
Flat Earth Project Final Report
1st Nathan Jones

Department of Electrical Engineering
and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

nathandj@mit.edu

2nd Samuel Calvert
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
samue100@mit.edu

3rd Sawyer Sands
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
szsands@mit.edu

Abstract—We present a low-rate picture transmission (LRPT)
decoder to receive and process signals from a Meteor-M series
weather satellite for the purpose of viewing images of Earth
transmitted directly from space. This system will demodulate
and decode the transmission then perform error correction and
packet parsing on the bitstream to extract the image data. Then
an image of the Earth will be displayed to a screen via HDMI.

Index Terms—Interleaved codes, low earth orbit satellites,
phase shift keying, Reed-Solomon codes, satellite broadcasting,
Viterbi algorithm

I. INTRODUCTION

The Meteor-M series weather satellites openly broadcast
images taken of Earth in the form of JPEGs. However, the
image data is embedded among the various analytics of the
satellite and the information of several other instruments.
Furthermore, all this data goes through several layers of
error correction to safeguard from various kinds of noise it
could experience while traveling to Earth. Lastly, the data is
modulated into a radio transmission and broadcast to Earth.
The challenge this system handles is removing the various
layers separating the received radio transmission from the
image data.

A bitstream is first recovered by demodulating the received
transmission’s offset quadrature phase-shift keying (OQPSK)
modulation. A synchronization word is then found to identify
the start of a packet. Each packet is then convolutionally de-
interleaved and decoded, the latter using a Viterbi decoder.
Pseudo random noise is then removed from each packet.
Afterward, each packet’s block interleaving is undone and
Reed-Solomon decoding is performed. The packet is then re-
interleaved and manipulation of the bitstream is complete. The
JPEG data is then extracted from the packets and displayed to
a screen via HDMI.

II. PHYSICAL CONSTRUCTION AND RF RECEIVER

The Meteor M2-3 satellite transmits an OQPSK signal at
137.1MHz, with a baseband transmission rate of 80Kbps. The
receiver consists of a v-dipole antenna, a low noise amplifier,
and an RTL-SDR using the RTL2832U chipset. The SDR
should be tuned to the center frequency of 137.1MHz and
have bandwidth large enough to capture all components of
the modulated signal, which has at most 150KHz of bandwidth
[1]. The recommended sample rate on this chipset is 0.9Msps.

After mixing and filtering, complex samples are streamed to
demodulation processes onboard a personal computer.

III. DEMODULATION

At this point, the I and Q samples have been sampled by an
ADC driven by an external sampling clock. The tasks of timing
and carrier recovery are left to a discrete receiver architecture
on the host computer. To accomplish the first task of symbol
synchronization, the recovery system needs to determine the
symbol period as well as the sampling phase. This allows for
sampling at the center of the symbol period, thereby reducing
intersymbol interference. Note that since the signal has already
been discretized, an interpolating filter is used to adjust the
sampling phase and frequency. The interpolated samples are
passed through a matched filter and then a Mueller and Mueller
detector estimates the timing error. The error is then fed back
through a second-order loop filter to the interpolator.

Since there is likely a frequency offset between the local
and transmitter carrier clocks, the received signals on the
constellation diagram will undergo continuous rotation. To
correct this offset, the exact carrier frequency and phase must
be determined. Carrier recovery is accomplished via a digital
phase locked loop with an IIR loop filter and numerically
controller oscillator. A decision directed phase detector is
used to determine the phase error and the symbol decisions
[2]. The OQPSK demodulator is essentially the QPSK de-
modulator described above, but with the Q-channel delayed
by half a symbol period. Existing implementations for this
OQPSK demodulator have been found online [3]. Based on
this implementation, the I and Q symbols are demodulated
as 8-bit two’s complement non-return-to-zero integers, which
are then transmitted over UART at 100MHz to the Urbana
Spartan-7 FPGA.

IV. DECODING

According to the Meteorlogical Operational
satellite(METOP) standard, the physical transmission
layer for LRPT specifies that the transmitted packets
are convolutionally encoded using generator polynomials
G1 = 1111001 and G2 = 1011011 to generate two outputs
of parity bits, forming the I and Q channels respectively. To
further reduce the effects of burst errors, the convolutionally
encoded packets are interleaved using a Forney convolutional



interleaver. An 8-bit unique word(UW) is inserted at the
start of any 72 bit packet to assist in synchronization of the
deinterleaver at the receiver.

Fig. 1. Convolutional encoding using a length 7 shift register with r = 1/2

Thus, the first step in decoding is to deinterleave the
serialized 80 bit packet. Deinterleaving requires finding the
most likely position of the 8 bit UW(0x27) within interleaved
frames, so that the frames can be aligned for the deinterleaver.
This implementation performs a correlation operation on sets
of 32 frames, utilizing four 18Kbit BRAMs. Then, based on
the rotation of the heighest weighted UW, this set of frames is
then derotated to resolve the phase ambiguity that may result
if the carrier synchronizer locks onto a phase other than the
reference phase.

The derotated symbols are then sent to the Forney convolu-
tional deinterleaver. The deinterleaver consists of 36 branches
with an elementary delay of M = 2048. Symbols are
sent and read sequentially over the branches. The delay in
branches increases linearly, so the deinterleaver stores at most
M ·8 ·

∑35
i=0 i ≈ 10Mb. Therefore, storing the symbols within

the deinterleaver requires use of Urbana’s DDR3 SDRAM.
Calculating the address requires large modulo operations to
calculate the address as well as crossing clock domains. The
DDR3 can output about 128 bits per 250-300 ns, meaning that
the deinterleaver is a bottleneck in the LRPT pipeline [13].

Fig. 2. Forney deinterleaver with elementary branch delay M = 2048 and
36 branches

The signed 8-bit symbols from the deinterleaver are differ-

entially decoded and then passed through the Viterbi decoder.
The two’s complement soft decision data is first converted
to binary offset and then parallelized into I and Q inputs.
To recover the intended message, the Viterbi decoder uses
the received encoder outputs to determine the maximum a
posteriori estimate of the state sequence. In this problem, the
2k−1 = 64 states are given by the bits in the shift register. The
Viterbi algorithm is best understood as a process on a two-
dimensional array of vertices, with each column containing
64 vertices corresponding to the states. On each time step, the
encoder receives a bit as input and generates two output bits.
Each state in the trellis column has an out-degree of two, with
each transition corresponding to receiving either a one or zero
as the input bit.

To determine the sequence of states, and thus the sequence
of input bits, the decoder assigns a state metric(SM) to each
vertex. This metric is a measure of how likely the decoder is to
be in that state on the current time step. Another metric, known
as the branch metric(BM) is assigned to each transition, which
provides a measure of the difference of actual and expected
output values for that transition.

To compute the SM for each node at timestep t, we have the
following recursive definition for state i with ancestor nodes
j and k:

SM [i]t = min {SM [j]t−1 +BM [(j, i)]t, SM [k]t−1 +BM [(k, i)]t}

The BM unit calculates squared Euclidean distance between
the expected and received output values. The noisy 8-bit output
values are converted to offset binary, where the Euclidean
norm is found for each of the expected binary output pairs:
{11, 10, 01, 11} to the noisy values.

Calculating the current state metric falls to the Add Com-
pare Select(ACS) module. The ACS associated with a given
state sums the branch metric and previous state metric for
each incoming path. The sums are compared, and the up-
dated state metric and the encoders likely input are output.
Because the state metrics are liable to overflow, some form of
normalization of the metrics is required. Additionally, since
the distance between any two state metrics is not necessarily
bounded, popular techniques like modulo normalization are
not possible. [12] As a result, this paper’s implementation is
more rudimentary. If m is the maximum state metric value,
then when the smallest state metric is greater than ⌊m/2⌋,
a value of ⌊m/2⌋ is subtracted from each state metric. The
expensive comparison and subtraction operations must be done
in a separate cycle, requiring stall logic within this part of the
pipeline.

The decisions from each module as well as the most likely
previous states are fed into a Traceback Unit(TBU). The
maximum likelihood estimate of the sequence of encoded
values can be found be tracing back the decisions starting from
the current state with the smallest metric. The decisions from
this traceback operation are the reversed sequence of encoded
values. Because comparing all the state metrics is infeasible
and the traceback memory is limited, an alternate scheme for
traceback implementation is required.



Fig. 3. Viterbi Decoder Block Diagram with single ACS module

This implementation uses the remarkable property that all
survivor paths merge to a single state. That is, if every path is
traced back X stages, then all paths will converge to a common
state. For our encoder with 64 states and rate 1/2, X turns out
to be approximately 28. This property allows for a traceback
scheme involving a memory block and read and write pointers.
The survivor memory, storing previous states and descision
bits for the nodes at each timestep, is S = 120 entries deep. A
write pointer loops through the memory in order of decreasing
address. There are 2 traceback pointers which move in the
other direction through the survivor memory. Each traceback
pointer traces back X = 30 elements before reading B = 30
decision bits out. When a traceback pointer encounters the
write pointer, the traceback pointer begins its traceback and
read cycle. Since B was chosen precisely to be 30, when the
traceback pointer finishes its read cycle, it will collide with
the write pointer on that same clock cycle. Note also that the
write pointer is initialized at the 0th index at the first timestep
[11].

Because there can be at most two simultaneous read or write
operations on any column or row in the survivor memory,
two identical survivor BRAMs both with dual read and write
ports must be instantiated. The traceback read results are then
fed into a BRAM acting as a stack, off of which the Viterbi
decisions are read.

We then use these Viterbi decisions to find the start of
a Channel Access Data Unit(CADU). Each CADU is 1024
bytes in length. Another parameterized instance of the UW
synchronization module correlates the stream in 8 CADU size
frames against the word 0x1ACFFC1D to align the packet.
Because the input stream was derotated before heading into
the Viterbi decoder, the Viterbi decisions only need to be
correlated against this word. The CADUs are then sent to the
desrambler.

A. Descrambler

To avoid long sequences of the same bit state, the satellite
has added pseudo-random noise generated by a Fibonacci lin-

Modules Slices Slice LUTs BRAMs Power (W)
Viterbi 24.47% 16.88% 21.33% 0.273

CADU Correlation 4.99% 3.75% 3.33% 0.102
UW Deinterleave 5.77% 4.35% 2.67% 0.105

Correlation

TABLE I
MODULE UTILIZATION ON SPARTAN-7

ear feedback shift register (LFSR) described by the following
polynomial [1]:

h(x) = x8 + x7 + x5 + x3 + 1 (1)

To remove the noise, the 255 byte sequence generated by
the LFSR is XOR’d with each of the four 255 byte sequences
within a CVCDU. The descrambler module takes in a data byte
and XOR’s it with its respective pseudo-noise byte generated
by the LFSR contained within a separate module. The LFSR
sequence restarts every 255 bytes or when a signal indicating
a new CVCDU is received.

V. REED-SOLOMON

Reed-Solomon error correction appends 32 parity bytes to
every 223 bytes of data. This type of Reed-Solomon is termed
RS(255, 223) given the 223 byte message word and 255 byte
code word. RS(255, 223) can correct up to 16 corrupted bytes
of the message word.

The 8-bit symbols of the code and message words are
elements of GF(28) where GF stands for Galois Field. The
elements are generated using the following field generator
polynomial over GF(2) [4]:

F (x) = x8 + x7 + x2 + x+ 1 (2)

where F (α) = 0 and α = 0b00000010.

A. Encoding
On the transmitter side, a code generator polynomial g(x)

is used to encode the data. The equation g(x) is defined as [4]

g(x) =

127+16∏
j=128−16

(x− α11j) =

32∑
i=0

Gix
i. (3)

The 32 roots of g(x) will be referred to as αz for the remainder
α11(112+j) of the paper.

The 223 symbols of the message word are treated as the
coefficients of a polynomial

m(x) = m0 +m1x+m2x
2 + ...+m222x

222 (4)

where m0 is the last symbol received and m254 is the first.
The polynomial m(x) is multiplied by x32 to get

m(x)x32 = m0x
32 +m1x

33 +m2x
34 + ...+m222x

254 (5)

The polynomial m(x) is then divided by (3). The 32
symbols of the remainder are the parity symbols. They are
appended to the end of message word to form the 255 symbol
code word that will be transmitted. The code word is therefore
represented as polynomial

c(x) = c0 + c1x+ c2x
2 + ...+ c254x

254. (6)



B. De-Interleaver

To reduce the effect of burst noise on sequential symbols of
data by spreading the noise across multiple code words, the
transmitter interleaves the symbols of each code word with a
depth of four. The de-interleaver module sends each received
symbol to one of four Reed-Solomon instances, incrementing
through each sequentially using a counter. Reed-Solomon is
then performed on each 255 symbol long section of a CVCDU.
The process of de-interleaving is shown in Fig. 7.

Fig. 4. Process of de-interleaving a CVCDU into Reed-Solomon code words
A, B, C, and D, each 255 symbols long.

C. Syndromes

The symbols of the incoming 255 symbol long code word
will be treated as the coefficients of the received polynomial

r(x) = r0 + r1x+ r2x
2 + ...+ r254x

254 (7)

where r254 is the first symbol received and r0 is the last. The
received polynomial is equivalent to

r(x) = c(x) + e(x) (8)

where e(x) is the error polynomial.
Equation (7) is evaluated at the roots of (3). Since c(αz) = 0

for the g(x) roots αz , r(αz) = e(αz). Evaluating (7) at each
zero produces syndromes S0, S2, ...S31. The syndromes are

S0 = r(α212) = e(α212) =

254∑
i=0

ri(α
212)i

S1 = r(α223) = e(α223) =

254∑
i=0

ri(α
223)i

S2 = ...

(9)

In the syndrome calculation module, the syndromes are
evaluated using Horner’s rule [7]:

S0 = r0 + α212(r1 + ...+ α212(r253 + α212r254)...))

S1 = r0 + α223(r1 + ...+ α223(r253 + α223r254)...))

S2 = ...

(10)

This method allows the syndromes to be evaluated as symbols
are received. Each syndrome calculation is implemented as an
adder and a multiplier. Received symbols are first added to the

running sum then multiplied by the respective αz . There are
32 multipliers for the 32 roots. They have been calculated to
be a series of XOR gates for each bit. Fig. 5

Fig. 5. Block diagram of the syndrome calculation.

The syndromes are the coefficients of the syndrome poly-
nomial

S(x) = S0 + S1x+ S2x
2 + ...+ S31x

31. (11)

If S(x) = 0 no error has occurred. If it is non-zero, however,
the rest of Reed-Solomon will be performed.

The error polynomial is defined as

e(x) =

254∑
i=0

eix
i (12)

where v ≤ 16 coefficients are non-zero, since RS(255, 223)
can fix up to 16 errors.

Since each syndrome Sm is equal to e(x). The coefficient
eik and corresponding power αik are equivalent to the mag-
nitude Yk and location Xk of the kth error. So the syndromes
can be rewritten as

Sj =

v∑
k=1

eik(α
11(112+j))ik =

v∑
k=1

YkX
11(112+j)
k = e(α11(112+j))

(13)



For j ∈ [0, 32] the syndromes are then

S0 =

v∑
k=1

YkX
212
k

S1 =

v∑
k=1

YkX
223
k

.

.

.

S31 =

v∑
k=1

YkX
43
k

(14)

D. Error Location Polynomial

The key equation

Ω(x) = Λ(x)S(x)modx32. (15)

describes the relationship between the syndrome polynomial
S(x), the error location polynomial Λ(x), and the error
evaluator polynomial Ω(x).

The error location polynomial Λ(x) is defined by

Λ(x) = 1 +

v∑
j=1

λjx
j (16)

where v is the number of errors present in the code word. The
roots of the error location polynomial are the inverses of the
error locations X1, X2, ..., Xv . The error location polynomial
can therefore be rewritten as

Λ(x) = (1−X1x)(1−X2x)...(1−Xvx). (17)

The error locations can be found from the roots of Λ(x), but
the coefficients λ1, ..., λv must be found first.

To begin it is acknowledged Λ(X−1
k ) = 0. And assuming

n = 11(112 + j) such that j ∈ [0, 32], (16) can be multiplied
by YkX

n+v
k to obtain

YkX
n+v
k Λ(X−1

k ) = 0

YkX
n+v
k (1 + λ1X

−1
k + λ1X

−2
k + ...+ λvX

−v
k ) = 0

YkX
n+v
k + λ1X

−1
k YkX

n+v
k + ...+ λvX

−v
k YkX

n+v
k = 0

YkX
n+v
k + λ1YkX

n+v−1
k + ...+ λvYkX

n
k = 0

(18)
Sum from k = 1 to v:
v∑

k=1

(YkX
n+v
k + λ1YkX

n+v−1
k + ...+ λvYkX

n
k ) = 0. (19)

Separate each term and move the λ outside the summation
term:

v∑
k=1

YkX
n+v
k +

v∑
k=1

λ1YkX
n+v−1
k + ...+

v∑
k=1

λvYkX
n
k = 0

v∑
k=1

YkX
n+v
k + λ1

v∑
k=1

YkX
n+v−1
k + ...+ λv

v∑
k=1

YkX
j
k = 0

(20)

Each summation term is now equal to a syndrome:

Sj+v + λ1Sj+v−1 + λ2Sj+v−2 + ...+ λvSj = 0 (21)

Rearrange:

λvSj + λv+1Sj+1 + ...+ λ2Sj+v−2 + λ1Sj+v−1 = −Sj+v

(22)
Expand by replacing j:

λvS1 + λv+1S2 + ...+ λ2Sv−1 + λ1Sv = −Sv+1

λvS2 + λv+1S3 + ...+ λ2Sv + λ1Sv+1 = −Sv+2

.

.

.

λvSv + λv+1Sv+1 + ...+ λ2S2v−2 + λ1S2v−1 = −S2v

(23)
There are now v equations and v unknowns, so the coef-

ficients of Λ(x) can be solved for. The coefficients of Λ(x)
will be found using the Berlekamp-Massey algorithm. This
approach will generate an LFSR whose first 32 outputs are
the the syndromes S0, S1, ..., S31. The taps of the LFSR are
the coefficients of Λ(x). Fig. 6 shows a finite state machine
representing the implemented process of Berlekamp-Massey
to find the error location polynomial [9].

Fig. 6. Finite State Machine of the Berlekamp-Massey algorithm.

E. Error Evaluator Polynomial

The error evaluator polynomial defined as

Ω(x) =

v−1∑
j=0

ωjx
j (24)

will be used later to find the error magnitudes. The polyno-
mials relationship with S(x) and Λ(x) is defined in (15). The
order of each Si ∗ λj term is i + j = n, so each ωn term
is implemented as a sum of Si ∗ λj multiplications for each
(i, j) pair that sums to n. The multipliers are implemented



as a series of XOR gates similar to the αz multipliers, but
both numbers are unknown here. Each bit of the ωn term is
calculated by XORing certain Si and λj bits.

F. Error Locator

The roots of the error location polynomial Λ(x) are found
using Chien’s search algorithm. The roots of Λ(x) are the er-
ror locations X−1

1 , X−1
2 , ..., X−1

v . Chien’s algorithm evaluates
Λ(x) at each possible value in GF(28). A value αi in which
Λ(αi) = 0 is a root and α−i the location of an error [6].

Chien’s search is implemented by multiplying each co-
efficent λ1, λ2, λ3, ... by it’s corresponding alpha value
α1, α2, α3... then adding the products together. On the first
cycle, the coefficients are added together which is equivalent
to Λ(alpha0). Then each coefficient is multiplied by its
corresponding α and the products are added. This is equivalent
to Λ(α). This is repeated for 254 clock cycles. A counter
increments each step and the inverse is calculated when
Λ(x) = 0. The locations of the errors are now found.

G. Error Evaluator

The error evaluator uses Forney’s algorithm to calcu-
late the error magnitudes Y1, Y2, ..., Yv at error locations
X1, X2, ..., Xv . Using Forney’s algorithm, an error magnitude
Yl at Xl is given by

Yl = −
X1−112

l Ω(X−1
l )

Λ′(X−1
l )

. (25)

The formal derivative of Λ′(x) is given by [5]

Λ′(x) =

v∑
i=1

i ∗ λix
i−1 (26)

and is derived using Λ(x) and a multiplier.

H. Error Corrector

The error corrector will subtract the error polynomial e(x)
from the received polynomial r(x) to get the original code
word polynomial c(x). It does this by simply subtracting
each e(x) coefficient from the respective r(x) coefficient. The
original 223 symbol long message word is output without the
32 parity symbols.

I. Re-Interleaver

The re-interleaver takes in the four 223 symbol message
words from the four RS instances running in parallel. It then
re-interleaves them in the order with which they were de-
interleaved.

Without the 32 parity symbols, the CVCDU that was input
to the de-interleaver leaves the re-interleaver as a 892 symbol
long Virtual Channel Data Unit (VCDU).

VI. PACKET PARSING

Receiving in VCDUs we parse them into Multi Packet Data
Unit (MPDU) of 14 Minimum Code Units (MCUs) where
each packet represents a portion of each line of the image.
Since the physical VCDU packets are constant in length but
the information they contain varies, we check for the pointer to
the first header of the first MPDU in each VCDU. Identifying
the offset of each allows us to find the header and read in the
data bits to our MPDU we send to the next module.

Specifically, our defragmentation algorithm works by read-
ing in bits using a simple FSM to isolate complete MCUs.
First, it identifies the location of the next VCDU header as
the end of our current packet. Then, it reads the data from
each MPDU until it arrives at an MPDU who’s data exceeds
the end of the VCDU. In this case, we must save the start of
the MPDU and combine it with the remaining information in
the next VCDU.

VII. IMAGE DISPLAY

Each MCU is an 8x8 image compressed using the JPEG
algorithm which we must decompress, then display as RGB.
This is accomplished by first Huffman decoding using stan-
dardized Huffman lookup tables to get our AC and DC values.
With these, we are able to de-zigzag then dequantize our
matrix storing the image data. From there the inverse discrete
cosine transform is applied to the entire 8x8 and we receive
yCrCb values for each individual pixel. Finally, we convert
this to RGB values and display.

VIII. PYTHON FPGA SERIAL COMMUNICATOR

In order to verify each step in the process we are using
a Python script to send and receive data in communication
with our FPGA. To access this data we we will be using
serial communication via UART over USB (In a similar
fashion to Manta). Since our FPGA is running at a 100MHz
clock cycle we use a maximum UART baud rate of 115200.
Still, this is much slower than our FPGA clock rate and not
easily generated modifying by a factor of 2 we will use an
approximate ratio very close to our desired 100000000/115200
= 868.05555, explicitly, 217/151 = 868.02649. With this ratio,
we can use an accumulator to generate our baud ticks within
an acceptable error range and then sample 16 times per tick.
This breaks down into two separate modules: receiver and
transmitter.

For the receiver, we will use a state machine that begins
in an idle state listening for the falling edge of the rx bit to
signal a start bit has been received. From there it will wait for
8 sample ticks to position in the middle of the signal before
double checking the signal is still low and we received a valid
start bit. It then moves to the data state where it will sample
every 16 sample ticks and store the sampled value in our 8 bit
register until all 8 data bits have been received. Upon receiving
the 8th bit the FSM moves to the stop state where we sample
once more to verify the signal is high before returning to the
idle state. If the sample is not high we have received invalid
data and return nothing. Otherwise, the data has been correctly



received and we signal the higher level module via a one-cycle
burst of the data valid signal and store our received byte in
the data out signal.

Fig. 7. UART Receiver FSM

For the transmitter, it works nearly the same in reverse
fashion. We start at an idle state waiting for a signal to begin
the transmission of data stored in the input register. Once a
signal to transmit is received, the transmitter sends a low signal
for one baud tick before sending a bit of data per baud tick.
Finally, once all eight bits have been sent the transmitter sends
the one baud tick of high signal representing the stop bit before
returning to the idle state and possibly beginning another byte
transmission.

To achieve this UART serial communication on the com-
puter side we are using the pyserial library to read and write
data over our connection. Since we are only working with
higher latency modules a basic ability to read and write one at
a time to the FPGA is sufficient. This is simplified by having
the python end constantly listening for the data transfer or
constantly sending the data transfer. UART communication
uses a start bit of idle high state to a low state immediately
preceding the data transfer that triggers the beginning of the
data read at each end.

For our project, we chose to use a simple 10-bit UART
protocol with 1 start bit, 8 data bits, and 1 stop bit. In testing,
this achieved no discernible errors that would necessitate a
parity bit or additional stop bits. This is likely due to our
higher sample rate of 16 times per baud that led to accurate
results.

IX. REFERENCES

The source repository can be found at:
”https://github.com/theory789/lrpt decoder”. Our
modifications of an existing LRPT implmentation in C:
”https://github.com/theory789/meteor decode”

REFERENCES

[1] Coordination Group for Meteorlogical Satellites, “LRPT/AHRPT Global
Specification”, CGMS doc. no. 04, October 1998

[2] JM Cioffi, ”Fundamentals of Synchronization”, https://cioffi-
group.stanford.edu/doc/book/chap6.pdf

[3] https://github.com/dbdexter-dev/meteor demod
[4] CCSDS: “Telemetry Channel Coding”, CCSDS recommendation 101.0-

B-3, May 1992
[5] https://en.wikipedia.org/wiki/Forney algorithm
[6] https://en.wikipedia.org/wiki/Chien search

[7] https://en.wikipedia.org/wiki/Hornerś method
[8] https://en.wikipedia.org/wiki/ReedSolomon error correction
[9] https://en.wikipedia.org

[10] https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=8953&context=theses
/wiki/BerlekampMassey algorithm

[11] R. Cypher and C. B. Shung, ”Generalized trace back techniques for
survivor memory management in the Viterbi algorithm,” [Proceedings]
GLOBECOM ’90: IEEE Global Telecommunications Conference and
Exhibition, San Diego, CA, USA, 1990, pp. 1318-1322 vol.2, doi:
10.1109/GLOCOM.1990.116708.

[12] HUI-LING LOU, ”Implementing the Viterbi Algorithm”, SEPTEMBER
1995, IEEE SIGNAL PROCESSING MAGAZINE, pp.42-51

[13] Andrew Weinfeld MiG Generator


