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Abstract—We implement Clash Royale, the real-time, player-
vs-player mobile game, on an FPGA. Our system functions on a
custom processor that reads game-logic instructions written in a
domain-specific language (DSL) of our own design. The system
implements 2D graphics to render and animate sprites following
the game’s logic, and it allows for user interactivity by way of
PS/2 mouse control.

Index Terms—Field-programmable gate array, gaming

I. INTRODUCTION

Clash Royale is a popular real-time, player-vs-player mobile
game in which each player aims to destroy the other’s towers
by deploying troops to a battlefield. To deploy troops, the
player selects one of four troop cards (henceforth simply
cards) displayed in the user interface on their side of the
battlefield, then indicates a deployment location on the bat-
tlefield. Deployment costs elixir, a self-regenerating quantity
associated to each player. Once deployed, troops advance and
attack automatically, engaging with enemy troops and towers
following pre-programmed rules that vary by troop type.

We implement a system enabling two players to engage in
Clash Royale gameplay on a shared interface run by a single
FPGA. The system consists of five components:

• The processor: responsible for executing the core game
logic and directing the graphics module accordingly.

• The graphics module: responsible for rendering to the
HDMI display.

• The mouse interface: responsible for interpreting inputs
from two PS/2 mouse hardware units (one for each
player).

• The game logic program: responsible for determining
gameplay rules and behaviors. It is written in a domain-
specific language (DSL) that resembles RISC-V assembly
but is customized for our Clash Royale implementation.

• The assembler: responsible for converting the game logic
program into raw binary for the processor to read at
runtime.

The diagram in Figure 1 shows the high-level flow of
information in our system. The code can be found in the
repository here.

More generally, our system provides a general framework
for a simple 2D game engine on an FPGA, capable of
rendering and animating a variable number of sprites simulta-
neously (in our case, up to 64), at 60 FPS, supporting custom,
programmable game logic and meaningful user input.

Fig. 1. Overview of FPGA Royale

II. GRAPHICS

The graphics module is responsible for rendering all sprites
to an HDMI display, which is the players’ visual interface
with the game. Troops, towers, cards, mouse cursors, elixir,
and user interface text are all considered sprites. The render-
ing follows a standard, 720p, left-to-right and top-to-bottom
HDMI rasterization protocol. We use frame to refer to a unit of
1650× 750 clock cycles comprising one out of the 60 frames
rendered each second. Correspondingly, the graphics module
operates at a clock speed of 74.25 MHz.

A. Spritesheet

The visual data of the game sprites is precomputed and
then accessed via read-only memory at runtime. This data
is organized into two files, a spritesheet and a palette. The
palette holds a small number of 24-bit RGB values, while the
spritesheet holds indices referencing RGB values in the palette.
The spritesheet holds a value for each pixel of every animation
frame of every sprite in the game, so it is comparatively large.
The two-file design saves memory by significantly reducing
the width of each entry of the spritesheet. The creation of
the spritesheet and palette is carried out by a Python script.
The script starts with a PNG file containing all the sprites and
applies the image discretization tools available in Python’s PIL
library. At runtime, the spritesheet and palette are loaded into
BROM memory for the graphics module to read.

Our spritesheet contains 24 total sprites (animation frames),
each one measuring 48×48 in pixels. Our palette consists of 16
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colors, the final three of which are hardcoded values separate
from the values extracted from the spritesheet PNG: a green
for the background terrain color and a blue for the background
water color, and a grey for the user interface banner containing
the cards.

B. Rendering Logic

At a high level, the graphics module acts as a “register for
frames”. Namely, at any given time, it outputs the data of
the current frame to the HDMI display while simultaneously
receiving the data of the next frame from the processor. The
module accomplishes this with two BRAM memory modules
(which we call frame memory), writing to one of them to
store the data for the next frame, and reading from the other
to output the data of the current frame. The two frame memory
modules must swap roles on each subsequent frame.

We now describe the mechanism by which the processor
interfaces with the graphics module. The processor controls
the following inputs to the graphics module:

• sprite_valid: when the signal is high, the processor
is indicating to the graphics module that it is commu-
nicating the location and appearance of a sprite to be
rendered in the next frame.

• sprite_x: indicates the horizontal position of the sprite
to be rendered.

• sprite_y: indicates the vertical position of the sprite
to be rendered.

• sprite_frame_number: indicates the index in the
spritesheet that the graphics module should use to render
this sprite.

When sprite_valid is high, the graphics module reads
the above signals and then begins reading from the spritesheet,
obtaining palette indices that it stores to frame memory. This
process takes a number of clock cycles equal to the number of
pixels in a sprite animation frame, namely 482. The graphics
module controls a signal sprite_ready, indicating to the
processor when it is ready to receive new sprite data. The
processor and graphics module interact this way many times
over the course of a frame, allowing the processor to dictate
the appearances of a variable number of sprites, so long as the
total time it takes for the graphics module to read and store
all the sprites fits within the duration of a frame.

Reasons why this system of processor-graphics communi-
cation is convenient include:

• Modularity: the communication protocol helps to decou-
ple the implementations of the processor and the graphic
module. In particular, the graphics module does not need
to concern itself with what is being rendered, only how
to render it; control of what is being rendered and where
is left up to the game logic.

• Scalability: the processor has a frame’s worth of clock cy-
cles to specify the next frame’s sprites and their locations
to the graphics module. Hence, our system’s graphics
module is capable of rendering 1650 × 750/482 ≈ 500
sprites which is far more than enough for our purposes.
(Our actual system only actually uses up to 64 sprites).

Figure 2 gives a high-level but slightly more detailed view
of the graphics module – it is a simplified version of our
true implementation, but it is detailed enough to convey the
important ideas. The reader wishing to understand the full
details should consult Section II-C.

The diagram shows the following signals at the left, which
the graphics module computes internally:

• reading: a bit that is high when the module is using
the processor’s inputs to read from the spritesheet.

• spritesheet_addr: indicates an address in
the spritesheet BROM. When the module starts
reading a new sprite, spritesheet_addr is set to
sprite_frame_number * PIXELS_PER_FRAME
where PIXELS_PER_FRAME is the number of pixels
in a single sprite animation frame.

• frame_loc_ptr: indicates an address in a frame
memory BRAM to write to. When the module starts
reading a new sprite, frame_loc_ptr is set to
sprite_y * FRAME_WIDTH + sprite_x and is
then incremented on each subsequent clock cycle.

• output_index: the (flattened) index of the current
pixel begin rendered to HDMI, computed combination-
ally as hcount + FRAME_WIDTH * vcount where
hcount and vcount are the pixel’s horizontal and
vertical locations. output_index is used to index into
the frame memory used to render the current frame.

• write_mem_1: a bit that is high when the first BRAM
frame memory is being written to for next-frame storage,
and low when it is being read for current-frame output.
write_mem_1 is toggled on each new frame.

C. Additional considerations

For completeness’ sake, we outline some additional imple-
mentation details regarding the graphics module:

• The full 1280 × 720 screen size proves too large to
be contained in the frame memory BRAMs on a single
FPGA. Moreover, Clash Royale is played in a portrait ori-
entation. Hence we define paramaters CANVAS_WIDTH
and CANVAS_HEIGHT defining the region that holds
all gameplay, and maintain a signal indicating whether
hcount and vcount lie in that region. The final output
color is set to black if not.

• In each 48 × 48 sprite animation frame, some of the
pixels should be transparent because sprites never occupy
he entirety of their animation frame. To implement this,
the spritesheet PNG has uses white for transparent pixels
so that the palette-making script includes white as the
0th palette color. In hardware, a read_color_index
value of 0 is treated as a command to not overwrite the
existing color value in frame memory, thus implementing
transparency.

• While the graphics module is reading from the frame
memory BRAM that holds the data for the current frame,
it is simultaneously writing to that frame memory in order
to ”reset” the BRAM’s contents to the background color
(either green, blue, or grey depending on the values of



hcount and vcount). This prevents incorrect persis-
tence of sprites in locations they no longer occupy.

• To correctly render sprites that extend partially beyond
the edge of the playable area (i.e. “offscreen”), the graph-
ics module maintains a signal indicating when frame_x
and frame_y point offscreen. When the signal is low,
writing to frame memory is disabled. Without this im-
plementation detail, sprites “wrap around” when they go
offscreen.

III. PROCESSOR

The logic of the game, including troop/building AI and user
interaction, is coded in a domain-specific language (DSL) that
we have created and run on a custom processor.

The processor is similar to a RISC-V processor. As shown in
Figure 4, we have 5 stages: Instruction memory (in BRAM), a
register file with 32 registers, a decoder, an ALU, and memory
(BRAM). The processor is single instruction, meaning each
instruction will go through all five stages before the next one
starts.

A. Sprite File

Almost all game logic in Clash Royale involves troops,
which can be represented as sprites. Thus, we decided to
add a second register file called the sprite file. The sprite
file consists of 64 sprites, where a sprite is an length-8 array
of 13-bit integers. Each element in the array represents an
attribute of the sprite. In our program, the attributes are listed
in Figure III-A. We chose the sprite file to have 13 bit instead
of the standard 32 bit integers because none of the attributes
require numbers larger than 8191.

The attribute indices in Figure III-A are not hard-coded in.
The only requirements the hardware has for the indices in
the sprite file is that 1 is the x location of the sprite, 2 is
the y location, and 3 is the frame number; the processor uses
these indices to render the sprites at the correct location and
with the correct frames. We do not specify how the rest of
the attributes map to indices to give programmers freedom to
choose. Without the sprite file, all this information must be
stored in memory, which takes multiple cycles to load from
and write to. The majority of operations in the game used
sprites, so the sprite file decreased the number of cycles by
50 percent or more. In addition, the sprite file allowed us to
add sprite specific instructions to our design specific language,
which we will discuss in the next section. As mentioned
before, the processor feeds sprite data to the graphics module
for rendering each frame, and reading this data directly from
the sprite file versus from memory facilitates this interaction
as well. The sprite file will not only be used for troops, but
for every entity on the battlefield, including buildings and each
player’s cards.

The sprite file has dedicated 2 sprites for mice, 62 and
63. The processor accepts input from the Mouse Interface,
as will be discussed in the User Input section, and wires the
information to these two sprite indices, allowing programmers
to use it in software.

We summarize each stage of the processor below:
• Instruction Handler: If an instruction has just

completed processing, this stage loads in the next in-
struction and passes it to the decoder stage, according
to the instruction pointer. This stage takes 2 cycles since
it has to read from instruction memory, stored in a BRAM
module.

• Decoder: This stage takes in an instruction and com-
putes rs1, rs2, and rd. rd is the destination register or
sprite of the instruction (some instructions like memory
writes). rs1 and rs2 are the value of any registers,
sprites, or immediate numbers used for computation in
the instruction. The stage takes 1 cycle.

• ALU: This stage does computation for the instruction
using rs1 and rs2. The stage takes 1 cycle.

• MEMORY: This stage loads and stores values from/to
memory as necessary. Memory for our processor is a
BRAM module. The stage also does any write backs to
the register file, sprite file, and instruction pointer (for
jumps). The stage can take either 1 or 2 cycles, depending
on if the instruction requires memory accesses.

B. Rendering

The processor communicates with the graphics module to
render sprites while running instructions. One of the inputs to
the processor is a new_frame signal, and it has 4 outputs:
sprite_valid, x, y, frame; these inputs and outputs are
wired to the graphics module. If new_frame is high, then
the processor will loop through the entire sprite file. At each
index, if the sprite is alive, it loads the sprite’s x, y, and frame
data into the respective output registers. After looping through
the sprite file, the processor also reads the elixir each player
has from two dedicated registers (30 and 31), and renders the
amount accordingly. This is all done in parallel with processing
instructions, so rendering does not increase the processor’s
latency.

C. Tower Health

The goal for a player of FPGA Royale is to destroy the
opponent’s 2 towers while keeping their own 2 towers alive. In
order to gauge the number of hit points remaining on player’s
towers, the processor sends the hitpoints of all 4 buildings
to the FPGA’s 7 segment display. Each tower starts with 255
hitpoints, which can be represented with 2 hexadecimal digits.
Thus, the 8 possible digits on the FPGA can fit all the four
buildings: the top players’ tower hitpoints are the left four
digits, and the bottom players’ tower hitpoints are the right
four. This functionality adds a requirement that the first two
and last two sprites are the player’s towers.

IV. DOMAIN-SPECIFIC LANGUAGE (DSL)

The DSL is a low-level, assembly-like language. The lan-
guage has most of the RISC-V instruction set, including save
word, load word, arithmetic, jump, and branch instructions.
The logic of the game is coded in the DSL, and it is assembled
into machine code and then run on our processor.



Fig. 2. Graphics module, a simplified view

Index Description
0 sprite type index, where each number from 1 to 10 corresponds with a type (i.e barbarian, building, mouse)
1 X location of sprite
2 Y location of sprite
3 frame number in sprite sheet of sprite
4 health of sprite
5 damage of sprite
6 state of sprite. 0 means idle. 1,2 mean walking. 3,4 mean attacking
7 team of sprite (0 or 1).

Fig. 3. Sprite File Array

As mentioned previously, we have sprite file specific instruc-
tions such as loading between the sprite file and the register
file. Because accessing sprites also involves indexing into the
array of a sprite, our instruction size is 36 bits instead of the
standard 32 bits of RISC-V. The 3 leading bits are for the sprite
array index, and the 4th is a flag to identify the instruction as
a sprite instruction.

Since we do many distance calculations for sprite behavior,
we have a distance instruction, which will store the manhattan
distance between two sprites (given by their starting addresses)
in a destination register.

When a troop attacks another troop in the game, the second
troop’s health is decremented by the first troop’s damage.
Since both these attributes exist in the sprite file, we have
a special instruction called ”attack,” which handles this.
We also have a wait instruction, that tells the processor to wait
a given number of cycles before continuing. Figure 5 shows
a list of the instructions.

A. User input

We connect two pmod PS/2 mice connectors to the FPGA,
and the mouse_interface module is responsible for up-
dating the game with mouse movements and clicks. In particu-
lar, each of the two mouse interfaces sends signals mouse_x,
mouse_y, and clicked to the processor, indicating the
mouse’s position and click status at some point in time.

The code for interfacing with the mouse using the PS/2
protocol is taken, in part, from the sample code provided
by Digilent, the manufacturer of the pmod PS/2 connectors.
Briefly put, the interface sends “initialization” signals to the
mouse hardware, which responds by streaming data in 33-bit
packets organized into chunks of 11 bits each; see Figure 6.
The interface decodes the input using a FSM.

We implement a wrapper module for Digilent’s code and
also write logic that sets the mouse’s maximum x- and y-
coordinates to be CANVAS_WIDTH and CANVAS_HEIGHT,
respectively. We also modified several “delay counter” vari-



Fig. 4. Processor

ables in Digilent’s code in order to adapt the system from 100
MHz to 74.25 MHz.

V. RESULTS AND EVALUATION

We argue that the latency of our system, i.e. delay between
user input and its effect on the rendered display, is at most
1/60 of a second (the duration of one frame). This is low
enough to be undetectable by human players. The reasoning
is as follows: because the graphics module stores the current
frame’s data during the previous frame, our claim holds as long
as the latency between the user input and the graphics module
writing changes to frame memory is less than the duration of
one frame. This is indeed the case – the main bottleneck is the
polling rate of the PS/2 mouse, which is 100 Hz (a standard
estimate). The rest of the system contributes small latency,
since the total pipelining in the mouse interface module and
processor is on the order of tens of clock cycles. This puts
total time well within a single frame’s time.

Of the 648 instructions in our game logic, 330 use sprite in-
structions. These instructions on a standard RISC-V processor
would require multiple memory accesses each. Conservatively,
we assume that each sprite instruction would take 2 more
cycles if replaced by RISC-V instructions, so our processor
is two times more efficient for FPGA Royale.

Our system exhibits a slack (WNS) of 0.502 ns, so our
system meets timing constraints.

All of our memory usage fits onto one FPGA. We used 2646
kilobits of BRAM, which is 98% of our FPGA’s capacity. The
bulk of the BRAM usage came from the two frame memory
units in the graphics module, each using 32 RAMB36 units.
We used 44.5% of our Slice LUTs.

Figure 7 is a picture of the gameplay, displaying multiple
mechanics of the game. The top and bottom rectangles repre-

sent how much elixir each player currently has (two for the
top four for the bottom). The mice are the orange and blue
cursors. The four troops at the top and bottom of the screen are
each players’ cards, which they click with the mice to deploy.

There are a few troops on the battlefield, including mages
shooting fireballs (the orange and yellow balls) and a bat flying
over the moat.

Our implementation meets our qualitative goals:
• It runs smooth animations at 60 FPS (most obvious in

the fluid mouse movement).
• It has the major Clash Royale gameplay mechanics,

which involve nontrivial game logic: troop deploy-
ment (requiring the player to click and deplete elixir),
automatic troop attack and movement behavior post-
deployment, etc.

• It can simultaneously render 64 sprites, more than enough
for the purposes of our Clash Royale implementation.

We have also met most of our stretch goals.
• We have implemented background details like the moat

(and green bridges for troops to cross the moat) and a
designated area where the player selects cards to play
(on the top and bottom of the screen in the photo).

• We implemented more intricate details of Clash Royale,
like having troops with different abilities, including air
troops.

We did not implement more than 4 cards because the frame
data took up too much memory on the FPGA. This would be
possible if we attached more external memory.

Lastly, one of our goals in our abstract was flexibility for
modifying the game. Since the processor only has a few
requirements in software (frame data placement in the sprite
file) implementing more functionality in Clash Royale, or even



Instruction Description
LI rd const load const to reg rd

JMP rd label jump to label
JAL rd label jump to label and put pc in reg rd

JALR rd const(rs1) jump to addr rs1+const and rd=pc+4
BEQ rs1 rs2 label jump to label if rs1=rs2
BNE rs1 rs2 label jump to label if rs1!=rs2
BLT rs1 rs2 label jump to label if rs1¡rs2
BGE rs1 rs2 label jump to label if rs1¿=rs2
LW rd offset(addr) load mem[offset+addr] into rd
SW rs1 offset(addr) save rs1 to mem[offset+addr]
ADDI rd rs1 const rd=rs1+const
SUBI rd rs1 const rd=rs1−const
SLLI rd rs1 const rd= rs1≪const
SRLI rd rs1 const rd= rs1≫const
ADD rd rs1 rs2 rd=rs1+rs2
SUB rd rs1 rs2 rd=rs1-rs2 (unsigned)
SLL rd rs1 rs2 rd=rs1≪rs2 (unsigned)
SRL rd rs1 rs2 rd=rs1≫rs2 (unsigned)
ABS rd rs1 rs2 rd = |rs1 − rs2|

SPLI spd imm ind load imm to sprite spd at index ind
LISP sp1 rsd ind load the contents of sprite sp1 index ind into register rsd

SPLREG spd rs1 ind load the contents of rs1 to sprite spd index ind
SPADDI spd rs1 imm load rs1+imm into sprite spd index ind
SPSUBI spd rs1 imm load rs1-imm into sprite spd index ind
SPADD spd rs1 imm increment sprite spd index ind by rs1
SPSUB spd rs1 imm decrement sprite spd index ind by rs1
ADDSP sp1 rsd imm increment rsd by sprite sp1 index ind
SUBSP sp1 rsd imm decrement rsd by sprite sp1 index ind
LW spd offset(rs1) ind load memory address offset+rs1 to sprite spd index ind
SW spi offset(rs1) store sprite index ind’s contents to address offset+rs1

ATTACK sp1 sp2 ind1 ind2 decrement sp1 index ind1 by sp2 index ind2
DST rd, rs1, rs2 rd=Manhattan distance between rs1 and rs2.

WAIT imm waits imm number of clock cycles.
Fig. 5. DSL Instructions

Fig. 6. Packets sent by the PS/2 mouse. Note L indicates left-click button
status, and XS and YS are sign bits for the X and Y direction bytes.

constructing an entirely different sprite-based 2D game, is
straightforward. This would only require changes in software
(in the DSL code), not hardware or the design of the system.

If we were to redo the project, we would do two things: draw
the sprites smaller (say, 32 × 32) and implement a pipelined
processor. Our first processor was actually pipelined and only
have 4 stages, but due to the sprite file, the processor’s build
used up all the LUTs on the FPGA. We simplified by removing
the pipelines and also adding another stage to the processor to
reduce the congestion of wires. We believe that re-adding the
pipelines could work, because the addition of the new stage

actually reduced the LUT usage by a lot.
The code can be found in the repository here.
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Fig. 7. FGPA Royale Gameplay
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