
Frito: an FPGA Chip-8 Multiplexing Emulator

Linh Nguyen
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
Email: linnie@mit.edu

Vetri Vel
Department of Physics

Massachusetts Institute of Technology
Cambridge, MA, USA
Email: vetri@mit.edu

Justin Yu
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
Email: jyu161@mit.edu

Abstract—We present an FPGA-based emulator for the Chip-
8 interpreter, implemented as an emulated processor on an
FPGA. It supports several customization options which can
be set by the user in a configuration menu and is designed
in parallel manner, which can allow multiple Chip-8 instances
to run on the same processor. Our source code is at https:
//github.com/fractal161/frito/.

1. Background

Chip-8 is a tiny interpreted programming language origi-
nally built on the COSMAC VIP, consisting of 35 instruc-
tions reminiscent of assembly. It has 4KB of RAM, uses
sprite-based rendering on a 64x32 pixel buffer consisting of
two colors, and can output a singular audio tone at various
intervals.

We emulate each of the outward-facing components of the
system with varying levels of faithfulness. Graphics are
communicated through HDMI using 1280× 720 resolution,
audio through our board’s standard output port, while input
comes through a 4 × 4 keypad, similar to the original
hardware.

In Frito, the fundamental module is the processor, which
connects all other modules together in manipulating state. To
do this, it communicates with modules which handle graph-
ics, audio, and player input. The state itself is contained in-
side the memory module, which passes queries to the correct
Chip-8 instance and also connects to a multiplexer module,
which looks at the video buffer state to determine what to
draw onscreen. In addition, we have a toggle between this
and a custom configuration interface, but this is less relevant
to the project itself and more a way to show its capabilities
with less friction. A high-level block diagram can be found
in the appendix at the end of this report.

2. Multiplexing (Justin)

Frito is designed to be multiplexed, which we define as
having multiple instances running in parallel. Our system
is capable of supporting up to 36 simultaneous instances.

The need to support this feature influenced many of the
core design choices, so we elaborate on those here.

Frito’s memory core resides in a single BRAM of width
8. This contains the entire processor state, including the
program’s main memory, the video buffer, the processor’s
registers, and the stack. This requires a total of 4407 bytes,
which is just enough to fit on one 36 kilobit BRAM. This
design causes a considerable slowdown in just about every
operation, as even reading a register incurs several cycles
of latency. We can somewhat mitigate this latency through
pipelining read and write requests, but this cannot help if,
say, the next byte to be fetched depends on the most recent
one requested. Despite this, our design lets one processor
module easily switch between different contexts by changing
what BRAM it is pointing to, which is effectively instant.

For simplicity, we exclusively use BRAM storage for each
memory core. This is enough space to display a 6× 6 grid,
and since it appears we have the equivalent of seventy-five
18 kilobits of BRAM space, this is the limit of our approach.

Running the processors is done in a threaded fashion: every
simulated tick, the processor module updates each core
sequentially, and the system waits for the next tick once each
cycle is finished. With a simulated clock speed of 500hz,
this allows us 108

500·36 ≈ 5555 FPGA cycles per instruction,
which is well above what’s necessary.

Naturally, the ability to run multiple instances is meaning-
less if we have no way to view them. This aspect is delegated
to the video multiplexer. This is driven by the HDMI’s
74.25 MHz clock, and displays each active processor in a
configurable grid. To ensure the spacing of each display
is consistent, we use a division module to compute the
optimal padding and infer which processor to render using
the supplied hcount and vcount of the HDMI signal
generator.

https://github.com/fractal161/frito/
https://github.com/fractal161/frito/


Figure 1. Diagram of the function of the multiplexer

3. Emulation

3.1. Processor (Justin)

Implementing a processor for an interpreted language is
somewhat improper, and as a result we have to make several
compromises. For example, the original interpreter takes a
variable amount of time to execute each instruction depend-
ing on several factors, like the instruction’s arguments and
even the time within a frame.1 Since a thorough simulation
of these timings is prohibitively time-consuming, we com-
promise by selecting a constant clock rate of 500Hz, which
is recommended by [2]. To further address potential timing
issues, we will also allow the user to fine-tune this in the
configuration screen.

We implement a sequential processor using a conventional
state machine approach. Pipelining would be largely in-
effective in this context, because the execution CLS and
DRW (clear screen and draw sprite, respectively) dominate
the runtimes of all other operations, and this is inherently
because they write to several memory locations. The pro-
cessor will spend the majority of the time in an idle state,
waiting for the next Chip-8 clock cycle (the module itself
is driven by the FPGA’s 100MHz clock). From here, the
processor fetches the program counter (which is stored in
the BRAM for modularity) and then fetches the opcode it
points to. Afterwards, each instruction’s execution is handled
in a separate state entirely within the processor. The two
exceptions are CLS and DRW, which both manipulate the
video buffer. These are handled by a separate video module,
whose implementation is detailed in a later section. The
precise definition of each instruction is documented in [3],
which also contains information on compatibility quirks.

3.2. Memory (Justin)

The design of this module was heavily influenced by the
discussion on multiplexing from earlier, so this is essentially
a wrapper around a dual-port BRAM. One port is reserved
for the video multiplexer, which benefits from consistent
access to the Chip-8 instance’s VRAM to determine what
pixels to draw on screen. Thus, all other modules which
request access to the BRAM must do so through the other

1. For example, the draw sprite instruction Dxyn will wait until blanking
to begin execution.

port, which include the processor module, the video module,
and a debug module for displaying memory addresses on
the seven segment display. The system that coordinates
this access uses a simple protocol that relies on a strict
hierarchy between the types of modules that want access,
which prefers the processor, then the video, then debug.

Game ROMs are instantiated at build-time in each memory
core. While it would be nice to allow ROM selection from
an in-game menu rather than needing to rebuild the module
each time, this tradeoff was ultimately made so all BRAMs
could be used for processors and not just as cold storage
for a game that might be accessed. This setup does allow us
to control which game appears on which spot in the Chip-8
grid pretty easily.

3.3. Video (Vetri)

The video module responds to two types of instructions:
draw sprite and clear buffer. As mentioned previously, the 64
by 32 pixel video buffer is stored in BRAM, access to which
is mediated by the memory module. Since each pixel is
binary, the video buffer is stored as 256 consecutive bytes in
BRAM. To implement the clear buffer instruction, the video
module sets each byte in the video buffer to zero through the
memory module. To implement the draw sprite instruction,
it requests bytes from the memory module, first for sprite
data, then for old video buffer values. It XORs these bytes
to get the new video buffer value, which it then writes back
to the buffer through the memory module. Sprites are one
byte wide and the x position at which to start drawing sprite
does not have to be a multiple of 8, so drawing each line of
the sprite usually requires updating two adjacent bytes in the
video buffer. Sprites are drawn such that there is clipping in
both the x and y directions. Only when a sprite is completely
out of the screen does it wrap around to the other side.
Correct implementation of clipping was confirmed using the
“Quirks” ROM, which tests the functionality of essential
Chip-8 features [4].

3.4. Audio (Linh)

The audio module takes in inputs for timbre (type of wave),
tone (frequency), volume, and produces an audio sound
that corresponds to the inputs. The module generates an
audio signal by having a clock management system that
will generates a clock of approximately 98.3 MHz. With
a decimation factor of 1024, it is able to output an audio
signal at 3kHz. This sample rate was chosen because we are
representing only up to 1.5kHz of audio content and want
to reduce processing power.

Each type of wave has its own module and generates its
respective wave with the appropriate sampling rate through a
trigger that corresponds to the phase step of 3kHz. When the
trigger is high, the phase increments by a phase increment
that corresponds to the input tone, which can be found
within a tone look up table module that maps a tone to its
corresponding phase increment that outputs audio at 3kHz.



Figure 2. Testbench results for sawtooth, sine, square, and triangle waves,
respectively

The top 6 bits of the phase value gets generated and gets
looked up within its corresponding waveform look up table
that outputs an amplitude.

Each ’Wave’ module (Sine, Square, Triangle, Sawtooth) is
instantiated within the ’Audio’ module. The selected timbre
from the ’Wave’ module serves as the audio output, which
is then routed into a ’Volume Control’ module. The ’Volume
Control’ module adjusts the volume of the audio output
based on the input volume. If the ’active in’ signal is high
from our processor, the input to the ’Volume Module’ will
be the output from the ’Wave’ module, and if the ’active in’
signal is low, the the input to the ’Volume Module’ will be
0. This conditional ensures that when the output of ’Volume
Control’ gets fed into a ’PDM’ module, the output of the
’PDM’ module can correctly output sound when the ’Active
in’ signal is low. The purpose of the ’PDM’ module was to
upsample the audio output. The output of the ’PDM’ module
gets feed into the speakers of the FPGA to produce the audio
to the user when they plug in headphones or a speaker to
the FPGA.

3.4.1. Verification of Audio. In order to verify the wave
and tones of our output, we used a variety of test benches.
First, to verify the sine, square, triangle, and sawtooth shape
of each of our wave output, we made a test bench to output
the waves in GTK wave. Through this simulation, we were
able to verify that our waveforms are correct and produced
an accurate sound.

For testing the accuracy of the tones in our generated
audio output, we connected the FPGA to an oscilloscope to
measure the output frequency of our sounds, and we were
able to verify that the output frequency of our audio were
750Hz and 325Hz.

In order to test the volume of our audio, we used the FPGA
switches to correspond to different volume outputs to verify
that our sound’s volume can be altered based on user input.

Lastly, we verified that our ’Audio’ module worked suc-
cinctly with our Chip-8 system by using an existing audio
test rom that played morse code of ”SOS”. We were able
to use this test rom to produce audio at varying tones,
soundwave, and volume based on the user’s input.

3.5. Input (Vetri)

The input module interfaces with the 4x4 matrix keypad and
outputs a 16-bit value. Each bit corresponds to the state of a
key - 0 for unpressed and 1 for pressed. The 4x4 keypad has

4 pins corresponding to columns and 4 pins corresponding
to rows. When a key is pressed, it connects its corresponding
row and column together. Pressed keys are determined by
setting one column to 0 and the rest to 1, then checking
which rows also get pulled down to a 0, which indicates the
keys along that column that are pressed. This is done for
each column in order. It takes 8 cycles to poll the whole
keypad. The four row pins are wired to pmoda[3:0] and
treated as inputs, while the four column pins are wired to
pmodb[3:0] and treated as outputs.

To prevent rows from floating low without a key press, all
four rows are connected via pull-up resistors to 3.3V, as
illustrated in figure 3. This ensures that unless a pressed
key directly connects a row to a column, rows will remain
high. We use 10kΩ resistors and the wiring is done on a
breadboard. One limitation of our system is that if two or
more keys on the same row are pressed simultaneously, there
is indeterminate behavior where the row is connected to both
ground and 3.3V at the same time.

Figure 3. Schematic of the 4x4 matrix keypad and circuit wiring

4. Configuration Menu (Justin)

Frito includes a configuration interface that can be used to
tune many of the underspecified parameters of the Chip-
8 specification. While it would have been convenient to
reuse much of the work done for the emulator itself, the
architecture is just vastly more limited than what’s possible,
so this module instead defines an ad-hoc format for dis-
playing monospaced text, along with a cursor that indicates
which row can be modified. A majority of parameters can
be represented with a single hexadecimal digit.

We use two BRAMS for this: the first stores the data for
each symbol (a letter or number) and the names for custom
menu items (for example, the TIMBRE parameter can be
one of sine, triangle, square, or sawtooth, so we indicate
this using actual words instead of numbers), and one for
storing the current visual state. The first BRAM ends up
being 2160 bytes (for some reason I overallocated space for
256 symbols, we actually use around 36), while the second



is 920 bytes, so each fits in an 18kbit space. We aren’t
able to combine these due to how the ports are assigned:
the former needs one port for fetching symbol data and the
other for fetching menu row data, while the latter needs one
port for receiving updates (when a parameter is changed),
and another for reading data to send through HDMI.

5. Evaluation

Our Chip-8 emulator is feature complete, meaning it sup-
ports all instructions and passes all standard tests. Specifi-
cally, we verified the module works with the Corax, Flag,
Input, Audio, and Quirks test cases from the Chip-8 Test
Suite [4].

We are also able to run just about every game that we
tested, which were sourced John Earnest’s Chip8 Archive
[5]. While each game is able to work decently well, we
observed slight differences in their speeds compared to the
example runs provided in the Archive; this is ultimately
due to our simplistic assumption of a 500hz clock cycle. In
addition, some fast-moving graphics exhibit visible screen
tearing, but this is generally not noticeable, even with the
smallest screens.

Multiplexing was verified in two ways: first by testing
multiple instances of one ROM that uses randomness, and
by testing several ROMs at the same time. For example, we
used Rock Paper Scissors with the former and were able
to observe many different scores with the same number of
attempts. Verifying the latter was even more straightforward,
as we already know how each game behaves when presented
on its own.

Each instruction seems to complete in an acceptable time,
which we determine by simulating the processor’s perfor-
mance on test ROMs in iVerilog. As discussed before, the
longest taking instructions by far are CLS and DRW, which
clear the screen and draw a sprite. CLS takes around 270
cycles to execute, and this should be stable since it accepts
no arguments. On the other hand, DRW takes 95 cycles to
draw four rows of data; since the maximum number of
rows is 15, this still falls comfortably within our 5555 cycle
threshold.

As discussed above, it is unlikely that we can improve on our
usage of resources using this approach; when combining the
thirty six 36kbit instances used for the processors with the
two 18kbit instances used for the config menu, we almost
exactly use up all of our BRAM space. Any enhancements
would require a complete refactor using a different storage
system, like through DDR3 or streamed through something
like Manta. However, this introduces a considerable latency
overhead, making it unlikely that we could substantially
improve on the number of concurrently running processors.

6. Takeaways

Throughout the process of designing this project, we came
to the following realizations:

• Unnecessary complexity is unnecessary. In particu-
lar, the design of the memory module (which the
writer of this bullet originally thought was clever)
ended up solving a problem that never really ex-
isted and caused several times more bugs which
often needed even uglier patches. Having a simpler
interface would easily have been worth the extra
boilerplate that would’ve been incurred.

• Having many checkpoints is good. The original
scope of the project included compatibility with
alternate Chip-8 specifications, as well as a much
larger grid of processors. However, once these goals
became infeasible given the allotted time, our in-
termediate objectives became more than acceptable
fallbacks.

7. Contributions

Each of our previous sections were all essentially done in
full by the credited person. In addition, Justin handled the
high level design (especially pertaining to the multiplexing),
Vetri was responsible for the diagrams in this report, while
Linh directed and edited our final video.

References

[1] F. Moseley, Manta, https://fischermoseley.github.io/manta/ (accessed
Nov. 22, 2023).

[2] J. Sommerich, “Chip 8 Instruction Scheduling and Frequency,” Jackson
S, https://jackson-s.me/2019/07/13/Chip-8-Instruction-Scheduling-and-
Frequency.html (accessed Nov. 22, 2023).

[3] T. V. Langhoff, “Guide to making a CHIP-8 emulator,” Tobias V.
Langhoff, https://tobiasvl.github.io/blog/write-a-chip-8-emulator/ (ac-
cessed Nov. 22, 2023).

[4] Timendus, “Chip8-Test-Suite,” GitHub, https://github.com/Timendus/
chip8-test-suite (accessed Nov. 22, 2023).

[5] J. Earnest, “CHIP-8 Archive,” https://johnearnest.github.io/chip8Archive/
(accessed Nov. 23, 2023).

Appendix

We include the block diagram for the processor on the next
page.



Figure 4. Block diagram for the processor.


	Background
	Multiplexing (Justin)
	Emulation
	Processor (Justin)
	Memory (Justin)
	Video (Vetri)
	Audio (Linh)
	Verification of Audio

	Input (Vetri)

	Configuration Menu (Justin)
	Evaluation
	Takeaways
	Contributions
	References
	Appendix

