
PictoChatGPA – Real-Time Draw Sharing On
Low-Level Hardware

Final Report
Fatema Zaman

Department of Electrical Engineering and Computer Science
Massachusetts Institue of Technology

Cambridge, MA, USA
fatemaz@mit.edu

Abdullah Negm
Department of Electrical Engineering and Computer Science

Massachusetts Institue of Technology
Cambridge, MA, USA

abdnegm@mit.edu

Abstract—PictoChatGPA allows a user to draw on a touch-
screen display have those changes instantaneously reflected on
their friend’s display. Modern draw-sharing apps are laggy and
require the use of inefficient methods and protocols, such as
servers between computers via Wi-Fi. PictoChatGPA, however,
utilizes the FPGA’s low-latency and high-performance I/O pro-
cessing to speed this up! Once a user draws on their touchscreen,
the FPGA processes the associated pixel location via I2C, inter-
nally decides the associated action (e.g., drawing or changing
color), and sends any drawing data to the other FPGA over
Bluetooth. The other FPGA similarly processes the information
and both displays reflect the same change by transmitting that
data to the screen via SPI.

Index Terms—Digital systems, Field programmable gate array,
PictoChat, capacitive touchscreen display

I. PHYSICAL CONSTRUCTION

PictoChatGPA is based on the old Nintendo DS game. Thus,
it needs to have the hardware in order to make the drawing a
reality. The project includes:
- Two FPGA’s. These FPGA’s will be the main processing
components. The specific FPGA is Xilinx Spartan-7 XC7S50-
CSGA324 FPGA [1].
- A Bluetooth Host Computer. The BLE (Bluetooth Low En-
ergy) chips on the FPGA (nRF52832) cannot directly connect
to another FPGA [1]. Thus, a host computer is used to relay
information between the two FPGA’s. It will be running a
Python program using the package Bleak.
- Two Adafruit 2.8” Capacitive TFT Touch Shields. These are
touchscreen displays that communicates to its display via SPI
and communicates to the touchscreen via I2C [2]. Each FPGA
will have its own touchscreen display.

Figure 1 shows the physical setup for a single FPGA with
its own display where the user has drawn a couple pixels with
all the colors available.

II. TOUCHSCREEN DISPLAY (ABDULLAH)

This project utilizes the 2.8” thin-film-transistor (TFT)
liquid-crystal display (LCD) with capacitive touch. Figure 2
shows the wiring of the display. Take note of the X symbols,
which represent floating lines; the IM0-IM3 lines configured

Fig. 1. Physical Setup for 1 FPGA

with 0s (ground) and 1s (3.3V); and the pmoda/pmodb lines,
ports on the FPGA.

Fig. 2. Wiring of the display.

A. Touchscreen

In terms of pins, the SCL (clock) and SDA (data) lines facil-
itate I2C communication between the FPGA and touchscreen
with a clock frequency of 100khz. The IRQ line signifies



detected touches, acting as an interrupt to the FPGA. The
FPGA specifically utilizes the pmoda[7] port (a one-way clock
from the FPGA to the touchscreen), pmodb[7] port (a two-way
in/out line for sending and receiving data), and pmodb[6] port
(a one-way, active low interrupt from the touchscreen to the
FPGA). The touchscreen offers an array of features, including
multiple touch detection, swipes, and pressure measurements.
This project, however, takes on the bare minimum: single
touches.

Using I2C, the FPGA can access positional details with
the registers in Table I. Each read from a specific register is
completed with the sequence shown in Figure 4, where the
FPGA first writes the wanted register address then reads that
register’s data. This is implemented through two complex finite
state machines, where the high-level routines are handled in
the Touchscreen module and the bulk of the logic lies within
the I2C module.

B. Touchscreen Module / State Machine

The Touchscreen module heavily utilizes the I2C module,
which acts as a black box that produces data a short time
after its inputs are specified. Specific registers, noted in Table
I, are passed into the I2C module; once the data is ready, the
touchscreen module stores those values.

TABLE I
TOUCHSCREEN REGISTERS

Register Description
8’h03 1st touch X position[11:8]
8’h04 1st touch X position[7:0]
8’h05 1st touch Y position[11:8]
8’h06 1st touch Y position[7:0]

The registers accessed to get the X and Y positions.

The state machine begins in the IDLE state, where it
waits for the touch interrupt pin (active low) to signal. Once
the interrupt pin goes low, the state transitions to GET X,
followed by GET X2, GET Y, GET Y2, and lastly back to
the IDLE state. All the GET states utilize the aforementioned
I2C module, storing their respective values. The data is ready
for use while the state transitions back to IDLE, signified by
a high valid out.

C. I2C Module / State Machine

Figure 3 shows the overall result of the I2C module,
achieved by the following state machine.

Fig. 3. Example I2C timing diagram.

The IDLE state waits for a valid input, immediately transi-
tioning to the START state once received.

In the START state, the FPGA manipulates the clock and
data lines to communicate to the touchscreen that the I2C
sequence has begun. This is done by switching the data line
from high to low followed by bringing the clock line from high
to low. The state is then transitioned to the SEND ADDRESS
state.

Within the SEND ADDRESS state, the FPGA sends the
seven bit ADDRESS of the touchscreen device, followed
by a one bit ‘write‘ (low) signifier. The state transitions
to the SET DATA ADDRESS state and sets the secondary
acknowledge flag to high (this checks if the next bit received
is an acknowledgement–low).

The SET DATA ADDRESS state sends the 8 bit register
address of what the user wants to read (see Table I). The
state transitions to the END state and again sets the secondary
acknowledge flag to high.

The END state signifies the successful completion of setting
the data address by communicating to the touchscreen that it
is done interfacing with it. This is done by bringing the clock
from low to high, followed by bringing the data from low to
high.

The BUFFER state acts as an intermediate wait time be-
tween the first (setting the data address) and second (receiving
data) packets. It waits a short amount of time and proceeds to
the START2 state.

The START2 state, much like the START state, sends the
start sequence to the touchscreen. It switches the data line from
high to low, followed by the clock line from high to low. The
state is then transitioned to the SEND ADDRESS2 state.

Within the SEND ADDRESS2, the seven bit ADDRESS
of the touchscreen device is again sent, followed by a one
bit ‘read‘ (high) signifier. The state transitions to the RE-
CEIVE DATA state and sets the secondary acknowledge flag
to high.

In the RECEIVE DATA state, the FPGA reads in 8 bits
of register data from the touchscreen. Once that is complete,
the state is transitioned to END2. Additionally, the primary
acknowledge flag is set to high, which writes an acknowledge
bit (low) to the data line, signifying the FPGA successfully
received the data.

In the final END2 state, the FPGA sends the end sequence
to the touchscreen, bringing the clock from low to high then
the data from low to high. It signals valid out (data read from
the register is ready to be used) on transition to the IDLE state.

D. Display

In terms of hardware, the MOSI (data to the display), MISO
(data from the display; not used), and CLK (clock) lines
facilitate SPI communication between the FPGA and display.
The FPGA specifically utilizes the pmoda[0] port (a one-way
clock from the FPGA to the display), pmoda[1] port (a one-
way line for sending data to the display), pmoda[2] port (a one-
way, active low chip select line for the display), pmoda[3] port
(a one-way data/command line to the display), and pmoda[4]
port (a one-way reset line for the display). Additionally, the
IM0-IM3 pins are configured to specifically utilize the two



Fig. 4. I2C sequence for reading a register.

data lines (MISO, MOSI), a clock line, a chip select line, and
a data/command line.

E. Display Module / State Machine

This project employs a simple finite state machine to send
data to be displayed, where a separate SPI module facilitates
sending data to the display via the aforementioned ports. The
state machine is as follows:

The RESET state initializes/resets internal variables and
automatically transitions to the INIT state. The INIT state
sends the initialization commands (for setup and configuration)
in Table II to the display. This state automatically transitions
to the IDLE state, which waits for pixel data to send to the
display.

TABLE II
DISPLAY STARTUP COMMANDS

Command Data (If Applicable) Description
8’h28 Display OFF
8’hCF 8’h00, 8’h83, 8’h30 Power control B
8’hED 8’h64, 8’h03, 8’h12, 8’h81 Power on sequence control
8’hE8 8’h85, 8’h01, 8’h79 Driver timing control A
8’hCB 8’h39, 8’h2C, 8’h00, 8’h34 Power control A
8’hF7 8’h20 Pump ratio control
8’hEA 8’h00, 8’h00 Driver timing control B
8’hC0 8’h26 Power Control 1
8’hC1 8’h11 Power Control 2
8’hC5 8’h35, 8’h3E VCOM Control 1
8’hC7 8’hBE VCOM Control 2
8’h3A 8’h55 Pixel Format Set
8’hB1 8’h00 Frame Rate Control
8’h26 8’h01 Gamma Set
8’h51 8’hFF Write Display Brightness
8’hB7 8’h07 Entry Mode Set
8’hB6 8’h0A, 8’h82, 8’h27, 8’h00 Display Function Control
8’h29 Display ON

Startup commands for the display.

The IDLE state transitions to the DRAW state on knowledge
of valid data. The DRAW state takes the drawing data (a
rectangle to draw and a color) and sends a series of commands
to the display to be drawn. The bounds for the rectangle are
set first: the rows (with the command 8’h2A, followed by 16
bits for each bound) and columns (with the command 8’h2B,
followed by 16 bits for each bound). After, those pixels are

filled in with color one by one (with the command 7’h2C,
followed by 16 bits of color for each drawn pixel). This
sequence is shown in Figure 5.

Fig. 5. Example of drawing on the display.

F. SPI Module

The SPI simply writes 8 bits of data to the display. It utilizes
the chip select (active low) and dc (data/command) lines to
send either commands or data to the display. It writes to the
clock line on a 1mhz clock, setting data on its falling edge.
An example of this is shown in Figure 6.

Fig. 6. Example of SPI waveform.

III. ADDITIONAL DRAWING FEATURES (FATEMA)

The ideal goals and stretch goals wanted to achieve color
and different brush sizes.

A. Color

Button 3 was mapped to changing the color. The left two
digits on the seven-segment display show what color the user is
currently on in hexadecimal. Every time button 3 is pressed,
the colors cycle. Currently, the user shuffles through black,
white, red, and blue with a default of black. This is done
using a counter and using an if-statement to shuffle through
the color states in top-level. In the display module, the color
state is passed in and is set to the color value of each pixel
being drawn.



B. Brush Size

Switch 15 (sw[15]) is assigned to deciding the brush size.
If sw[15] is high, then the program sets the space value to 1,
else it is set as 3. In the display module, the row2 and col2
parameters are set to the row1 + space and col1 + space,
respectively. This makes the pixel size drawn larger. When
space is set to 1, this makes a 2x2 pixel. When space is set
to 3, this makes a 4x4 pixel.

IV. INTER-FPGA BLUETOOTH COMMUNICATION
(FATEMA)

The FPGAs must be able to receive and send data to each
other. Bluetooth is a type of UART (Universal Asynchronous
Receiver-Transmitter) running at 115,200 bps (baud rate) in
this case [1]. At rest, UART is on high. To start a message, a
single start bit goes on low. Then, there are 8 data bits. Then, a
parity bit that checks if the message was sent correctly. Finally,
a stop bit that is high. There needs to be a baud clock, UART
transmitter, and UART receiver for the data. The FPGA input
signal (the rx) is called ble-uart-tx while the output signal
(the tx) is called ble-uart-rx. There is also an input signal ble-
uart-rts and output signal ble-uart-cts that act as a ready valid
protocol.

A. UART Baud Clock

The Nordic Semiconductor nRF52832 device on the FPGA
running at 115,200 bps. In order to not cross over clock-
domains, the UART baud module clocks on the 100 MHz
signal and outputs a high every 100, 000, 000÷115, 200 cycles
for a single cycle. This is used by the transmitting module.

B. UART Transmitting Module

For transmitting, the parity bit was unnecessary for our
purposes, so it is not a state. There will be a state machine
with the following states:

For the IDLE state, when there is no message to send, only
send high. When there is a message to send (initiated by a
button press), it goes to START state.

For the START state, it sends a low bit to initiate the start
of the message. Then, moves on to sending the data. The data
input is also set to a buffer variable so that if the input changes
while transmitting is occurring, there will not be a mixing of
data sent.

For the DEVELOP state, it sends the least significant bit
first and continues until all the bits are sent. A counter makes
sure that 8 bits are sent. Once the counter is up, it transitions
to the STOP state.

For the STOP state, it sends a high bit to signal the end.
Then, it transitions to BUFFER.

For the BUFFER state, a high bit is sent for 10 cycles (the
amount of entire UART messages). This is to allow the device
some time before another message is sent.

C. UART Receiving Module

For receiving, it runs on its own baud clock in order to sync
itself with the data. Additionally, the input signal is put through
a synchronizer module to settle any clock domain issues. There
will be a state machine with the following states:

In IDLE, this is when the receiver is waiting on a message
and has been receiving high. Once it receives a low bit, it
goes to the start state. It starts incrementing its internal baud
counter.

In START, a start bit of low has been received. It waits
until half a baud cycle. If the input bit is still low, that means
that was a valid low start and then it transitions to the develop
stage. From then on, counter increments by whole baud cycles.
This was done so that readings would not be on the edge and
instead of the middle of the cycle.

In DEVELOP, the 8 bits of data are currently being con-
structed and ends when the counter hits 8 bits at which it
knows that the data has finished. Then, it goes to a PARITY
stage.

In PARITY, the parity bit is sent from the Python program.
It does not matter for our receiving side, so it just passes one
whole baud cycle before transitioning to the STOP state.

In STOP, a stop bit of high has been received. Then, after
a single cycle, it goes back to IDLE.

D. Data Packets

Sending x, y, and color cannot be done on a single Bluetooth
packet. So, the program stores the last color, y, x, and new
line character (8’h0A) in an array in that order. Every time
information is sent to the Bluetooth server, it will not finish
receiving until it receives a new line character. That is how
multiple packets can be stringed together in a single message.

E. Bluetooth Host

A laptop will serve as a host computer. It will be running
two Python scripts for the entire time that communication is
happening. Each terminal is connected to each FPGA. This
is done through the Python package Bleak (Bluetooth Low
Energy platform Agnostic Klient) [3]. It first connects to the
nearest BLE device with the UUID ”6E400001-B5A3-F393-
E0A9-E50E24DCCA9E” which is used for UART service.
Then, with a true while loop, the terminal accepts inputs.
Whenever the computer user types something, it is sent to the
FPGA and sends a sent confirmation message. It only accepts
valid hex inputs. Whenever it receives a message from the
FPGA, the message received is shown in terminal in hex form.
Using these outputs, the host computer can act as the bridge
between the FPGAs.

On the FPGA in the BLE section, if the PAIR light is
flashing, that means the FPGA is ready to pair. If it is not,
that means the BLE module is asleep, and the user must press
the BLE RST button in order to wake it up. If the FPGA is
connected to a device, the PAIR LED is solid green. Whenever
data is sent or received, the DATA LED flashes red.

A possible cause of abrupt disconnections that was encoun-
tered was sending too much data at once. Send and receive



data packets can be up to 256 bytes. That is why the decision
was made to only send data whenever the user pressed button
1.

V. DESIGN EVALUATION (FATEMA)

The design used 0.67% of BRAM. Additionally, it used 0
DSPs. Both the Worst Negative Slack (3.290) and Worst Hold
Slack (0.030) are positive. This is according to the Vivado
Report logs.

A. Timing

By counting how many cycles it takes starting from a user
drawing a blue pixel on their screen to show up on the other
person’s screen, one can estimate how long the program takes.
For a 100MHz clock, each cycle takes 10 ns.

It takes 4 cycles for the user to press the button 4 times to
choose the color blue. The I2C module takes approximately
41000 cycles from input to output. The Touch module, which
utilizes the I2C module, takes approximately 4 ∗ 41000 =
164000 (accessing four registers from the touchscreen) cycles
from start to end. The SPI module takes approximately 800
cycles to send 8 bits of data. The Display module, which uses
the SPI module, takes 88 ∗ 800 = 70400 (sending 88 packets
of data using SPI) cycles to setup the display, followed by
13 ∗ 800 = 10400 (sending 13 packets to draw) cycles to
display a pixel on the screen. Once the user presses the button
to send the data, the Bluetooth Transmitting Module starts.
That takes 20 baud cycles, and a baud cycle is 868 100MHz
cycles which makes 17360 100MHz cycles. But there are
three packets, so the transmitting module takes 52080 cycles
total. The Python script is hard to analyze for time. Thus, it
will be ignored for the time analysis. The receiving module
takes 10 baud cycles for each of the 3 packets, so 26040
100MHz cycles. Finally, it needs to display it which takes
80400 cycles. Adding all the cycles for all the processes from
start to finish makes 322924 cycles. This makes 3229240 ns
which equals 0.00322924 seconds. This is sufficiently fast on
the SystemVerilog side.

B. Reaching Goals

The commitment goal was to have single color drawing that
would appear on the other display’s screen. The ideal goal was
to have color drawing that would be able to be sent over. The
stretch goal was to have different brush sizes for drawing.

All of these goals were achieved to some extent. The first
attempt was using switch inputs to set x and y locations, and
the FPGA was able to not only draw it using button 2 but
also send and accept from the Bluetooth host. The Bluetooth
Host could handle single pixels at a time where the user would
choose to send the pixel using button 1. Drawing could work
on the entire screen. Then, color was able to be sent over
which could be toggled via button 3. Then, the user was able
to change their own brush size using switch 15.

However, the Bluetooth can only single pixels at a time.
The I2C touchscreen experiences overflow issues and can only
detect touches on the top 256 pixels (8 bits) of the screen.

Additionally, the original goals had the user only use the
touchscreen to choose colors and brush sizes but instead this
project utilizes buttons. With more time, making the design
more modular so that adding more features would be easier
would have been helpful. Additionally, making the Python
program send more data at a time would be helpful. In
the SystemVerilog, a proper FIFO would have also helped
sending packets easier instead iterating through an array as it
is currently implemented.

C. Acknowledgements

Shoutout to Andi Qu for introducing Bleak and helping with
debugging the Python. Special thanks to Darren Lim for being
our mentor and Joe Steinmeyer for helping debug our systems
and being a great instructor.

VI. APPENDIX A

The code can be found here:
https://github.com/fzaman500/PictoChatGPA/tree/main

VII. APPENDIX B (ABDULLAH)

Figure 7 shows the project’s block diagram design.

Fig. 7. Block diagram of the design.

REFERENCES

[1] “Boolean Board.” RealDigital,
www.realdigital.org/doc/02013cd17602c8af749f00561f88ae21#bluetooth-
radio. Accessed 1 Nov. 2023.

[2] Ada, Lady. “Adafruit 2.8” Tft Touch Shield V2 - Capacitive or Re-
sistive.” Adafruit Learning System, learn.adafruit.com/adafruit-2-8-tft-
touch-shield-v2. Accessed 23 Oct. 2023.

[3] Blidh, H. (n.d.). Usage - bleak 0.21.1 documentation.
https://bleak.readthedocs.io/en/latest/usage.html


