note, if the last played
note of that letter in the measure is sharp, the natural symbol
will be displayed, and if the last played note of that letter in
the measure is natural, or there is no previous note of that
letter, no symbol is shown.

For indexing into our memory, two calls are made. One
is for notes/rests, and the other is for sharps/naturals the
addresses come in the form:

(frame_of_sprite) - 3200
+ row_of_block - 32

+ column_of block

(&)

+ vertical_displacement - 32

When receiving the data from the memory calls along with
knowledge of the staff lines, the image_sprite module outputs
the staff line data, sharp data, and note data anded so that
when any of them is low, the screen shows black in that pixel.

Two series of example notes have been made to demonstrate
the system working Fig. 8, Fig. 9. These are generated with
microphone data.

VII. RESULTS

A. System performance

The music transcription system is able to consistently iden-
tify music tones C4 to AS. It is also able to approximate note
durations. The system is capable of identifying pure tones with

Fig. 7. Korean Folk Song: Arirang. This demonstrates sharp and natural logic
consistent with real sheet music.

% B =

| Il d P odd o o d

Fig. 8. All notes that can be displayed. From C4 to A5

Fig. 9. Hot Cross Buns in C Major.

high accuracy, and non-pure instrument-produced tones with
slightly lower accuracy. While the system is able to identify
the range of tones we aimed to, it seems to struggle with
detecting the tones. Tones often have to be played directly
into the microphone, or else the system will not detect it.

B. Memory Utilization

Our project is visual heavy, and so we made sure to be
conservative with our memory. From the post_synth_timing.rpt
file, we observe the system to be utilizing only 12.67% of total
BRAM memory. BRAMs we used in our project include:

o Hanning window coefficients: 28 * 4096 bits
« note sprite storage: 32 * 1100 bits

« played notes storage: 48 * 20 bits

o FFT IP: 11 BRAMs

We save significant memory with the note sprite storage, as
sheet music is only black and white, and so we can store the
sprite colors as one bit values, which also eliminates the need
for a palette to be stored in the memory. Therefore, a 32x 100
dimension sprite can be represented with 3200 bits.

C. Timing

In the audio processing pipeline, we noticed that we had
mild negative slack due to the large multiplication calculations
necessary from the FIR filters. As a result, we changed clocks
from the initial 139.264 MHz to 69.632 MHz. This brought
the audio processing section’s slack to positive 4.315 ns.

When integrating the visual display portion of the project,
we had significant negative slack. This mostly arose from
the combinational logic required to render the measure logic
as well as clock mixing. A large portion of the slack fix
was making the note memory a BRAM rather than its initial
implementation, which was a 2D array. Accessing and slicing
into this array was expensive, and we reduced the slack from
-25 ns to -5 just with that fix alone. The rest of the fixes were
due to clock mixing. We fixed the clock mixing (the 74.25
MHz pixel clock and the 69.632 MHz microphone clock) by
running the always_ff block in image_sprite at the 69.632
Mhz clock. The clocks are reconciled by using the note_mem
BRAM, where its first port that we use for writing is clocked
at 69.632 MHz, whereas its second port used for reading is
clocked at 74.25MHz. We were able to bring the slack to -
0.070 ns, so it’s still negative, but it’s much closer to what we
want. Regardless, the system works as expected even with the
negative slack.

VIII. TAKEAWAYS AND NEXT STEPS

One issue we faced when testing the system with a real
piano is that the system would only hear the initial press of the
key, and then fail to detect the resonating tone of the rest of the

press. These are likely related issues and could be fixed in the
future by using a better microphone, perhaps an external one
that can be placed closer to the piano. We could also consider
better bit selection methods out of the FIR filter, since maybe
we are filtering out critical data in that last stage when we
take the top 8 bits.

We can expand the robustness of the system by expanding
the range of notes and type of musical symbols that can be
displayed. For example, one issue we noticed is when, for
example, a two-beat note starts on the last beat of a measure.
In such a case, we display two quarter notes, split across the
two measures. However, in proper sheet music, a tie would
connect these two quarter notes to indicate the note extends
across measures. Our existing infrastructure of the code would
allow for this to be added relatively easily.

IX. CONTRIBUTIONS

Monica Chan worked on the FIR filters/decimators and note
lookup modules. Ian Hueston worked on the note locator,
image sprite, and video generation modules. Cynthia Zhang
worked on the Hanning window, FFT, and peak finder mod-
ules. Monica Chan and Cynthia Zhang spearheaded the project
research, design, and planning. Zhang and Chan were also
responsible for integrating the audio pre-processing pipeline.
Chan and Hueston were responsible for integrating the down-
stream image sprite and fixing the timing issues. All members
contributed to the report and diagrams. Special thanks to
Joseph Feld, Adrianna Wojtyna, and Joe Steinmeyer for much
assistance in the project and understanding basics of signal
processing.

REFERENCES

[1] P. Isza, “TFilter - free online FIR filter design,” TFilter - Free online
FIR filter design, http://t-filter.engineerjs.com/ (accessed Nov. 22, 2023).

X. APPENDIX A

red (audio) clock: 69.632 MHz
blue (HDMI) clock: 74.25 MHz

mic_audio[7:0]

FIR Filter /

Decimation X .
audio_sample_valid

tmds

encoder/serializer

color_out[7:0]

<—metronome (rgb1[2])

hw_output[7:0]

Hanning

Window FFT

audio_sample_valid

hcount_in[10:0]

veount_in[9:0]

image_sprite

fft_ready

video_sig_gen

—note_index([5:0]
4—bpm (sw[1:0])—
i¢toggle_in (sw[2])—

——fft_out_ready—;
——fft_out_valid—»|
———fft_out_last—»,|
—fft_out_data[47:0]—>

peak_finder

peak_valid_outz_out[11:0]

note_lookup

