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Abstract—We present a design for a Radio Frequency 

Identification (RFID) duplicator, a system that can both intercept 

and transmit near-field RFID signals encoded with Binary Phase-

shift Keying (BPSK) in the 125kHz band. Particularly, this will be 

used with MIT ID cards. Implemented using an FPGA as well as 

analog receive and transmit circuits, the system outputs a 125kHz 

carrier signal which is picked up by the coil in a passive tag and 

then BPSK-encoded. This signal is then read by the receive 

antenna, stored in memory, and decoded into a series of bits. 

Compared with known MIT ID bit sequences, the user-identifying 

bits are isolated and stored. The system has the option to put that 

ID on a programmable active tag. Writing to an active tag involves 

an in-depth protocol that is determined by the manufacturer that 

requires extra modules and FSMs to communicate with these tags. 

Once programmed, these tags can output the same waveform of 

the MIT ID cards.  
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I. PHYSICAL SYSTEM - KYLE 

The system consists of an Urbana FPGA from AMD with: 

• A receive antenna circuit 

• A transmit antenna circuit 

• Both stages involve a wire-loop antenna about 
7.5cm in diameter with 16 turns of 22 AWG copper 
wire. 

A. Receive Circuitry 

In the receive stage, this antenna connects to a notch filter, 
limiting the effect of the 125kHz signal and making it easier to 
distinguish between peaks. This signal is inverted and offset 
before being fed into an AD7476-A 12-bit ADC which inputs 
into the FPGA.  

  
Fig. 1 – Receive circuitry 

B. Transmit Circuitry 

In the transmit stage, the DAC, an 8-bit PMOD R2R, outputs a 
signal at 2.5Vpp and 0.05A into a common drain current gain 
stage, resulting in a signal out at 1.5Vpp and 0.25A and a 3X 
power gain. With this magnification, more power is supplied to 
the circuitry within the ID card, allowing it to produce a larger, 
more detectable output signal.  

  
Fig. 2 – Transmit circuitry 

II. RECEIVING 

The received signal seen by the FPGA is a digitized 
combination of the 125kHz carrier frequency and the BPSK 
signal from the ID card as shown below.  

  

Fig. 3 – 125kHz carrier signal (green), BPSK signal (red), received signal 

(blue) 

 

Bits are conveyed 32 peaks at a time, and every 32 peaks, a bit 
is recorded. When two adjacent peaks have roughly the same 
value (as determined by a tolerance threshold), the bit flips. In 
observed results, the receive network takes in an approximately 



850mVpp analog signal with around 50mV of clearance 
between high and low peaks. 

 

Fig. 4 – Observed receive signal with highlighted bit flip 

 

An MIT ID sequence consists of 224 bits with a majority of 
fixed bits and a select few variable user bits. Using the Manta 
Integrated Logic Analyzer, we were able to determine that the 
signal starts with 30 zeroes, followed by a sequence of 20 
constant bits, and 32 of the unique MIT ID bits.  

III. DECODING - CHRISTINA 

 The digitized analog signal is passed through the decode 
system where it is converted into a bit stream of potential ID 
bits and compared against the expected MIT ID signature. If it 
matches, the green light will be emitted, and the 224 bits can 
be stored into memory at the location indicated by switches 
[15:13]. 

 The first module of the decode system is a peak finder that 
tracks the input ADC values and outputs both a peak detected 
signal and the magnitude of that peak. A peak is found by 
storing four values at a time: the current value and past three 
values. A value is determined to be a peak if it is greater than 
both its previous and following values or equal to the previous 
and greater than the two previous values.  

 The second decode module takes as inputs the peak 
detected signal and the peak magnitude. As seen in figure 4, a 
bit flip is indicated by two low or two high peaks 
consecutively. This module outputs a bit flip signal when one 
of these characteristics is detected. 

 Lastly, the bit flip signal and peak detected signal are 
utilized to create the full 224-bit ID signature. This module 
detects the beginning of the MIT ID signature using the 30 
leading zeros, during which no bit flip should be detected. 
Following the leading zeros, each bit is signaled by 16 62.5 
kHz BPSK cycles, and therefore a new bit flip signal should be 
detected within approximately 31 peaks. Once enough bits are 
collected, they are compared to the expected MIT-unique bits 
to determine a valid signal. If it is a valid MIT signal, all 224 
bits are collected, and the user has the option to store to 
memory or discard them.  

IV. TRANSMITTING - WALTER 

A. Directly outputting a signal  

When directly outputting a specific ID signal, we select the 

spoofed 125kHz BPSK waveform which is generated by a 

spoofer module. The spoofer module works by alternating 

between a high and low version of the 125kHz carrier wave. 

When a bitflip occurs, this module repeats the same peak it is 

on then continues to alternate for at least 31 peaks of the carrier 

signal. This spoofed signal can be used by setting sw[2] on the 

FPGA to high and viewed by an oscilloscope probe. 

B. Writing to an active card 

To communicate with an active 125kHz RFID tag, (in our 

case the ATMEL T5577) there is a specific communication 

protocol called downlink, that must be followed and 

implemented on our FPGA. To communicate with this 

downlink protocol, the standard 125kHz sine wave signal is 

turned on and off at regular intervals to send packets. This 

packet structure, shown in Fig. 5, consists of an opcode + 

lockbit + 4 bytes of data + data address. In order to send the 

224-bit data to the chip, this process must be repeated 7 times. 

 

 
Fig. 5 – Downlink Packet Structure 

 

      The protocol also determines the length of time in which 

the 125kHz signal must be on before being turned off to send 

1’s and 0’s to the chip. Per the ATA5577 datasheet [1], write 

mode is initiated when the signal is turned off for at least 8 

periods and no more than 50 periods. After write mode is 

enabled, the signal is interrupted by a gap of length 8-20 

cycles. To send a 1, the time between gaps is 56 cycles. To 

send a 0 the time between gaps is 24 cycles. After the data 

packet has been sent, the chip enters a 5.6 millisecond 

programming cycle. This timing description is shown in Fig. 6 

for better understanding, where Sgap represents the length of 

gap needed to initiate write mode and Wgap represents the 

length of gap used to send data. 

  

 
Fig. 6 – Downlink Protocol Example 

 

      Because of the strict timing nature of the protocol, we 

have chosen to implement it with a finite state machine. This 

FSM is specifically built to send MIT ID numbers to the 

ATA5577 by taking in the 224-bit wide RFID data selected, 

separating the data into 7 blocks of 32 bits, applying metadata 

such as page and block addresses, and finally sending these 

blocks one at a time to the chip by toggling a mux connected 

to the DAC and transmit circuits. This is shown below in 

Fig.7. 

 



  
 

Fig. 7 – Downlink FSM Function 

 

After programming the active RFID tags with the 224 bits that 

are selected by the user, the tag still does not behave in a way 

that we want. The default configuration for these specific tags 

is a data bit rate of RF/8 or 125/8kHz and a modulation 

scheme called direct modulation. To change these we write 

configuration data to the ATA5577’s page 0 block 0 address. 

This requires a separate configure module that is accessed by 

putting sw[1] and sw[0] both high. By writing the string: 

0000_0000_0000_1000_0001_0000_1110_0000 

We are able to change this tag to behave with a data bit rate of 

125/32kHz (which is what we expect from the MIT cards), a 

modulation scheme of BPSK, and we also tell it to read all the 

way to the end of its memory block (block 7). The figure 

below shows the oscilloscope output of this writing scheme 

for better understanding. In the image you will see multiple 

pulses of the 125kHz sine wave – a short pulse indicating a 

zero and a long pulse indicating a one. This is followed by a 

programming delay and then by a short reset code to send the 

card into its regular read mode. All of this functionality was 

determined by studying the ATA5577C datasheet. 

 

V. GRAPHICAL INTERFACE - CHRISTINA 

      The graphical interface for this project consists of a display of 

stored RFID signatures and their respective BPSK waveforms. 

Specifically, the 22 MIT specific and 32 user specific bits of each 

MIT ID stored in memory are displayed in rows on the upper left 

hand of the screen. Since the decoder module stores up to eight 

unique ID signatures to memory, up to eight can be displayed to 

the screen. The right half of the screen will contain a compressed 

BPSK signal representing the first 32 bits of one of the stored 

IDs. The stored signal to be displayed in its wave form is 

determined by the user through switches 13-15 on the FPGA. The 

selected ID binary sequence is highlighted on the display for 

convenience. The figure below details the HDMI signal 

generation modules as a block diagram. 

 

 
Fig. 8 – Graphical Interface Block Diagram 

 

     The image_sprite module contains the logic necessary to 

produce the correct RGB value for each individual pixel. It 

receives inputs of the vertical and horizontal index of the 

current pixel, the 32-bit unique codes from all eight stored 

RFID signatures, and the ID_select value from switches on the 

FPGA. It outputs RGB values as required by the HDMI 

protocol. Since the only graphics desired on the screen are the 

text (both white text on black background and highlighted, 

black text on white background) and waveform 

representations of zero and one, these pixel patterns are 

standardized as six separate templates stored as .mem files in 

BRAM accessed by image_sprite. The display will be in black 

and white, allowing the templates to hold single binary values to 

encode the RGB of each pixel. To use these templates, the 

screen is separated into regions by constant indices that 

represent the spaces for a single template. When image_sprite 

recognizes that the current index is within a space, it 

determines whether the value displayed should be a one or a 

zero, waveform or binary value, and highlighted or 

unhighlighted from stored_IDs and ID_select. It then requests 

and outputs the corresponding pixel’s black/white value from 

the correct template.  

      The video_sig_gen module is the same as that written for 

6.205 Lab 4. It produces the necessary signals and horizontal 

and vertical index values to generate HDMI video. A flip-flop 

will be added to pipeline the circuit, stalling it by two clock 

cycles to ensure that the pixel output of image_sprite will be 

sent out with the correct additional signal generating signals. 

 

 
Fig. 9 – Graphical Interface Display 



VI. CONCLUSION - KYLE 

      Our system allowed for the reading and copying of RFID 

signatures at close touch proximity. The card was required to be 

directly on our antenna, so a future design improvement could 

focus on extending the range of the transmit antenna, allowing 

more energy to flow into the card and to create a stronger signal 

for the receive circuitry. 

      As we focused on reading the peaks of the incoming signal, we 

highly recommend to future builders to either have easily 

distinguishable peaks or a high sampling rate and bit depth. 

Initially, we struggled to distinguish between peaks, forcing us to 

update our analog circuitry to dampen the 125kHz carrier 

frequency, making high and low peaks more easily distinguishable. 

      While peak finding was difficult, it helped remove extra 

electrical components from the design, allowing us to rely more on 

the FPGA and to avoid spending money on unnecessary parts. 

      With regards to timing, our system had to sample and decode 

the input signal fast enough to avoid missing any bits and to 

minimize the amount of time the ID needed to spend on the card 

reader. The main bottleneck was with the ADC which serialized 

each sample and sent it in on a 20MHz clock. The rest of the system 

ran on a 100MHz clock except for the graphics display which 

required 74.25 MHz and 371.25 MHz clocks for the HDMI 

connection. 

      Limited amounts of BRAM were used for storing image sprite 

files in the graphics display. The rest of the system was purely 

logic, so not a lot of storage was needed, even for the 8 

identification signatures which were 224 bits. 
      Ultimately, the system proved successful at reading from tags, 

writing to active tags, and storing and displaying the user 

information. Thus, all goals set at the start of the project were met. 

While the system worked for the 125kHz signals, we soon 

discovered that MIT had updated their system to the HID iCLASS, 

an RFID network that operates in the 13.56MHz range. As our 

ADC and DAC were much slower than that frequency, we were 

unable to adjust our design to operate in that range. Future groups 

approaching the issue will have to account for the need for this 

higher sampling rate. Although we were not able to open any doors 

on campus, we demonstrated a proof of concept that can be 

replicated and adjusted to work on any system operating in the 

125kHz range. All it would take is a scope on a card being 

stimulated to determine that systems’ constant bits which can be 

swapped for the known MIT ID ones. 

 

VII. CONTRIBUTIONS - KYLE 

      This project was the result of a strong collaborative effort as 

well as a lot of research into different domains like radio 

frequency circuitry, RFID, and digital design. Kyle built the 

analog circuitry and worked on the ADC decoding as well as the 

peak finding and sequence decoding modules. Walter worked on 

the ADC decoding, the DAC output, the active tag protocol, and 

the sequence decoding module. Christina worked on the graphics 

display, the bit flip detector module, and the sequence decoding 

module. All three of us spent time debugging and integrating our 

modules into the top-level file. We are extremely grateful to Joe 

Steinmeyer, the instructor of the course, for helping with 

debugging as well as all of the other TAs who helped along the 

way. In addition, Dave Lewis played a huge role in sourcing parts 

for our design, and we appreciate his effort. 
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