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Abstract—We present a design for a digital sundial which
processes a sundial signal viewed under ArduCam and presents
the time of day via angle calculation signal processing, as well
as triggering an alarm clock with SD-card programmed alarm
outputs at specific solar times. The hardware consists of a Urbana
board with Xilinx Spartan7 FPGA, Arducam, stereo speaker, and
micro-SD memory.

Index Terms—solar angle, lookup table, discrete cosine trans-
form,

I. HARDWARE SETUP

A Xilinx Spartan 7 FPGA interfaces with the Arducam Mini
and supplies an HDMI-clocked signal to an edge detection and
center of mass module. These are used to calculate the clock
angle and therefore current time, which in turn reaches an
alarm clock module.

We use Arducam Mini 2MP Plus OV2640 camera that
can support up to 1600x1200 images. A micro-controller to
interface between the camera and the FPGA. Audio data is
stored on a 2GB MicroSD card, which is read and then output
through a stereo PWM audio speaker.

II. IMAGE PROCESSING: SUNDIAL ANGLE CALCULATION
(HAMZA)

An image processing algorithm that compares the displaced
center of mass of a sundial (where pixels are ”turned off” by
the sundial shadow) to the sundial’s true center (determined by
edge detection of thresholded pixels on the edge of the sundial)
to determine the shadow angle and length. This information
allows for calculating the time of day. Consequently, the
digital sundial math falls into two parts: (1) implementing a
trigonometric calculation to determine the angle of the sundial
shadow and (2) implementing a length calculation of the
shadow length via the quadratic formula.

A. Algorithm Implementation in OpenCV

Fig.1 demonstrates a pre-hardware implementation of the
algorithm using the OpenCV package in Python to calculate
the angle and length of a shadow on a simulated thresholded
sundial image. The OpenCV implementation consists of four
steps outlines below.

First, the simulation image is threshold masked by pixel
brightness. Pixels representing a sundial are assigned a value
of 1, whereas pixels around the sundial and within the sundial
shadow are assigned a value of 0.

Fig. 1. Implementation of shadow calculations in OpenCV. (a) Display of
the sundial with overlaid image processing. The green cross hairs target the
true center of the sundial determined from edge detection. The red circle
corresponds to the shadow-shifted center of mass. The blue line shows the
calculated shadow angle and length. (b) Absolute error of shadow angle as a
function of pixel binning (i.e. inverse resolution). (c) Absolute error of shadow
length as a function of pixel binning.

Second, the center of mass of the sundial is calculated using
the formulae

xCoM =

∑
i xi∑
i i

, (1)

yCoM =

∑
i yi∑
i i

. (2)

The true center of the sundial is calculated by comparing
the edges of the sundial as

xcen = (max({xi}) + min({xi}))/2, (3)
ycen = (max({yi}) + min({yi}))/2. (4)

Next, the angle of the sundial shadow is determined as

θ = sign(yCoM − ycen)

× arccos

(
xCoM − xcen√

(xCoM − xcen)2 + (yCoM − ycen)2

)
. (5)

If we assume that the shape of the sundial is roughly
ellipsoidal and the shape of the gnomon (sundial shadow)



is roughly rectangular with width w, then we can ap-
proximate the shadow length using the quadratic for-
mula with the length of the center displacement r =√

(xCoM − xcen)2 + (yCoM − ycen)2 and the ellipsoid area
or ”pixel mass” of the sundial m = πab as

L =
−wr +

√
(wr)2 + 2wrm

2w
. (6)

The accuracy of this method in OpenCV increases with
pixel resolution, as shown in Fig.1(b,c), motivating the use
of a high-pixel camera. The current hardware implementation
of the edge detection and center of mass modules is shown in
Fig.3.

B. Trigonometry Lookup Module via Python

Fig. 2. (a) Identification of quadrants and x > y or x < y regions on
the Cartesian plane. (b) Discretization of the 0-45 degree angle range as a
function of arctan(y/x) against 100(y/x) to generate elements of a lookup
table (LUT).

Implementing the pristine arccosine function in SystemVer-
ilog would require an IP as well as the use of real numbers,
which are slow in calculation compared to logical numbers,
especially when full resolution on the arccosine output is
not needed to achieve minutes-scale resolution on the sundial
angle. Therefore, we implement an angle-finding module that
can compute an angle given input {xCoM , yCoM , xcen, ycen}
in 1-100 cycles for 45-degree resolution. The algorithm does
the following:

1) Decide which quadrant of the Cartesian plane the value
pair x = xCoM − xcen, y = yCoM − ycen falls in, as
well as if x > y or vice versa;

2) If x > y, then x and y are switched for step 3 and 4.
3) Calculate the ratio R = 100y/x, where y and x are

determined by which eighth of the Cartesian plane one
is in via truth table (Note that the ratio y/x is multiplied
by 100 so that 45-degree resolution can be achieved with
the ratio output);

4) Use a LUT to determine an angle θinit from 0 to 45
degrees based on R;

5) Output the final sun angle via truth table using which-
quadrant information and x > y or vice versa using the
formula

θfinal =

{
90(i− 1) + θinit, x > y

90(i)− θinit, y > x,
(7)

where i is the quadrant number.

The full algorithm outlined above will be included in the
angle division.sv module found in the final project submis-
sion.

We use a Python script to generate the SystemVerilog code
for an angle LUT with 45-degree resolution on the LUT
output which outputs an angle from 0 to 45 degrees based
on the ratio between (xCoM − xcen) and (yCoM − ycen).
The range from tan(0) to tan(1) is discretized in 46 steps
and correlated in a case-based LUT to the output of the ratio
100((yCoM −ycen)/(xCoM −xcen). A ratio multiplier of 100
is sufficient to achieve 45-degree resolution in one eighth of
the Cartesian plane, as no duplicate truth table cases are found
when rounding the output R to the nearest whole number. (i.e.
for every output R, there is a unique angle out of 45 degrees).

We testbenched the above approach for each Cartesian quad-
rant, partially shown in Fig.3(right). The use of x > y truth
values allows us to restrict the timing of the angle division.sv
module by allowing us to, at most, divide 100y/x in the worst-
case scenario where y equals x–which only requires 100 clock
cycles using the class’s divider module. In the event that an
input value yCoM − ycen exceeds xCoM − xcen, x and y
are flipped in the divider module before sending to the 45-
degree-resolution LUT. This means that all angle calculations
conclude within ∼ 100 clock cycles, which comfortably fits
in the vertical blanking and sync period at the end of each
HDMI frame. Thus, our angle calculation is easily completed
in time for a new frame.

While our original aim was to determine an angle value
from 0 to 120 degrees (the expected shadow angles through-
out daytime), our final build supports full 360-degree angle
calculations. The primary limitation of the angle module in
its current form is the selected resolution. With a 45-degree-
resolving LUT and quadrant / octant discretization, we can
only output values with single-degree resolution, whereas to
resolve single minutes of time on the sundial, we would need
3600 minute resolution. Increasing the LUT resolution by a
factor of 10 (so we can resolve tenths of degrees) would
remedy this issue at the cost of additional memory utilization
(10x LUT usage) on the FPGA.

C. Quadratic Formula implementation for length calculation

The length calculation is completed using the pipeline in
Figure N. Similarly to the angle calculation, we use a square
root table lookup to skip conversion to real numbers and slow
math implementations. The primary constraint is that this ap-
proach heavily utilizes LUTs on the Spartan 7 FPGA, leading
to timing issues for higher resolution square root calculations.
In order to avoid division with large numbers, which would
take innumerable clock cycles, the length formula and was
simplified to

L =
r

2

(
−1 +

√
1 + 2(

m

wr
)

)
. (8)



Fig. 3. Final build’s HDMI output. The cross hairs indicate the center of
mass (blue) and edge detection (green) module implementations, where the
green cross hairs indicate the center of mass and the blue cross hairs indicate
the edge-detected true center. The alarm clock values (top right) are generated
using a number sprite sheet and the alarm values stored on the FPGA. The
calculated angle from the sundial image is displayed in the bottom left, and
the estimated length of the shadow (in pixels) is displayed directly underneath
the angle.

The displayed length calculation depends on calibrating
the expected width of the shadow to read accurately. As the
camera positioning above the sundial changes, this modifies
the actual width of the sundial shadow. Hence, the length
calculation, while implementing the math found in Equation
(8), does not currently output an accurate length estimate in
pixels. Given that our build requires touching the FPGA to
change the alarm clock controls, this is currently a limitation of
the design and can be circumvented by extending the camera
wires away from the body of the FPGA and fixing the camera
position relative to the sundial signal.

The LUT approach to angle and square root calculations,
while fast in terms of clock cycles, consumes the most memory
on the FPGA. In the final build, over 5000 LUTs were utilized,
where the angles LUT and value in top level.sv occupied
a 256 x 6 LUT alone. Together with multiple square root
LUTs, this became a memory-hungry implementation of the
math pipeline, and we were forced to reduce the numerical
resolution of the square root LUTs to build on the FPGA with
its limited resources. While the math still finishes in time for a
new frame, this is a suboptimal result on the FPGA. In future
optimizations, each step of the length calculation should be
sent to an independent multiply module wtih AXI protocol or
other handshake mechanism to prevent large operations from
being forced to run in single clock cycles.

III. VISUAL DISPLAY OF SUNDIAL (HAMZA, MOAAZ,
ASAAD)

The final HDMI output appears as shown in Figure 3. Two
crosshairs identify the center of mass (green) and the true
center (blue) of the sundial, respectively, and the calculated
angle and length are displayed in the bottom right corner of the
screen using a number sprite sheet. The current alarm ”angles”
are reported in the top right of the screen. These communicate
with alarm values set on the FPGA (discussed in the audio and

memory section), allowing us to display the currently stored
alarm values. In order to avoid failing timing requirements
on the FPGA, a double dabble formula was used to calculate
the length decimal places for visual output; the angle decimal
places were able to be calculated via modulo equations without
failing timing.

The HDMI pipeline was left mostly untouched, with the
primary modification occuring in the video mux module which
now handles an additional crosshair as well as several word
and number sprites. We extracted an additional 24.75 MHz
clock from the HDMI clock wizard module to handle audio
timing.

IV. CAMERA PIPELINE (ASAAD)

We opted to use the Arducam OV2640 camera as a sub-
stitute for the OV7670 camera used in labs 5-6, aiming to
achieve higher accuracy in the image processing modules by
feeding them a larger number of pixels. The Arducam camera,
similar to the lab camera, has a default resolution of 320x240
RGB (5-6-5). To obtain a different resolution, the Arducam can
provide it in JPEG compressed form. In this section, we will
go through the decompression algorithm, attempts to include
it in our system, and the state of the camera at the time of
writing this report.

A. JPEG Decompression

The JPEG decompression algorithm comprises four
main stages: Huffman decoding, de-zigzagging and de-
quantization, reversing Discrete Cosine Transform, and
finally, transforming the color space from YCrCb to
RGB. JPEG images are stored in the format illustrated
in Fig. 4. To implement the algorithm into an FPGA

Fig. 4. JPEG image format [1]

system, we explored a reference implementation found
at https://github.com/ultraembedded/core jpeg/tree/main. The
setup part of decompression involves reading and storing six
tables: two quantization tables of fixed 8x8 sizes and four
Huffman-encoding tables of varying sizes depending on the
captured image. The next step is to read the compressed data
and decode them back into RGB values. Due to the design
of the compression algorithm, decompressing processes 8x8
blocks (minimum coding unit, MCU) at a time. Therefore,
from other FPGA modules’ perspective, they need to receive
8 x width of the image to get the complete first row for

https://github.com/ultraembedded/core_jpeg/tree/main


the HDMI pipeline. This requires buffer memory to store
decompressed rows before passing them to the video pipeline.
However, the Arducam provides 4:2:0 subsampled captured
JPEG images, which results in 16x16 MCU sizes instead of
the standard 8x8, requiring more buffer storage for the image.
When the FPGA receives compressed image data, it needs to
look up values from the provided tables. This was an apparent
issue during the testbench of the reference code.

Fig. 5. Top is testbenching run of the colors image below. The region were
outputs are getting out correctly are in the blue region, but before the end of
the blue region, the module stops producing correct outputs. It can be seen
that the module is outputting valid output pixel signals (outport valid o) but
no readings of YCbCr are happening at the same time.

As can be seen from the testbench screenshot, decompressed
data comes in groups of four chunks, where each chunk
corresponds to an 8x8 block of the original image. The
issue encountered was that colors and YCbCr values stopped
changing after a certain point, and we were unable to debug
the reference module further.

Due to time constraints, we attempted to implement decom-
pression in the microcontroller by modifying reference C code
available in the same repository as the JPEG decompression
reference module, but we could not complete it by the dead-
line. The challenge here was to modify the code to handle a
stream of data instead of accessing an array of stored data,
which proved difficult to finalize before the deadline.

B. Camera-Microcontroller Setup

To connect the Arducam with the FPGA, we used an
ESP32 microcontroller as an intermediary device that handles
communication with the camera and forwards the image bytes
to the FPGA, see Fig. 6. The Arducam supports up to an 8
MHz clock speed for SPI communication, so approximately, it
sends a 16-bit RGB pixel at a 0.5 MHz clock rate. The ESP32
then transfers these bytes to the FPGA at approximately the
same speed, but we observed slow drawing in implementation
( 3.4 seconds per frame). One factor contributing to this
behavior is the use of digitalWrite() calls to set 8 pins of
data when sending a byte to the FPGA.

We tested SPI communication between the ESP32 and the
FPGA to achieve faster frame rates, but it did not significantly
improve performance.

Fig. 6. Arducam OV2640 connected to ESP32 microcontroller through 8
pins (4 SPI pins, GND, VCC, SDA, and SCL). Microcontroller connected to
FPGA through 13 wires (8 bits transmission, PMODBCLK, PMODBLOCK,
CAM CLK, HREF, and VSYNC).

V. AUDIO AND ALARM SYSTEM (MOAAZ)

A. Overview

In this project, we have implemented an audio system
capable of reading and playing multiple WAV audio files
stored on an SD card. This approach was necessary due to
the limitations in the memory size of our FPGA, which could
not accommodate the large audio files directly.

B. SD Card Controller

In our design, we used an SD card controller module
developed by Fischer Moseley for the Nexys DDR board [2].
We needed to test this module to ensure it worked with our
new board. The module reads data at a rate of 8 bytes at a
time in 512-byte blocks (sectors).

C. SD Card Storage and Data Buffering

The WAV audio files, composed of raw pulse-code-
modulation (PCM) data, are stored on an SD card and accessed
using the sd controller module. To play an audio file, the
system initiates a 512-byte read from the SD card, transferring
each byte one at a time to a 1024-byte buffer in the FPGA’s
RAM. This buffer is divided into two halves: the first half is
filled with new data from the SD card, while the second half is
used for audio playback. As shown in Fig. 7, the system starts
by loading a known amount of audio data from the SD card
into the first 512 Bytes in the buffer. As playback progresses,
it simultaneously reads the next sector of audio data into the
second 512 Bytes in the buffer. This setup ensures continuous,
smooth playback with minimal buffer size, preventing any cuts
in the audio.

D. Audio Processing

The raw PCM data from the SD card is processed for
playback. A 48kHz clock signal is generated to match the
audio’s sampling rate. The audio data is then passed from the
buffer through a 31-tap Finite Impulse Response (FIR) filter.
The FIR31 module we made was inspired from the instructions



Fig. 7. Buffer Logic implementation

of a past class task in Fall 2019 [3], which can be used to
filter frequencies at a certain cutoff frequency. The FIR filter’s
coefficients are set by a Python script based on the frequency
response of each audio file, ensuring that only unwanted noise
is removed while preserving the audio’s main frequencies.
Demonstration of the filter working is shown in the Fig. 8.
After filtering, the audio signal undergoes analog-to-digital
conversion through either a Pulse Width Modulation (PWM)
or a Pulse Density Modulation (PDM) module, depending on
user selection. This conversion is to make data ready to be
played in speaker output.

Fig. 8. Testbenching FIR filter. The input x is a noisy signal with sinusoidal
behavior, and the output of the module is z sample.

E. User Interface and Control

The alarm system features a user-friendly interface on
the FPGA. An eight-digit seven-segment display is used for
interaction, where the upper four digits show the alarm time
in a decimal format rather than showing hexadecimal which
our display controller was built for (by modifying the logic
of seven-segment-controller module). The lower four digits
display the selected audio track number. We have four audio
tracks uploaded to the SD card. The audio tracks can be cycled
through using BTN1.

F. Setting and Managing Alarms

The alarm time is adjustable using BTN3 to increase the
time by 10 and BTN2 to decrease by 1, allowing efficient
navigation within a range of 0 to 360. To set an alarm and
proceed to the next one (cycling between four alarms), both
BTN2 and BTN3 are pressed simultaneously. This action saves

the current alarm time and advances to the subsequent alarm
setting. The current alarm status is indicated by two RGB
lights on the board, with different light patterns representing
which alarm you are setting. the Fig. 9 demonstrates the
interface on the FPGA.

Fig. 9. Diagram of FPGA alarm clock interface. BTN1 cycles through audio
tracks, BTN2 decreases it by 1, and BTN3 increases alarm time by 10.

G. Integration Overview

The integration of our audio and memory systems starts
with turning on the SD card controller. This controller is set
to read a specific audio file from a certain address. The audio
data, which is in WAV format, is then sent into the dual-
port RAM buffer. In this setup, one part of the buffer plays
the current audio through the PDM module, while the other
part is getting filled with the next piece of audio data. This
keeps the audio playing continuously. The integration of the
audio playback system with the alarm functionality provides
a comprehensive alarm feature. Users can select different
audio tracks, set multiple alarm times, apply FIR filtering, and
choose modulation technique.

H. Testing and Validation of Audio Playback System

Our testing for the audio system was divided into three
main parts. In the first part, we focused on testing the SD
Card Controller. The objective here was to test the controller’s
ability to read data, and check that everything was working as
we expected. We simulated a 25 MHz clock and controlled
signals like miso, rd, and reset, which were implemented in
the SPI protocol logic inside the controller, while observing
the output data that we were reading. The results showed
successful read operations with correct data capture and state
machine transitions.

The second part of testing was the audio playback system
test. The objective here was to test the audio playback process.



We simulated data coming from the SD card controller with
the correct timing, and then tested the data being written to
the dual-port RAM. After that, we observed the input of the
PDM module and ensured it was what we expected it to be.
The test bench results also showed correct behavior that we
expected as shown in Fig. 10.

Fig. 10. Testbenching of Audio Playback System.

In the final stage, we physically tested the system on the
FPGA using an Integrated Logic Analyzer (ILA) IP module
in Vivado. This was necessary to ensure that the SD card’s
behavior aligns with our expectations from our simulation,
specifically in terms of precise timing and correct logic. We
observed, in real-time, read operations and buffer switches.
The input to the PDM module (level-in) did follow the
expected behavior.

VI. CONCLUSION

The delivered product for our digital sundial is able to
position a camera above a sundial signal and extract the sundial
shadow’s angle and length with single-degree angle accuracy
and uncalibrated length accuracy. The build successfully com-
municates this sundial signal to an alarm clock with four
reconfigurable alarms and an alarm audio of choice read out
from an SD card in WAV audio format. The final build has
two versions–one which works with the camera from lab, and
another which communicates with an ArduCam via byte-by-
byte communication.

The angle can immediately be correlated to a clock time
(or alarms can be set with the sundial angle itself, as in
our final build), and parallax compensation was ultimately
deemed unnecessary for the final build due to the required
proximity of the camera to the sundial making parallax com-
pensation a moot point. Determining the sun’s elevation from
the shadow length would require feeding the shadow length
and a predefined comparison length variable into a second
angle calculation module; this was not implemented in the
current build. We did not include a PID loop to perform
noise compensation on the output length, which is updated
frame by frame in the final build and can glitch as a result.
As such, we met a mixture of the commitment ”Working
Sundial Image Processing Pipeline” and initial components
of the reach ”Complete Sundial Image Processing Pipeline”.
However, we were still happy to complete these calculations
with no use of IP.

In the development of the alarm clock pipeline, we success-
fully achieved the following commitments. First, the utilization
of SD card-uploaded WAV Audio File for alarm sound: We
effectively implemented a system where WAV audio files
uploaded to an SD card serve as the sound for the alarm.
Secondly, the Graphical interface for alarm setting on FPGA:
A user-friendly graphical interface was developed on the
FPGA for setting the alarm. This interface made it convenient
to interact with the alarm system.

Additionally, we reached our goal for the complete audio
pipeline: the incorporation of an audio effect - FIR (Finite
Impulse Response) filter: the FIR filter enhanced the audio
quality, allowing us to selectively filter frequencies and reduce
unwanted noise in the alarm sounds.

Overall, this project indeed allowed us to explore interesting
use cases of an FPGA. We were able to learn about automated
scripting of SystemVerilog code via Python, handling SD
card memory and WAV audio files, standard JPEG com-
pression/decompression algorithms, and interfacing between
micro-controller software and FPGA hardware. While some
of these components made it to the final build and others
didn’t, we found this final project to be a greatly educational
experience with digital systems. In future builds, we would
dedicate more time up front to understanding the hardware
to which our FPGA needs to interface so we can more
easily distinguish problems with electronics from bugs in our
implementation.

VII. CODE REPOSITORY AND BLOCK DIAGRAM

The code repository of the final project is located
at https://github.com/hraniwala/6 205 Final Project Digital
Sundial. Figure 11 shows the block diagram of the final
project.
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Fig. 11. Block diagram of the final build.
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