FPGA Autonomus Vehicle

Juan Antonio Luera
Department of Physics

Cambridge, USA
jluera@mit.edu

Abstract—The integration of LIDAR sensors and Inertial
Measurement Units (IMUs) in robotic navigation can provide
enhanced data sensing processing and energy efficiency. Our
project aims to explore the robustness and responsiveness of
FPGA in handling the demands of these sensors. Leveraging
the parallel processing capabilities of FPGAs, our system is
designed to simultaneously interpret continuous LIDAR data
and calculate the car’s real-time orientation and position using
IMUs. This approach ensures an efficient and real-time reaction
to surrounding obstacles. The minimally viable project consists
of implementing the UART protocols to interface with an IMU
and a LIDAR camera and use this data to navigate an RC car.
The FPGA will process information from the IMU and LIDAR
cameras and update the trajectory of our RC car if an object is
detected. The goal is to recognize obstacles in lanes and maneuver
around them. Our stretch goal is to implement an algorithm for
room mapping using obstacle avoidance and position control. Our
aim is to demonstrate how FPGA’s timing and parallel processing
can optimize real-time navigational tasks.

Index Terms—FPGA, LIDAR, Autonomous Navigation, Posi-
tion Control

I. INTRODUCTION

Our project aims to integrate encoder, LIDAR, and IMU
sensor data to autonomously control a small surface vehicle.
The integration of these sensors data is widely studied today
for various robotic and self-navigation systems. We hoped to
accomplish two autonomous navigation tasks: Lane navigation
and LIDAR Visualization. This paper will first go over all the
components used in the project, followed by the communica-
tion protocols created to interface with the various sensors. It
will then explain how we were able to visualize LIDAR and
IMU data, the driver board interfaced with, and finally the
motor controller made.

Please find all the code and CAD files in this GitHub: https:
//github.com/El-Guapo2024/6.111

II. PHYSICAL CONSTRUCTION

o The frame of the car itself is made from laser-cut 5 mm
wood or acrylic and 50 mm hex standoffs.

o For the motors we used 18.75:1 Metal Gear 12V DC
motors (37Dx68L mm) with 64 CPR Encoders mounted
using aluminum L brackets.

o The wheels were 3D printed to attach to the aluminum
motor shaft hub. The design and shape were those of pre-
vious wheels acquired whose rubber threads we wished
to use.

Juan Angel Luera
Department of Physics
Massachusetts Institute of Technology Massachusetts Institute of Technology
Cambridge, USA
j_luera@mit.edu

Manuel Valencia
Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, USA
manuelv@mit.edu

e The electronics consist of a LIDAR, IMU, HC-SR04
Ultrasonic range sensor and Arduino Mega 2560, quad
motor shield, voltage level shifters, 74HC14 Schmitt
Trigger, 11.1 V Li-PO Battery, and 7805 Linear Voltage
Regulator.

o The LIDAR sensor contains a laser that is used as a
distance sensor and is rotated at 12 Hz and can retrieve
up to 800 individual samples of distance and angle per
rotation. We can use this to make a 2D Point Cloud Data
image of the surroundings.

e The IMU is used to keep track of the heading and
correct the error in movement when combined with the
motor’s PID controller. The IMU we will be using is the
BNOOS55 Intelligent 9-axis absolute orientation sensor on
the Adafruit breakout board.

o The HC-SR04 Ultrasonic range sensor can detect dis-
tances to obstacles and is used in place of the LIDAR
sensor when not available.

o The Motor shield takes in 4 PWM signals (2 per motor)
One goes to the PWM HIGH the other goes to the PWM
LOW of the H bridge configuration for each motor. There
is a Sv and 3.3v power in for several ICs and a 12v power
in for the motor drivers. Each motor also has 2 encoder
signals although we only need one for the precision we
need.

e The Level shifter allows communication between the
motor driver, the FPGA, and the Arduino since the Motor
driver and Arduino use 5-volt Logic while the FPGA uses
3.3v.

o The Linear Voltage Regulator will be used to lower
voltage from 11.1 to roughly 5 volts to power all the
electronics that require Sv power.

e The LI-PO battery is an 11.1-volt battery we will use to
power the motor driver, motors and 5v ICs.

III. UART COMMUNICATION AND IC PROTOCOLS
A. UART Communication with FPGA

The FPGA will need to communicate over UART with the
LIDAR, IMU, and Arduino for testing. The modules for rx and
tx communication are based on the 8N1 standard (8-bit data,
no parity bit, 1 stop bit). Each IC uses different protocols for
communication and different lengths of responses. Our module
for rx and tx will read or write a byte of data at a time at a

https://github.com/El-Guapo2024/6.111
https://github.com/El-Guapo2024/6.111

Fig. 1. Assembled FPGA Vehicle

baud rate set through a parameter on initialization. All of our
sensors used 115200 baud rates.

B. LiDAR UART Protocol (Antonio)

For the LIDAR, we made use of UART RX and TX
Protocol. The Lidar uses 8N1 and a baud rate of 128000bps.
This LIDAR uses 3.3 volts, so we are able to directly connect
from the FPGA to the Lidar for communication.

The Protocol to communicate is broken into two main
modules the Start Protocol and the Scan Protocol. The start
protocol will start the LIDAR and set it to scan mode. The
scan protocol will scan the dots and store the data in a BRAM.

1) StartScan Protocol: The Scan Protocol has two main
states: send command and wait response. The send command
state will send a sync byte followed by the startScan Com-
mand. It will then wait for the response. It should receive two
commands to confirm is scanning. If it receives the correct
commands, it will move into the StartScan modules, if it fails
it will repeat this module.

ERROR

Error
Correction,

Fig. 2. Lidar UART PROTOCOL

The Scan protocol will listen periodically for the informa-
tion from the LIDAR sensor. It will then go through a roughly
12-step process to produce 2 16-bit signed logic values, one
for the angle in degrees where 23040 corresponds to an angle
of 27. The diagram above shows the flow of the code where
each bubble corresponds to two bytes being sent, the first,
the most significant Byte, followed by the Least significant
byte. The first step is to wait for a specific command to start
and make sure we are receiving the correct data. This step
is important since the LIDAR can also send other kinds of
data such as health. From here is fairly straightforward we
receive the First Angle, Second Angle, number of points, and
checksum. If the checksum fails, then we fail we go to Error
state and repeat the protocol. If we are successful then we
proceed with the next phase. We will receive N number of
distance byte based on the 2 bytes received in the previous
phase. From here, we run the move to calculate the angle
of that specific point; for this, I made a module that will
make use of the divider to find the interval angle. The internal
angle is just the abs(LastSampleAngle-FirstSampleAngle). We
wait until the end of the previous step, and we proceed to
perform error correction. The error correction is based on the
formula provided by the manufacturer and its purpose is to
help with the inconsistent data since the LIDAR is not very
accurate. We need to implement the formulas shown in the
image. We start by calculation the angle of the point and
find the angle for the current point. The next step is to find
the AngleCorrectForDistance. At first, my attempt was to use
Arctan cordic; however, it was quite difficult to get all the
correct transformations. In the end, I implemented this by
making a Python script that would map all the possible input to
the output of the equation. Since I knew that the only input that
varies is the distance and we can make use of the fact that is
bounded, we can easily run through all the possible inputs and
outputs. I then made a Bram using an input map to a palette
Bram similar to Pop Cat. From here, we can calculate the
AngleCorrectForDistance. Lastly, I run the second equation or
variation of the second equation. From here, we can calculate
the corrected angle and distance. This is then stored in the
Bram. If we will still haven’t done the N iterations, we repeat.
After we reach the N iterations we move into CheckSum. If
it works out, we repeat the whole protocol, and if it fails, we
move into ErrorState and set the error flag to 1. Then repeat
the protocol

AngleCorrectForDistance =

node.angle = (((uintl6_t)
(FirstSampleAngle + sampleAngle

+ AngleCorrectForDistance +23040))

<< LIDAR_RESP_MEASUREMENT_ANGLE_SHIFT)
+ LIDAR_RESP_MEASUREMENT_CHECKBIT;

In this part, I used 3 IPs: signed integer division, arctan,
and ILA(This is the part I am currently testing). The next

(int32_t)((atan (((21.8
155.3) / (node.distance))) * 3666.93);

step is to convert from polar coordinates to cartesian. I plan
to do this using the Cordix sin and cos IP. All the code can
be found in the GitHub under UARTPROTOCOIL.

C. IMU UART Protocol (Manuel)

The BNOOSS5 allows for both I2C communication and
UART communication. For UART communication, the com-
mand and response structure is based on reading and writing
to the registers of the microprocessor on board that handles
collecting sensor data and performing the data fusion to get
reliable readings on the IMU’s orientation. One first sends
write commands to set up the IMU before sending read
commands to read the information in the registers containing
the orientation data.

On boot up the BNOO55 needs 80ms before being able to
receive the first command. You then needs to set the OPR
MODE register to NDOF mode for data fusion to be turned
on. This is done by sending the command:

0xAA 0x00 0x3D 0x01 0x0C

OxAA signifies the start of a command. Followed by 0x00
for writing or 0x01 for reading. 0x3D is the register for OPR
MODE, 0x01 is the number of bytes to be sent, and 0x0C is
the value for NDOF mode. The response structure for writing
to a register in the IMU is:

0xEE 0xXX

If the message was received it will respond with the first
byte being OxEE followed by 0x01 if successful. The second
byte will be a different value for a different type of error
encountered.

After setting OPR MODE, I set the UNIT SEL register
(0x3B) for the units I want the information to be returned in.
For degrees and the range to be from +/- 180 degrees following
right-hand rule the command written was as follows:

0xAA 0x00 0x3B 0x01 0x10

Once done the IMU needs to calibrate before sending
accurate orientation headings. This can be done by reading the
CALI STAT register (0x35) to see if the first two bits which
represent system fusion on have value 2’b11. The command
sent is:

0xAA 0x01 0x35 0x01

For read commands, no data is sent but one specifies the
length of data one wants back. The response will either start
with 0xBB followed by the data in the register or OxEE
followed by an error type byte.

Once the calibration status is confirmed then one can read
the registers for the MSB(0x1A) and LSB(0x1B) of the current
Euler x orientation value which signifies the heading of the
IMU. The full data sheet for the BNOO55 can be found using
the link in the references.

D. Arduino UART Protocol (Manuel)

For testing, we also set up all our sensors to interface
with an Arduino MEGA 2560 and send the data from the

Fig. 3. IMU UART PROTOCOL

various sensors to our FPGA using UART communication.
We chose the MEGA since it allows for multiple serial
communications as well as I12C for the IMU. The protocol
for the Arduino communication is a simplified version of the
UART communication with the IMU and follows the same
115200 baud rate 8N1 standard. The Arduino is the only
sender that periodically sends the latest sensor values. The
FPGA checks the message which is 6 bytes wide and makes
first is in a state where the motors won’t be enabled until
the calibration status on the IMU is set. Then it will send an
enable signal to the motor controller module and will update
the heading and distance values on each new response that
is valid. The first byte of the response is a validating OxAA
signal. The next is either OXFF if the IMU or other sensors
are not calibrated or 0xBB if they are. The next two bytes are
the MSB and LSB values of the IMU reading and the last two
bytes are the MSB and LSB of our Lidar or Ultrasonic distance
sensor. The code for the Arduino sensor communication and
FPGA communication can be found in the git under the sketch
file named FPGA COMMS.

IV. LIDAR AND IMU VISUALIZER(ANTONIO)

I am working on the visualizer to help debug the LIDAR,
IMU, and ICP code. I am currently working on the letter
visualization and frame buffer for the visualizer.

Fig. 4. Compact PNG

For this made use of the previously existing code HDMI and
removed all the camera stuff. I then made a similar structure
instead of the camera is the lidar data coming from an Arduino
and instead of Popcat I used the compact.png. My first step
was creating a compact binary map of the letters, numbers, and
other characters. I found a PNG of characters and then made
some Python code to remove all the unnecessary spaces. I did

other optimizations, such as using a gray scale and setting all
the bytes to either black or white. Then, my last step was to
sample down to two colors and make image.mem file with
only zeros or ones. Where black is 0 and white is 1. This step
is essential since we are able to sample down to only roughly
1 kilobyte of BRAM. I made a module that will allow me to
display up to ten letters and any specified location my using
the Bram of the letter. This was mainly used for debugging,
but it can be seen on the demo displayed Visualizer”. The
letter is still slightly rough since I did not fully pipeline this
step since it was mainly used to display values.

VISUALIZER

Fig. 5. Visualizer Display

Since my Lidar stopped working the week the project was
due, I was unable to get direct readings from FPGA to the
visualizer. As a backup I received a similar Lidar from Joe, I
did not have enough time to write the protocol in FPGA or
write error-correcting code. However, I wrote a UART protocol
between the Arduino and the FPGA. I send the Sync byte
AA, then I send BB for new data followed by 4 bytes [xpos,
Xpos,ypos,ypos]; otherwise, I send EE if a new frame is made.
I will interpret this on the FPGA if new data is given I will
map it to the frame buffer, if new frame is received i clear
the screen. I have a similar mechanism to the camera where
i sample from the frame buffer at my own rate. In the end, I
can see a live plotting of all the points and a reset every time
we have a new frame.

V. INTERFACING WITH MOTOR DRIVER BOARD(ANGEL)

To interface the motors with the FPGA we used a motor
driver shield from 2.74. First we reversed engineered the board
to decipher which port produced each signal and needed what
inputs. We discovered that the driver needed 3 different voltage
sources 12V (for motor power/totem pole + some logic),
5V(encoder power + some logic), and 3v (logic). To produce
these supplies we had to use an external power supply, 7805
chips, and Buck converters. Once we figured out the power
electronics for the driver we needed to engineer a circuit for
control purposes. Initially we had plan to use the following
configuration:

PWM J4HC14

£ PWM HIGH
| PwM LOW
Direction Signal =~ ———————————1

Fig. 6. Old Wire Diagram for Motor control

As it would’ve allowed us full bidirectional control with a
minimal use of ports. However, after running into issues with
assembly and controlling multiple wheels, we pivoted to 2
wheel drive and using only the Servo signals. We connected
one servo signal to the PWM HIGH of the driver and the
other to the PWM LOW. We would ground one of the servo
pins depending on the direction of the rotation we desired and
used the same duty cycle for both of the PWM’s. This had the
added benefit of making the control more robust as we had
less wires and sources of noise. Conversely, this did mean we
had to design a new way to hold our front wheels, but we
solved this by CADing wheels compatible with ball bearings
for skateboards with mounts.

VI. MOTOR CONTROL MODULE ON FPGA (MANUEL)

The motor control module written on the FPGA is a basis
for further implementation of a full heading and position
controller. Currently, the module takes in a clk, rst, encoderL,
encoderR, IMUHeading, distance, and enable signal. The
encoderL and encoderR signals are the direct signals fed
through from the encoders on the motors and are used along
with local parameters to keep track of how many revolutions
the wheel has spun. There is also a local parameter DUTY
which holds the standard duty cycle we want the motors to
run at. An inner module PWM creates the two PWM signals
needed for each motor, along with a duty cycle value and a
direction signal. If the direction signal is O the motors will
spin forward, if the direction signal is 1 the motors will spin
backwards. Direction is controlled through two PWMs since
the driver board provides power to the motors using an H-
bridge. Which signal of the two is sent to the driver board will
determine the direction the motor spins. The IMUHeading and
distance signals are one-bit signals used to drive transitions
between the state the motor is currently in.

rev_counter ==
1*countsPerRevolution

FORWARD
AVOID

IMUHeading == 1

distance == 1

FORWARD
IDLE

enable == 1 IMUHeading == 1

Fig. 7. Motor control state machine

First, motors are off until we get the enable signal signifying e a
we have sensor data coming in where it enters a FORWARD Mo
IDLE state. If the sensors data returned a value too low in our
top level module we set distance high which transitions our
motor controller into a TURN RIGHT state. Motors are then
commanded to turn the vehicle right until IMUHeading goes
high. In the top module this is done by saving the current
heading value before transitioning to the TURN RIGHT or
TURN LEFT state and then calculating the difference between
current and saved heading value until it is greater than 90 . .
degrees. From TURN RIGHT it transitions to FORWARD Fig. 8. Diagram for PID control
AVOID where it moves forward an amount of revolutions
specified by a local parameter before transitioning to a TURN
LEFT state where it should go back to the Original heading and . https://Cdn—shop.adafruit.Com/datasheetS/BST_BNOOSS_DSOOO_1 2p(
loop back to FORWARD IDLE. This state machine allows the o https://www.amazon.com/YDLIDAR-X4-Degree-

REFERENCES

vehicle to detect and object and move around it. All the sensor Communication-Interface/dp/BO7DBYHJVQ

signals are used and implemented and can be built off of to o https://www.pololu.com/product/4752

create a more complete position controller and lane navigation o https://www.adafruit.com/product/2472

system. o https://www.sparkfun.com/products/15569
ACKNOWLEDGMENT

Thanks to Joseph Feld, Darrem Lim, Adrianna Wojtyna,
Pleng Chomphoochan, and Ivy Liu for all the guidance and
feedback.

VII. FUTURE WORK AND DISCUSSION

While the project was successful in achieving our MVP
there is still further work to be done and some hurdles to
overcome.

o The IMU communication with the FPGA is fully estab-
lished. However, readings from the IMU directly onto
the FPGA reveal stale values that don’t update how they
should. This seems to be an issue with the BNOO55
protocol and most possibly a step that might be missing
in communicating with it. The commands sent are the
same sent from the Arduino using 12C communication
yet the values aren’t updating like it should. From the
data sheet it doesn’t seem obvious what the missing step
is but there is a possibility that it is one of the following:
(1) The Arduino does activate an external clock signals to
power the clock on the BNOO0SS which could be used to
improve readings. (2) The trigger pin on the BNOO055 can
be set up so that when it goes high it creates an interrupt
where the BNOO55 will make a reading and respond
immediately with the value in a series of registers. This
wasn’t ever implemented on the Arduino to get values
but could be implemented on the FPGA to ensure sensor
readings are taking place. (3) There may be some sensor
offsetting values handled by the Arduino library that
aren’t implemented on the FPGA.

o The motor controller can be expended on to provide
greater position and heading control following the initial
plan for our PID control system (Fig 7). It would also
allow for trajectories to be planned and 2D mapping using
the LIDAR to be done. We also ran into issues trying to
run the wheels at slower pwms since the torque produced
was to small to overcome static friction. Implementing the
PID controller would fix this issue.

	Introduction
	Physical Construction
	UART Communication and IC Protocols
	UART Communication with FPGA
	LiDAR UART Protocol (Antonio)
	StartScan Protocol

	IMU UART Protocol (Manuel)
	Arduino UART Protocol (Manuel)

	LIDAR and IMU Visualizer(Antonio)
	Interfacing with motor driver board(Angel)
	Motor Control Module on FPGA (Manuel)
	Future Work and Discussion

