
Orca: Optimized RISC-V Cryptographic Accelerator
Kosi Nwabueze

Massachusetts Institute of Technology
Cambridge, Massachusetts

kosinw@mit.edu

Haoran Wen
Massachusetts Institute of Technology

Cambridge, Massachusetts
hranwen@mit.edu

ABSTRACT
Hardware acceleration for cryptography is widely supported in

modern computer architectures. Intel first added support for Ad-
vanced Encryption Standard (AES) instructions to x86 in 2008. ARM
added support for AES instructions for ARMv8 in 2011. However,
instead of adding instructions to extend the ISA, we propose a dif-
ferent model for improving the performance of AES cryptographic
routines: an external co-processor unit. We present Orca: a RISC-V
microcomputer implemented on a Xilinx Spartan-7 FPGA. Orca fea-
tures a pipelined RV32IM core, a co-processor providing a hardware
implementation of AES-128, a text-mode video card reminiscent of
1980s IBM VGA cards, a UART programmer, and a PS/2 interface
for a keyboard. By offloading cycle-intensive cryptographic rou-
tines such as AES encryption and decryption to a co-processor, we
expect to observe a significant throughput increase compared to
software-implemented alternatives reducing thousands of software
cycles to dozens of co-processor cycles.

1 INTRODUCTION
At a high level, the final microcomputer design consists of the

following components:
Central Processing Unit. At the heart of the Orca microcom-

puter sits a RISC-V core acting as the central processing unit. Our
custom core implements the RV32IM ISAwith a classic 5-stage RISC
pipeline complete with pipeline hazard management, an instruction
and data cache, and a cycle-by-cycle on-board debugger.

UART Programmer. Orca has a UART receiver that receives
comamnds to control the processor and write to program RAM over
a serial port. These commands include: writing a 32-bit word to a
memory address, resetting the program counter and internal state
of the RISC-V core, halting the execution of the core, and starting
the execution of the core.

Video Card.Orca can display a matrix of 160×45 character cells
on a 720p HDMI display. Software can manipulate each character
cell individually by writing to a memory mapped buffer.

Keyboard. Orca supports a keyboard peripheral device which
uses the PS/2 protocol. Whenever the microcomputer receives a
scancode from the keyboard, the scancode is written in a memory-
mapped hardware register and the software is responsible for polling
a control register to check if the buffer has data in it.

AES co-processor. Orca features a cryptographic co-processor
which implements both encryption and decryption with the AES-
128 block cipher. Software can interface with this co-processor
through memory-mapped registers.

Other MMIO. Orca also features an additional two MMIO regis-
ters: ENTROPY and COUNTER. The ENTROPY register provides a ran-
dom number generator for the software runtime to sample from.
The COUNTER device is a counter that increments every 50 cycles

on a 50Mhz clock. Therefore, every tick on the COUNTER register
is 1000ns. The software runtime can read this value to implement
sleeping similar to nanosleep(2).

Figure 1 shows how the different submodules of the microcom-
puter communicate with each other in a block diagram. Orca has a
32-bit address bus, which is used for ROM, RAM, and I/O. Table 1
shows the physical memory map of the entire microcomputer and
its peripheral devices. In total, the microcomputer supports up to
64KiB of mixed instruction/data memory, 14KiB of video memory,
and 2KiB of AES buffer memory.

Table 1: Address-space of Orca microcomputer.

Start End Size Description

0x00000 0x10000 0x10000 General-purpose program memory
0x10000 0x10004 0x00004 COUNTER MMIO register
0x10004 0x10008 0x00004 ENTROPY MMIO register
0x20000 0x03840 0x23840 Video memory
0x30000 0x30080 0x00080 Keyboard scancode buffer
0x30080 0x30081 0x00001 Keyboard control register
0x40000 0x40400 0x00404 AES input buffer
0x40404 0x40804 0x00404 AES output buffer
0x4F000 0x4F001 0x00001 AES control register

In the following sections, we will discuss the design of each
submodule and then conclude iwth an evaluation of our design.

2 CENTRAL PROCESSING UNIT (KOSI)
Currently, the implementation of the processor is complete. In

the preliminary report, we implemented a single-cycle design of
the processor core as a proof-of-concept and a baseline for the
pipelined design. All of the code for the single-cycle processor is
available in the old/ folder in the attached repository.

TheOrca processor is an implementation of the RV32IM standard,
the 32-bit RISC-V base ISA with the standard extension for multiply
and divide instructions. The processor follows a modified Harvard
architecture with separate instruction and data memory; however,
instruction memory can be read from. Currently, our processor is
clocked at 50Mhz (half the clock rate of the board) using a Vivado
template we generated. In doing so, we have a comfortable amount
of worst negative slack to play with (4ns) and worst hold slack to
play with (0.1ns). We implement the classic 5-stage RISC pipeline
shown in 6.1910[6.004] . While designing the processor, we realized
that support for interrupts would require a significant overhaul of
the internal control logic for the pipeline so we instead opted with
a polling approach to communicate with MMIO devices.



Kosi Nwabueze and Haoran Wen

Figure 1: A block diagram of the Orca architecture.

Figure 2 shows a high-level overview of all the pipeline stages
and control logic of the processor. The implementation of the cen-
tral processing unit consists of the following SystemVerilog mod-
ules: riscv_alu.sv, riscv_constants.sv, riscv_core.sv, riscv_decode.sv,
riscv_icache.sv, riscv_lsu.sv, and riscv_regfile.sv.

We designed the control logic in the processor to be versatile, so
each stage can be stalled and annulled independently. This versatile
approachmade extensions that wewrote later on such as instruction
cache misses or 32-cycle division much easier to implement. In
the following subsections we discuss the implementation of each
pipeline stage, the implementation of the control logic, and finally
the methodology we used for debugging the processor.

2.1 Instruction Fetch
The instruction fetch stage matches the typical instruction fetch

stage described in the classic 5-stage RISC pipeline. The relevant
modules for this stage would be riscv_core.sv and riscv_icache.sv.
The processor has a program counter that is incremented after
every instruction fetch except after jal, jalr, or any conditional
branch instruction. Our novelty comes with the implementation of
our branch predictor and instruction cache.

For the sake of simplicity, our branch predictor does absolutely
no prediction and assumes that jumps and branches are never taken.
Then for all jump instructions and whenever a conditional branch
is taken, the control logic decides to annul the past two instructions
in the pipeline (namely the instructions in the decode and fetch
stage).

Our instruction cache implements a two-way set assosciative
cache with block size 1 (each cache line holds a single 32-bit word)
and 32 sets (for up to 32 instructions in the cache). From our expe-
rience in testbenching, cache misses become very inconsequential

in loops with a few number of instructions. Most of our programs
have control structures that would be very cache efficient since we
rely heavily on polling which are small loops.

2.2 Instruction Decode
The instruction decode stage takes the instruction word from

the instruction cache and decodes the immediate, source registers,
the program counter select, operand select for the ALU, the write-
back select, the ALU function, the branch function, write enable
for the register file, and data memory information. The relevant
modules for this stage would be riscv_core.sv, riscv_regfile.sv, and
riscv_decode.sv.

Through a combinational read port, the source operands are
passed into the 32-bit register file and the values are read out and
passed into the execute stage.

If one of the source operands from the decoded instruction
matches the destination register of the instruction in the execute,
memory, or writeback stage then the control logic will decide to
bypass the offending operand with the value from a later stage. Pri-
ority for bypassing is given to the most recent stage after decode.

2.3 Execute
The execute stage takes the operands from the instruction decode

stage and applies either an ALU function or branch function to
the two operands. The relevant modules for this stage would be
riscv_alu.sv and riscv_core.sv.

The ALU functions correspond to the ALU operations in the
RISC-V instruction set such as add, xor, shl, or sra. The branch
functions correspond to branch operations in the RISC-V instruction
set such as beq or bgeu. For jal and jalr instructions, the ALU
also calculates the next program counter.



Orca: Optimized RISC-V Cryptographic Accelerator

For the standard multiply/divide extension, we implement single-
cycle efficient multiplication without any negative slack by utilizing
the DSP48E1 multiply-and-add blocks on the Spartan 7 FPGAs. We
implement a fixed, 32-cycle division algorithm by reusing the fixed-
cycle, non-pipelined divider module discussed in lecture 9.

2.4 Memory
The memory stage dispatches load/store requests to the memory

controller without any caching mechanism. The relevant modules
for this stage would be riscv_lsu.sv and riscv_core.sv. If the current
instruction does not execute a load or store instruction then it passes
to the writeback stage of the pipeline without any stalls. Similarly,
if the current instruction is a store then no stalling is necessary
since the data will be available by the next cycle. However, if the
current instruction issues a load, then the entire pipeline with the
exception of writeback will stall for 2 cycles until the requested
data is available.

Much of the combinational logic in the load/store unit comes
from handling Xilinx byte write enable block RAM modules. Since
the processor can read and write memory to the byte (8), halfword
(16), and word (32) levels much of combinational logic has to shift
and mask data coming in and out of the memory controller.

The design of the logic in the load/store unit also has a major
shortcoming: unaligned memory accesses. According to the RISC-
V specification, only unaligned instruction reads are illegal and
should cause faults. However, unaligned data accesses are allowed,
but the specification mentions a huge cycle penalty can be applied.
Unaligned memory accesses are impossible in the Orca RISC-V
processor and trying to execute one will not work. Fortunately,
the RISC-V GNU C compiler can be forced to only output aligned
memory accesses (bar some exceptions with variadic arguments)
with the -mstrict-align compiler flag.

2.5 Writeback
The final stage in the pipeline is the writeback stage. The relevant

modules for this stage would be riscv_regfile.sv and riscv_core.sv.
Depending on whether the write-enable-register-file signal was set
in the decode stage, the register file will optionally record the value
either from the ALU or the data memory.

2.6 Control Logic
Our processor implements full bypassing, meaning that there is a

bypass fromEX to ID,MEM to ID, andWB to ID. Due to this, we have
completely eliminated the need to stall for read-after-write hazards.
In the following subsections, we discuss how Orca resolves each of
the following hazards: load-to-use hazards, instruction cachemisses,
data cache misses, branch misprediction, and division stalling.

2.6.1 Load-to-use hazards. Load-to-use hazards occur whenever
the instruction in the EX or MEM stage will execute a load instruc-
tion and the destination register of the offending instructions is
used as a source register in the instruction decode stage. These
hazards are resolved by stalling the IF and ID stages of the pipeline.

2.6.2 Instruction cache misses. An instruction cache miss occurs
whenever the program counter asks the instruction cache for an

address not in its cache. These hazards are resolved by stalling the
IF stage of the pipeline.

2.6.3 Data cache misses. A data cache miss occurs whenever a load
instruction occurs because there is no proper data cache. These
hazards are resolved by stalling the IF, ID, EX, and MEM stages of
the pipeline.

2.6.4 Branch misprediction. Control hazards occur whenever a
branch or jump is executed. These are resolved by annulling the IF
and ID stages of the pipeline.

2.6.5 Division stalling. Division stalling hazards occur whenever
the ALU is executing div, divu, mod, or modu. These are resolved
by stalling the IF, ID, and EX stages of the pipeline.

2.7 Debugging
The initial design for the pipelined processor was completed in

three or four days originally; however, completely debugging the
processor took another 10 days after that. To cope with the long
Vivado build times we came up with the following mechanisms to
make debugging easier:

2.7.1 Halting Mode. The processor can be placed in halting mode
which allows it to advance one cycle in its pipeline by pressing
btn[3] on the Urbana board. Designing this made it much easier
to debug on actual hardware. In halting mode, you can also view
the program counter of each stage, the instruction in the ID stage,
and the value of any of the registers on the seven-segment display
by controlling the switches on the Urbana board.

2.7.2 UART Programmer. Since we could not get Manta to work
properly with our project, we instead wrote our own module to
interpret commands based on the UART receiver code in Manta.
An external computer can issue commands to the soft processor
through a Python script using the pyserial package. The UART
programmer can halt or start the processor, overwrite the instruc-
tion and data memory of the computer, and reset the registers,
caches, and program counter of the processor.

3 VIDEO CARD (KOSI)
Currently, the implementation of the video card is complete. The

video card is a text-mode display, which treats the content of the
screen in terms of characters instead of individual pixels. The video
card displays a 160 × 45 matrix of character cells on the screen.
Each character cell is 8 × 16 pixels, so in total the video buffer
covers 1280 × 720 pixels, utilizing 100% of the space in 720p HD
video. Unlike the rest of the system, the video card runs on a 74Mhz
clock domain; however, it can still communicate properly with the
CPU through a block RAM which has two ports in different clock
domains.

Figure 3 demonstrates the high-level design of the video card.
We reuse the video_sig_gen.sv module we wrote in earlier labs
to generate a video signal at around a 74MHz clock rate. Using the
horizontal count and vertical count signals, the video hardware per-
forms a look-up in software-controlled video memory to determine
what character to render at that position on the screen. Then, using
the font_brom.sv module, the hardware figures out the pattern to
draw for a particular character by looking up its dot matrix pattern



Kosi Nwabueze and Haoran Wen

Figure 2: A block diagram of the Orca RISC-V processor.

in memory and storing its font. Finally, the attribute_brom.sv
module determines the background color (one of 8 colors based
on the original Microsoft VGA Palette), the foreground color (one
of 16 colors based on the same palette), and whether or not that
character cell is blinking.

For any character cell location (𝑥,𝑦), user software can configure
what character is displayed by writing the ASCII value (technically
any character from IBM code page 437 works) of the character to
memory address 0𝑥3000 + 2 × (160 × 𝑦 + 𝑥). To manipulate the
background and foreground color, write to address 0𝑥3000 + 2 ×
(160 × 𝑦 + 𝑥) + 1.

The character font and color palette are converted to a synthesiz-
able .mem file by a custom Python script. During synthesis, Vivado
flashes the read-only block memories with the appropriate .mem
files.

4 KEYBOARD (KOSI + HAO)
Currently, the implementation of the keyboard is complete. Key-

board peripheral support is implemented by the ps2_rx.svmodule.
The keyboard interfaces with a PS/2 connector which is connected

to the Urbana Board through a PS/2-to-PMOD breakout board. Fig-
ure 4 shows the simple finite state machine which implements the
receiver logic for the keyboard.

Scancodes are the fundamental message send by the peripheral
device. Each scancode is a serial frame of 10 bits:

• 1 start bit (always 0)
• 8 data bits
• 1 parity bit (odd parity)
• 1 stop bit (always 1)

The PS/2 protocol outputs one scancode whenever a key is
pressed and then outputs the same scancode preceded by the byte
0xF0 when the key is released.

The receiver module writes scancodes it receives from the key-
board into module ps2_bram.sv, which implements a hardware
ring buffer. After the scancode has been written to memory, the
receiver module notifies the CPU through a hardware interrupt.
Software can then read from the ring buffer and update appropriate
status registers to notify the PS/2 hardware which characters have
been read.

The keyboard peripheral is integrated into the micro-computer
through a KEYBOARD_CTRL_REGISTER at address 0𝑥3_0080 and
scancode buffer that starts at address 0𝑥3_0000.

The KEYBOARD_CTRL_REGISTER is 8 bits with the following
information.

• KEYBOARD_CTRL_REGISTER[0] - Scancodes available
flag (HIGH if scancodes available in scancodes buffer, LOW
otherwise)

• KEYBOARD_CTRL_REGISTER[7:1] - Counter for the num-
ber of scancodes available in the scancodes buffer

When there is a key press, the hardwire writes the scancode to
the scancode buffer and sets the KEYBOARD_CTRL_REGISTER[0]
bit HIGH. The software pulls the control register and if there is data
available, loops through the buffer up the scancode counter (KEY-
BOARD_CTRL_REGISTER[7:1]) to get the scancodes and writes
0x0 to the control register to reset it.

5 AES CO-PROCESSOR (HAO)
5.1 Hardware Breakdown

Orca’s AES co-processor implements a hardware accelerator for
the 128-bit ECB (Electronic Code Book) mode of the AES algorithm.
This means that the AES co-processor uses a 128-bit secret key and
128-bit block cipher to perform the algorithm. Below is the break-
down of the hardware modules that comprise the AES co-processor.
The following are the core hardware modules that perform the AES
algorithm for encryption and decryption.

• aes_core.sv test
• aes_encryption.sv
• aes_decryption.sv
• aes_sbox.sv
• aes_inv_sbox.sv
• aes_key_memory.sv
• aes_key_schedule.sv
• aes_key_memory.sv

These are the high-level controller that connects the AES to the
main processor.

• aes_co-processor.sv



Orca: Optimized RISC-V Cryptographic Accelerator

Figure 3: A block diagram of the video pipeline.

IDLEstart RECEIVE

PARITYSTOP

1’b0

1’b? (first 7 times)

1’b? (8th time)

valid

invalid
1’b0

Figure 4: Receiver state machine for the PS/2 protocol.

• aes_mem.sv
The integration works as follows. There are two lines of buffer:
one for input text for AES to process, and another one for output
text after AES is done processing. The input buffer goes from ad-
dress 0𝑥4_0000 to 0𝑥4_0404 and output buffer goes from address
0𝑥4_0404 to 0𝑥4_0804. There is an MMIO address at 0𝑥4_𝐹000 that
is a control register with the following information.

• AES_CTRL_REGISTER[0] - encryption flag
• AES_CTRL_REGISTER[1] - decryption flag
• AES_CTRL_REGISTER[2] - AES output data available flag

(HIGH is processed data is in the output buffer, LOW oth-
erwise)

• AES_CTRL_REGISTER[3] - AES status (HIGH for process-
ing, LOW otherwise)

• AES_CTRL_REGISTER[7:4] - AES stage counter
AES stages are as follows.

(0) RD_DWORD_1
(1) RD_DWORD_2
(2) RD_DWORD_3
(3) RD_DWOR_4

(4) START_AES
(5) WAIT_FOR_AES_RESULT
(6) WB_DWORD_1
(7) WB_DWORD_2
(8) WB_DWORD_3
(9) WB_DWORD_4

The AES co-processor will read 4 words and perform the AES
algorithm on it before putting the result into the output buffer. This
will keep going until it hits a terminating data, which is hardwired
to be 0𝑥𝐷𝐸𝐴𝐷𝐵𝐸𝐸𝐹 . Once all the input buffer data is processed,
hardware writes to the AES_CTRL_REGISTER[2] a value of 1 to
signal that the AES processing is complete and data is ready in the
output buffer.

The software can then read the control register at address 0𝑥4_𝐹000
and poll to check until AES_CTRL_REGISTER[2] is HIGH before
reading the AES output buffer data.

The software can also initialize the start AES by writing to ad-
dress 0𝑥4_𝐹000 a value of 𝑏001 for encryption or 𝑏010 for decryp-
tion. The user will have to put data in the AES input buffer before-
hand.

aes_core.sv is the controller that integrates the encryption, de-
cryption, and key schedule.

5.2 AES Algorithm Overview - Encryption
5.2.1 Key Schedule Algorithm. Upon initiating the AES core, the
AES core first expands the inputted secret key for 10 rounds, using
the key schedule algorithm (KSA). The KSA generates 10 unique
keys on top of the original input key for each round of the total
10 rounds of encryption and decryption. The 11 unique keys are
stored via the aes_key_memory.sv module. After the key has been
expanded, the AES then starts the encryption or decryption process.
Both encryption and decryption have 10 rounds, each round has 4
stages of repeated logic. At the end of the 10 rounds of performing
each of the 4 stages, the respective cipher text/plain text will be
ready.

5.2.2 Sub Bytes. For encryption, each round consists of the stages
sub bytes, shift rows, mix columns, and add round keys. In sub-
bytes, each byte of the block is substituted via a look-up table of



Kosi Nwabueze and Haoran Wen

the Rijndael S-box. The s-box is implemented via combinational
logic that takes in the input block and connects the appropriate
s-box value based on the byte bit address.


𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

 →

𝑠𝑎11 𝑠𝑎12 𝑠𝑎13 𝑠𝑎14
𝑠𝑎22 𝑠𝑎23 𝑠𝑎24 𝑠𝑎21
𝑠𝑎33 𝑠𝑎34 𝑠𝑎31 𝑠𝑎32
𝑠𝑎44 𝑠𝑎41 𝑠𝑎42 𝑠𝑎43


In the above transformation, 𝑠𝑎11 is the substitute value of 𝑎11

after the s-box lookup table.

5.2.3 Shift Rows. In the shift rows stage, each row of the block is
shifted by some amount to the left. No change is done to the first
row. A left shift of 1 byte is done to the second row. A left shift to f
2 bytes is done to the third row. Lastly, a left shift of 3 bytes to the
left is done in the 4th row.

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

 →

𝑎11 𝑎12 𝑎13 𝑎14
𝑎22 𝑎23 𝑎24 𝑎21
𝑎33 𝑎34 𝑎31 𝑎32
𝑎44 𝑎41 𝑎42 𝑎43


5.2.4 Mix Columns. In the mix columns stage, each one of the four
columns is modulo multiplied in Rijndael’s Galois Field by a given
matrix. Below is the matrix used.

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


We perform the modulo multiplication with each column.

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



𝑎11
𝑎21
𝑎31
𝑎41

 =

𝑏11
𝑏21
𝑏31
𝑏41


...


𝑏11 𝑏12 𝑏13 𝑏14
𝑏21 𝑏22 𝑏23 𝑏24
𝑏31 𝑏32 𝑏33 𝑏34
𝑏41 𝑏42 𝑏43 𝑏44


5.2.5 Add Round Key. Lastly, in the add round key stage, each
entry is xor-ed with the respective key from the at a given round
from the AES key memory. For example, at round 5, the block of
data would be xor-ed with the round 5 key from key memory.


𝑟𝑘𝑛11 𝑟𝑘𝑛12 𝑟𝑘𝑛13 𝑟𝑘𝑛14
𝑟𝑘𝑛22 𝑟𝑘𝑛23 𝑟𝑘𝑛24 𝑟𝑘𝑛21
𝑟𝑘𝑛33 𝑟𝑘𝑛34 𝑟𝑘𝑛31 𝑟𝑘𝑛32
𝑟𝑘𝑛44 𝑟𝑘𝑛41 𝑟𝑘𝑛42 𝑟𝑘𝑛43

 ⊕

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44


5.3 Decryption

Decryption is a similar process as encryption except it is now
the reverse of the stages done in encryption. So the stages are now
inverse add round key, inverse mix columns, inverse shift rows,
and inverse sub bytes.

5.3.1 Inverse Add Round Key. Decryption adds the round key in
reverse order. What this means is that in the first round of decryp-
tion, it is going to add the 10th key from the key memory. In the
second round of decryption, it’s going to add the 9th key, and so
on.


𝑟𝑘𝑛11 𝑟𝑘𝑛12 𝑟𝑘𝑛13 𝑟𝑘𝑛14
𝑟𝑘𝑛22 𝑟𝑘𝑛23 𝑟𝑘𝑛24 𝑟𝑘𝑛21
𝑟𝑘𝑛33 𝑟𝑘𝑛34 𝑟𝑘𝑛31 𝑟𝑘𝑛32
𝑟𝑘𝑛44 𝑟𝑘𝑛41 𝑟𝑘𝑛42 𝑟𝑘𝑛43

 ⊕

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44


𝑟𝑘𝑛𝑒𝑛𝑡𝑟𝑦 represents the n-th round key entry from the key mem-

ory.

5.3.2 Inverse Mix Columns. Next is the inverse mix columns. It is
still the same concept as mix columns from encryption, but Rijn-
dael’s Galois Field is now the following.


0𝐸 0𝐵 0𝐷 09
09 0𝐸 0𝐵 0𝐷
0𝐷 09 0𝐸 0𝐵
0𝐵 0𝐷 09 0𝐸


5.3.3 Inverse Shift Rows. Next is the inverse shift rows operation.
For inverse shift rows, each row is shifted right rather than left
accordingly. The first row remains unchanged. The second row is
shifted right 3 times. The third row is shifted right 2 times, and the
last row is shifted right 1 time.


𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

 →

𝑎11 𝑎12 𝑎13 𝑎14
𝑎22 𝑎23 𝑎24 𝑎21
𝑎33 𝑎34 𝑎31 𝑎32
𝑎44 𝑎41 𝑎42 𝑎43


5.3.4 Inverse Sub Bytes. Lastly, each byte of the data with the
Inverse Rijndael S-box.


𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

 →

𝑖𝑠𝑎11 𝑖𝑠𝑎12 𝑖𝑠𝑎13 𝑖𝑠𝑎14
𝑖𝑠𝑎22 𝑖𝑠𝑎23 𝑖𝑠𝑎24 𝑖𝑠𝑎21
𝑖𝑠𝑎33 𝑖𝑠𝑎34 𝑖𝑠𝑎31 𝑖𝑠𝑎32
𝑖𝑠𝑎44 𝑖𝑠𝑎41 𝑖𝑠𝑎42 𝑖𝑠𝑎43


where 𝑖𝑠𝑎11 is the inverse s box substituted value for 𝑎11.

6 SOFTWARE (KOSI)
Currently, we have written a wide variety of software demos

for the Orca microcomputer including a small runtime library. We
use the 32-bit version of the official RISC-V GNU toolchain to build
our software using gcc, objdump, objcopy, and ld. To evaluate the
correctness of the Orca RISC-V processor we wrote the following
software demos:

(1) helloworld.S - A simple, hello world program.
(2) aestest.c - Encryption and decryption using the AES co-

processor.
(3) conway.c - Implementation of Conway’s Game of Life.
(4) divide.c - Testing integer divison.
(5) kbdtest.c - Testing keyboard peripheral device.
(6) mmio.c - Testing the ENTROPY and COUNTER mmio de-

vices.

https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box


Orca: Optimized RISC-V Cryptographic Accelerator

(7) monitor.c - Simple program which monitors a memory
region.

(8) multiply.c - Testing integer mulitplication.
(9) quicksort.c - Implementation and test of quicksort algo-

rithm.
(10) videotest.c - Testing out video device.
(11) xorshift.c - Implementing random number generator xor-

shift32 algorithm.
Figure 5 and Figure 6 show examples of these programs executing

on our video hardware.

7 EVALUATION
We evaluate our design based on testbench results and Vivado

reports. We will consider our design successful by the following
metrics: (1) maximizing the processor cycles-per-instruction time
(CPI), (2) showing a considerable cycle improvement through a
hardware AES co-processor, and (3) by looking at utilization and
timing reports from Vivado.

7.1 Processor Performance
After the implementation of a simple two-set associative in-

struction cache, we saw that pipeline utilization of the processor
shot way up and the cycle latency of executing loops went way
down. Also, the throughput of the processor went way up since the
pipeline can have a maximum of five instructions in the pipeline
due to the reduced number of stalls. Before, the pipeline could only
have two instructions in flight since every instruction fetch would
cause a 3-cycle stall.

7.2 AES co-processor
For most of the testing of AES processing (encryption or de-

cryption), it took around 200-300 cycles before data from the input
buffer was processed and placed in the output buffer.

7.3 Utilization Reports
According to our vivado.log file, we achieved a worst nega-

tive slack of 4.106 nanoseconds and worst holding slack of 0.044
nanoseconds. According to the post_synth_util.rpt, we used
53.33% of all our block RAM tiles (which means we could have allo-
cated more towards program memory). In addition, we used 9.17%
of DSPs to implement multiplication across the AES co-processor
and the RISC-V processor. Finally we used three clocking domains,
100MHz, 50MHz, and 74MHz which used 40% of all our MMCME
modules.

8 CONCLUSION
This was a very challenging project because of many different

factors but it was a great learning experience overall. The core of the
project was mainly split between the pipe-lined RISC-V processor,
AES co-processor, and peripherals.

The pipe-lined RISC-V processor is written out by Kosi, from
the pipeline design to hazard handling to branch prediction. He
wrote the logic for the processor that powers the microcomputer.
Kosi was also responsible for writing the following peripherals:
a video controller for displaying text to the screen, a keyboard
for handling PS/2 protocol, and manta based UART protocol for

code upload. Hao wrote the logic for the AES co-processor as well
as the integration of the AES co-processor and keyboard to the
main processor. The open-sourced code base for Orca is available
at https://github.com/kosinw/orca.

The final product of the Orca processor was a well-rounded
processor that supports the optimized running of many software
programs, as well as included an onboard hardware accelerator
for AES encryption and decryption for security. While there were
certainly lots of challenges in coming up with the design and de-
velopment of the system, it was a great learning opportunity and
experience in the end.

https://github.com/kosinw/orca


Kosi Nwabueze and Haoran Wen

Figure 5: conway.c



Orca: Optimized RISC-V Cryptographic Accelerator

Figure 6: kbdtest.c


	Abstract
	1 Introduction
	2 Central Processing Unit (Kosi)
	2.1 Instruction Fetch
	2.2 Instruction Decode
	2.3 Execute
	2.4 Memory
	2.5 Writeback
	2.6 Control Logic
	2.7 Debugging

	3 Video Card (Kosi)
	4 Keyboard (Kosi + Hao)
	5 AES co-processor (Hao)
	5.1 Hardware Breakdown
	5.2 AES Algorithm Overview - Encryption
	5.3 Decryption

	6 Software (Kosi)
	7 Evaluation
	7.1 Processor Performance
	7.2 AES co-processor
	7.3 Utilization Reports

	8 Conclusion

