
RFID Duplicator

1st Kyle Heinz

Department of Electrical Engineering and

Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA

kyleh51@mit.edu

2nd Walter Truitt

Department of Electrical Engineering and

Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA

wtruitt@mit.edu

3rd Christina Crow

Department of Electrical Engineering and

Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA

ccrow@mit.edu

Abstract—We present a design for a Radio Frequency

Identification (RFID) duplicator, a system that can both intercept

and transmit near-field RFID signals encoded with Binary Phase-

shift Keying (BPSK) in the 125kHz band. Particularly, this will be

used with MIT ID cards. Implemented using an FPGA as well as

analog receive and transmit circuits, the system outputs a 125kHz

carrier signal which is picked up by the coil in a passive tag and

then BPSK-encoded. This signal is then read by the receive

antenna, stored in memory, and decoded into a series of bits.

Compared with known MIT ID bit sequences, the user-identifying

bits are isolated and stored. The system has the option to put that

ID on a programmable active tag. Writing to an active tag involves

an in-depth protocol that is determined by the manufacturer that

requires extra modules and FSMs to communicate with these tags.

Once programmed, these tags can output the same waveform of

the MIT ID cards.

Keywords—Radio Frequency Identification, Binary Phase-shift

Keying, Field-programmable gate array, Near-field

I. PHYSICAL SYSTEM - KYLE

The system consists of an Urbana FPGA from AMD with:

• A receive antenna circuit

• A transmit antenna circuit

• Both stages involve a wire-loop antenna about
7.5cm in diameter with 16 turns of 22 AWG copper
wire.

A. Receive Circuitry

In the receive stage, this antenna connects to a notch filter,
limiting the effect of the 125kHz signal and making it easier to
distinguish between peaks. This signal is inverted and offset
before being fed into an AD7476-A 12-bit ADC which inputs
into the FPGA.

Fig. 1 – Receive circuitry

B. Transmit Circuitry

In the transmit stage, the DAC, an 8-bit PMOD R2R, outputs a
signal at 2.5Vpp and 0.05A into a common drain current gain
stage, resulting in a signal out at 1.5Vpp and 0.25A and a 3X
power gain. With this magnification, more power is supplied to
the circuitry within the ID card, allowing it to produce a larger,
more detectable output signal.

Fig. 2 – Transmit circuitry

II. RECEIVING

The received signal seen by the FPGA is a digitized
combination of the 125kHz carrier frequency and the BPSK
signal from the ID card as shown below.

Fig. 3 – 125kHz carrier signal (green), BPSK signal (red), received signal

(blue)

Bits are conveyed 32 peaks at a time, and every 32 peaks, a bit
is recorded. When two adjacent peaks have roughly the same
value (as determined by a tolerance threshold), the bit flips. In
observed results, the receive network takes in an approximately

850mVpp analog signal with around 50mV of clearance
between high and low peaks.

Fig. 4 – Observed receive signal with highlighted bit flip

An MIT ID sequence consists of 224 bits with a majority of
fixed bits and a select few variable user bits. Using the Manta
Integrated Logic Analyzer, we were able to determine that the
signal starts with 30 zeroes, followed by a sequence of 20
constant bits, and 32 of the unique MIT ID bits.

III. DECODING - CHRISTINA

 The digitized analog signal is passed through the decode
system where it is converted into a bit stream of potential ID
bits and compared against the expected MIT ID signature. If it
matches, the green light will be emitted, and the 224 bits can
be stored into memory at the location indicated by switches
[15:13].

 The first module of the decode system is a peak finder that
tracks the input ADC values and outputs both a peak detected
signal and the magnitude of that peak. A peak is found by
storing four values at a time: the current value and past three
values. A value is determined to be a peak if it is greater than
both its previous and following values or equal to the previous
and greater than the two previous values.

 The second decode module takes as inputs the peak
detected signal and the peak magnitude. As seen in figure 4, a
bit flip is indicated by two low or two high peaks
consecutively. This module outputs a bit flip signal when one
of these characteristics is detected.

 Lastly, the bit flip signal and peak detected signal are
utilized to create the full 224-bit ID signature. This module
detects the beginning of the MIT ID signature using the 30
leading zeros, during which no bit flip should be detected.
Following the leading zeros, each bit is signaled by 16 62.5
kHz BPSK cycles, and therefore a new bit flip signal should be
detected within approximately 31 peaks. Once enough bits are
collected, they are compared to the expected MIT-unique bits
to determine a valid signal. If it is a valid MIT signal, all 224
bits are collected, and the user has the option to store to
memory or discard them.

IV. TRANSMITTING - WALTER

A. Directly outputting a signal

When directly outputting a specific ID signal, we select the

spoofed 125kHz BPSK waveform which is generated by a

spoofer module. The spoofer module works by alternating

between a high and low version of the 125kHz carrier wave.

When a bitflip occurs, this module repeats the same peak it is

on then continues to alternate for at least 31 peaks of the carrier

signal. This spoofed signal can be used by setting sw[2] on the

FPGA to high and viewed by an oscilloscope probe.

B. Writing to an active card

To communicate with an active 125kHz RFID tag, (in our

case the ATMEL T5577) there is a specific communication

protocol called downlink, that must be followed and

implemented on our FPGA. To communicate with this

downlink protocol, the standard 125kHz sine wave signal is

turned on and off at regular intervals to send packets. This

packet structure, shown in Fig. 5, consists of an opcode +

lockbit + 4 bytes of data + data address. In order to send the

224-bit data to the chip, this process must be repeated 7 times.

Fig. 5 – Downlink Packet Structure

 The protocol also determines the length of time in which

the 125kHz signal must be on before being turned off to send

1’s and 0’s to the chip. Per the ATA5577 datasheet [1], write

mode is initiated when the signal is turned off for at least 8

periods and no more than 50 periods. After write mode is

enabled, the signal is interrupted by a gap of length 8-20

cycles. To send a 1, the time between gaps is 56 cycles. To

send a 0 the time between gaps is 24 cycles. After the data

packet has been sent, the chip enters a 5.6 millisecond

programming cycle. This timing description is shown in Fig. 6

for better understanding, where Sgap represents the length of

gap needed to initiate write mode and Wgap represents the

length of gap used to send data.

Fig. 6 – Downlink Protocol Example

 Because of the strict timing nature of the protocol, we

have chosen to implement it with a finite state machine. This

FSM is specifically built to send MIT ID numbers to the

ATA5577 by taking in the 224-bit wide RFID data selected,

separating the data into 7 blocks of 32 bits, applying metadata

such as page and block addresses, and finally sending these

blocks one at a time to the chip by toggling a mux connected

to the DAC and transmit circuits. This is shown below in

Fig.7.

Fig. 7 – Downlink FSM Function

After programming the active RFID tags with the 224 bits that

are selected by the user, the tag still does not behave in a way

that we want. The default configuration for these specific tags

is a data bit rate of RF/8 or 125/8kHz and a modulation

scheme called direct modulation. To change these we write

configuration data to the ATA5577’s page 0 block 0 address.

This requires a separate configure module that is accessed by

putting sw[1] and sw[0] both high. By writing the string:

0000_0000_0000_1000_0001_0000_1110_0000

We are able to change this tag to behave with a data bit rate of

125/32kHz (which is what we expect from the MIT cards), a

modulation scheme of BPSK, and we also tell it to read all the

way to the end of its memory block (block 7). The figure

below shows the oscilloscope output of this writing scheme

for better understanding. In the image you will see multiple

pulses of the 125kHz sine wave – a short pulse indicating a

zero and a long pulse indicating a one. This is followed by a

programming delay and then by a short reset code to send the

card into its regular read mode. All of this functionality was

determined by studying the ATA5577C datasheet.

V. GRAPHICAL INTERFACE - CHRISTINA

 The graphical interface for this project consists of a display of

stored RFID signatures and their respective BPSK waveforms.

Specifically, the 22 MIT specific and 32 user specific bits of each

MIT ID stored in memory are displayed in rows on the upper left

hand of the screen. Since the decoder module stores up to eight

unique ID signatures to memory, up to eight can be displayed to

the screen. The right half of the screen will contain a compressed

BPSK signal representing the first 32 bits of one of the stored

IDs. The stored signal to be displayed in its wave form is

determined by the user through switches 13-15 on the FPGA. The

selected ID binary sequence is highlighted on the display for

convenience. The figure below details the HDMI signal

generation modules as a block diagram.

Fig. 8 – Graphical Interface Block Diagram

 The image_sprite module contains the logic necessary to

produce the correct RGB value for each individual pixel. It

receives inputs of the vertical and horizontal index of the

current pixel, the 32-bit unique codes from all eight stored

RFID signatures, and the ID_select value from switches on the

FPGA. It outputs RGB values as required by the HDMI

protocol. Since the only graphics desired on the screen are the

text (both white text on black background and highlighted,

black text on white background) and waveform

representations of zero and one, these pixel patterns are

standardized as six separate templates stored as .mem files in

BRAM accessed by image_sprite. The display will be in black

and white, allowing the templates to hold single binary values to

encode the RGB of each pixel. To use these templates, the

screen is separated into regions by constant indices that

represent the spaces for a single template. When image_sprite

recognizes that the current index is within a space, it

determines whether the value displayed should be a one or a

zero, waveform or binary value, and highlighted or

unhighlighted from stored_IDs and ID_select. It then requests

and outputs the corresponding pixel’s black/white value from

the correct template.

 The video_sig_gen module is the same as that written for

6.205 Lab 4. It produces the necessary signals and horizontal

and vertical index values to generate HDMI video. A flip-flop

will be added to pipeline the circuit, stalling it by two clock

cycles to ensure that the pixel output of image_sprite will be

sent out with the correct additional signal generating signals.

Fig. 9 – Graphical Interface Display

VI. CONCLUSION - KYLE

 Our system allowed for the reading and copying of RFID

signatures at close touch proximity. The card was required to be

directly on our antenna, so a future design improvement could

focus on extending the range of the transmit antenna, allowing

more energy to flow into the card and to create a stronger signal

for the receive circuitry.

 As we focused on reading the peaks of the incoming signal, we

highly recommend to future builders to either have easily

distinguishable peaks or a high sampling rate and bit depth.

Initially, we struggled to distinguish between peaks, forcing us to

update our analog circuitry to dampen the 125kHz carrier

frequency, making high and low peaks more easily distinguishable.

 While peak finding was difficult, it helped remove extra

electrical components from the design, allowing us to rely more on

the FPGA and to avoid spending money on unnecessary parts.

 With regards to timing, our system had to sample and decode

the input signal fast enough to avoid missing any bits and to

minimize the amount of time the ID needed to spend on the card

reader. The main bottleneck was with the ADC which serialized

each sample and sent it in on a 20MHz clock. The rest of the system

ran on a 100MHz clock except for the graphics display which

required 74.25 MHz and 371.25 MHz clocks for the HDMI

connection.

 Limited amounts of BRAM were used for storing image sprite

files in the graphics display. The rest of the system was purely

logic, so not a lot of storage was needed, even for the 8

identification signatures which were 224 bits.
 Ultimately, the system proved successful at reading from tags,

writing to active tags, and storing and displaying the user

information. Thus, all goals set at the start of the project were met.

While the system worked for the 125kHz signals, we soon

discovered that MIT had updated their system to the HID iCLASS,

an RFID network that operates in the 13.56MHz range. As our

ADC and DAC were much slower than that frequency, we were

unable to adjust our design to operate in that range. Future groups

approaching the issue will have to account for the need for this

higher sampling rate. Although we were not able to open any doors

on campus, we demonstrated a proof of concept that can be

replicated and adjusted to work on any system operating in the

125kHz range. All it would take is a scope on a card being

stimulated to determine that systems’ constant bits which can be

swapped for the known MIT ID ones.

VII. CONTRIBUTIONS - KYLE

 This project was the result of a strong collaborative effort as

well as a lot of research into different domains like radio

frequency circuitry, RFID, and digital design. Kyle built the

analog circuitry and worked on the ADC decoding as well as the

peak finding and sequence decoding modules. Walter worked on

the ADC decoding, the DAC output, the active tag protocol, and

the sequence decoding module. Christina worked on the graphics

display, the bit flip detector module, and the sequence decoding

module. All three of us spent time debugging and integrating our

modules into the top-level file. We are extremely grateful to Joe

Steinmeyer, the instructor of the course, for helping with

debugging as well as all of the other TAs who helped along the

way. In addition, Dave Lewis played a huge role in sourcing parts

for our design, and we appreciate his effort.

REFERENCES

[1] Microchip, “ATA5577C – Read/Write LF RFID IDIC 100 kHz to
150 kHz,”ATA5577C Datasheet, Feb. 2020

[2] Github Code Repository: https://github.mit.edu/kyleh51/6.2050-
RFID-Duplicator.git

