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Abstract—We present a design and implementation for a min-
imalist GPU on an FPGA. Our GPU features 16x parallelism
with 16-bit fixed point operations, capable of rendering the
Mandelbrot fractal with 16 colors at a resolution of 102,400
pixels in 0.37 seconds. Our GPU is driven by a general-
purpose, programmable controller using a custom instruction
set architecture, making it possible to program a variety of
linear algebra operations, such as matrix multiplication, in an
assembly-style language. Our lightweight compiler automati-
cally converts this program into machine code for the GPU.

Code available at https://github.com/Arongil/FPGA-GPU

1. Introduction

Parallel architectures with high throughput are becoming
increasingly important. GPUs (graphics processing units) are
specialized hardware that can perform parallel operations
for rendering imagery. They can also be used to speed up
training and inference of machine learning models. Our goal
for this project was to design and implement a minimalist
GPU on an FPGA. We achieved the following goals from
our project checklist:

1) Design an ISA to control the GPU
2) Multiply 2× 2 matrices
3) Render the Mandelbrot set
4) Scale up to 16x parallelism

2. GPU Design

Our GPU has three core components:

1) Controller
2) Main Memory
3) FMA Blocks

The controller executes assembly-style programs with
control flow to orchestrate parallelism across the GPU. The
controller sends commands to the main memory, telling it
when to push data to the fused multiply-add (FMA) blocks
for computation. In parallel, the FMA blocks then perform
the fused multiply-add operation A×B+C. The results are
sent to an output buffer, which waits until it receives three

Figure 1. Mandelbrot fractal rendered with our GPU at two levels of zoom.

consecutive outputs from each FMA. Then the output buffer
flushes data back into main memory, where the controller
can use it for the next operation. In order to render the
Mandelbrot fractal on hardware, we additionally implement
a dual frame buffer for seamless transitions across frames.

See Figure 3 for a full block diagram of our design.

2.1. Controller: Programming the GPU

We designed a custom ISA (instruction set architecture)
for our GPU, along with a lightweight pre-processor and as-
sembler to convert human-readable, assembly-style program
files into machine code that the GPU can read. To execute
program logic, the controller module acts as a finite state
machine to run ISA commands like a small CPU, with 16
private registers of 16 bits at its disposal.

For example, the following instructions describe a loop:

xor 0 0 # zero out register 0
addi 1 0 7 # set register 1 to 7
addi 0 0 1 # increment register 0
bge 1 0 # check 7 >= register 0
jump 2 # if so, loop back
end # finish when loop done

The lightweight pre-processer and assembler would
translate these instructions into the machine code below:

https://github.com/Arongil/FPGA-GPU


Figure 2. Our ISA supports 32 bit instructions with an op code (4 bits),
three registers (4 bits each), and an immediate value (16 bits).

0x20000000
0x31000700
0x30000100
0x41000000
0x50000200
0x10000000
0x00000000

The bge and jump commands, used above, introduce
control flow based on register values, making the controller
Turing-complete. Other ISA commands such as load and
write send data to the FMAs in a single-instruction mul-
tiple data (SIMD) paradigm, enabling parallelism.

The controller reads commands in from an instruction
buffer implemented as a dual-port BRAM. Because BRAM
reads take two cycles, the controller executes one command
every two cycles. In the future, we could use prefetching to
execute one instruction per cycle.

The pre-processor presents three main quality-of-life
features. First, it allows the user to use comments (de-
limited by #) and newlines freely in the program. Sec-
ond, it can an convert immediate number, written like
-1.25f, into its corresponding 16-bit fixed point num-
ber, such as 0xFB00. Third, the pre-processor makes it
easier to use jump commands. The problem is that jump
takes an immediate line number, but line numbers are not
stable as the program changes over time. Our solution
is to allow the programmer to place jump markers, for
example [Jump Marker 123], in the comment after
a line in the program. Then, anywhere in the program,
jump (((123))) is processed to substitute the correct
immediate value to jump to the marked line.

See Table 1 for a full list of commands in our ISA. In the
sections below, we describe command implementations at a
high level. We refer the reader to our code for full details.

2.2. Memory: Input Buffer and Output Buffer

The essential problem that memory must address is
storing intermediate values and allowing a control flow to
move data between the computation units. For this storage,
we chose not to use a BRAM because BRAMs are not
compatible with wide SIMD instructions, only allowing at
most two read and write addresses at once. Instead, we store
two registers of width 768 = 3 · 16 · 16 bits, called the input
buffer and output buffer.

The input buffer stores A, B, and C values for each
FMA. The output buffer captures FMA output values. In
particular, we chose to make the output buffer store three
previous outputs from FMAs. These values persist until each
FMA has outputted three new values. This persistence is
important so that we can access previous results for multiple

new computations, as the input buffer is reset with new data
every cycle. Thus, in order to use both old results and new
inputs, we sandwich the FMA blocks between two buffers.

There are two ways to put data into the input buffer.
One way is to load values using load. The load command
sets the A, B, or C values of all FMAs at once. It takes a
register and an immediate diff, setting FMA values to the
register value plus fma_id ∗ diff. The other way, using
loadb (load from buffer), is to push previously computed
results into the input buffer. This case is particularly useful
when computing the Mandelbrot set. We developed a novel
shuffle functionality to be able to rearrange previous results
to set up the next computations. Using one shuffle, we
can permute the previous three outputs from each FMA,
optionally multiplying each number by 2 or −1.

In this way, the FMA inputs come directly from the
program at first, but then FMA outputs can be cycled
through the output buffer back into the input buffer to build
new computations. We do not have extra delay from BRAMs
because all values are stored in registers. In fact, as a design
decision, we decided we needed to not rely on BRAM
because it is unable to support parallel computation.

The memory module is a state machine that executes
the instruction sent from the controller every other cycle.
It is important that memory not execute instructions during
the controller’s off cycle, or else FMAs can spew out two
duplicate values, disrupting the output buffer.

2.3. FMA Blocks: Fixed Point Arithmetic

We implement fused multiply-add (FMA) blocks us-
ing 16-bit signed fixed-point numbers with 2−10 fractional
precision. The FMA block is designed to support chained
addition, such as in dot products. To do so, the module stores
internal registers for its A, B, and C values so that it can
reuse values. A flag called replace_c controls whether
the FMA reuses its C value when memory writes new data,
or whether it uses the new C value. Another flag called
output_can_be_valid controls whether the FMA will
output its result. To implement chained additions, we can
hold replace_c high for the first addition then put it low,
while holding output_can_be_valid low until the last
addition when we put it high.

To multiply two fixed-point numbers, we can treat them
as regular integers and then shift to the right by the num-
ber of decimal places, which here is 10. To compute the
regular multiplication, the FMA performs a full precision
32-bit multiplication mult combinatorially. Every cycle,
if its compute flag is high, it sets its output register to
mult >> 10. To keep track of signedness, the FMA casts
its input wires with $signed. To prevent a leaky interface,
the FMA casts its output logic using $unsigned.

We instantiate 16 FMA blocks for 16x parallelism,
wiring up all FMA outputs to the single output buffer. We
assign each FMA a unique fma_id from 0 to 15. The
SIMD instruction LOAD can use fma_id to load a different
value into each FMA with a single instruction. We prefer this



Figure 3. Full block diagram of the GPU.

approach to the alternative, which is to load data into one
FMA per instruction, defeating the purpose of parallelism.

With the controller, memory, and FMA modules wired
together, the GPU is ready to use. In the next section, we
present a case study to better understand the way our GPU
can be used in practice.

2.4. Computing the Mandelbrot Fractal

The Mandelbrot fractal is defined on the complex plane.
We overlay the complex plane on our display, associating
each pixel (x, y) with a complex number

z0 =
x− xmin

S
+

i(y − ymin)

S′ ,

for some scale factors S, S′ > 0 and window boundaries
xmin, ymin. The Mandelbrot iterative relation is defined as

zn+1 = z2n + z0.

A complex number z0 is defined to lie inside the Mandelbrot
set if |zn| < 2 as n → ∞. The most common tractable
approximation is the escape-time algorithm, which defines
z0 as inside the Mandelbrot set if |zN | < 2 for some large
integer N . We use N between 64 and 128.

In order to perform complex number arithmetic on the
FPGA, we break down a complex number into its real and
imaginary components, z0 = x0 + iy0, where we represent
x0 and y0 as 16-bit fixed point numbers. We iterate using
the following relations:

xn+1 = x2
n − y2n + x0,

yn+1 = 2xnyn + y0.

If x2
N + y2N ≥ 4, we record that pixel as outside the

Mandelbrot set. To add color to the fractal, one common
technique is to track how many iterations it takes before a
pixel diverges. If a pixel takes longer to diverge, we color
it a brighter color along a gradient. If a pixel is inside the
Mandelbrot set, we color it black. These colors give rise to
the lightning-like patterns visible in Figure 1.

We use a lookup table with 16 colors, indexed by
iters >> 3 for iters ranging from 0 to 127, or
iters >> 2 for iters ranging from 0 to 63. Each pixel
requires 4 bits to store its iterations in the frame buffer’s
BRAM. With a 320 by 320 display, the dual frame buffer
uses 819,200 bits, or 102,400 KB. To save space, we bitshift
iters down and make the 16th entry of the color gradient
black. As a result, points that diverge in the sixteenth part
of the range of iters are incorrectly counted as inside
the Mandelbrot set. Fixing this imprecision would require
storing another bit per pixel.

2.5. Parallelizing Mandelbrot on our GPU

Let us dive into the specific way we use our ISA to
perform the Mandelbrot computations in parallel.

We parallelize along the y-axis, computing iterations
until divergence for 16 pixels at once. In our assembly-style
program, we use registers, branches, and jumps to create
two outer for loops iterating over all pixels in the screen.

Before we enter these loops, we set registers for width
(320), height (320), x_min (−1.875), y_min (−1.25),
dx (0.0078125), dy (0.0078125), 16*dy (0.125), and
max_iters (63). We additionally set registers for x_val
(initialized at x_min) and y_val (initialized at y_min).



Instruction Syntax Description
NOP nop Do nothing
END end End execution
PAUSE pause Pause execution until user continues (btn[1])
XOR xor a_reg b_reg XOR a_reg and b_reg, place result in a_reg
ADD add a_reg b_reg c_reg Add b_reg and c_reg, place result in a_reg
ADDI addi a_reg b_reg imm Add b_reg and immediate imm, place result in a_reg
BGE bge a_reg b_reg Set special register compare_reg to 1 if a_reg ≥ b_reg
JUMP jump line_num Jump to instruction at line_num if compare_reg is 1
LOADI loadi reg_a imm Load immediate imm into memory at word index reg_a
LOAD load abc b_reg diff Load b_reg_value + fma_id ∗ diff into each FMA’s A, B, or C value
LOADB loadb shuffle1 shuffle2 shuffle3 Shuffle each FMA’s last three outputs and load into its A, B, and C values
WRITE write replace_c output_result Tell FMA blocks to compute, optionally chaining old C values or not outputting
OR or iters Store iters for each FMA if its C value is greater than 4 (Mandelbrot-specific)
SENDITERS senditers a_reg Send iterations to the dual frame buffer (Mandelbrot-specific)
FBSWAP fbswap Tell the dual frame buffer that the current frame is ready to use

TABLE 1. FULL INSTRUCTION SET ARCHITECTURE FOR THE GPU, CONSISTING OF 15 INSTRUCTIONS.

Once we are inside the two loops, we want to iterate six-
teen pixels in parallel according to the Mandelbrot formula.
Recall that memory’s output buffer stores the previous three
FMA outputs before flushing its contents into memory’s
write buffer. For each FMA, we maintain a useful invariant
for the three values in the output buffer:

1) xi

2) yi
3) xi−1 · xi−1 + yi−1 · yi−1

To set up the invariant, before we enter the inner it-
erations loop, we use LOAD commands to set all FMA C
values to x0. All pixels are at the same x0 value because
we parallelize over columns, so we use a diff value of 0.
Then we WRITE. But because each FMA should compute
a separate y0 value in parallel, next we call LOAD with
y0 and a diff of dy. We write WRITE again. Lastly, for
the magnitude, we compute x2

0 + y20 . To do so, we set all
FMA A values to x0, set all FMA B values to x0, set all
FMA C values to 0, then WRITE with replace_c but not
output_result. Chaining from the previous result, we
set all FMA A and B values to y0 with diff of dy, then
WRITE without replace_c but with output_result.

With the invariant in place, we set a register called
iters to 0 and enter the inner iterations loop for
max_iters steps. Because the invariant means xi and yi
are stored in the output buffer, we can leverage the LOADB
command to shuffle values into place as we need them. In
particular, LOADB allows two special cases in addition to
permuting: it can multiply by 2 or −1. These are useful for
computing x2

i −y2i and 2xiyi. In fact, our current instruction
set provides no other way to manipulate xi and yi across
all FMAs except using the shuffle functionality of LOADB.

Inside the inner iterations loop, we compute xi+1, yi+1,
and then xi · xi + yi · yi in order to maintain the invariant.

1) We compute xi+1 = x2
i − y2i +x0 with two rounds

of FMAs. First, we use LOADB to load xi, xi, 0
into FMA A, B, and C values, followed by LOAD
to place x0 into the FMA C value. We WRITE with
replace_c but without output_result. Sec-
ond, we use LOADB to load −yi, yi, 0 into FMA A,

B, and C values, then WRITE without replace_c
but with output_result.

2) We compute yi+1 = 2xiyi + y0 with one round
of FMAs. We use LOADB to load 2xi, yi, 0 into
FMA A, B, and C values, followed by LOAD with
diff of dy to place the correct y0 into each
FMA C value. We WRITE with replace_c and
output_result.

3) We compute xi·xi+yi·yi with two rounds of FMAs.
First, we use LOADB to load xi, xi, 0 into FMA A,
B, and C values. We WRITE with replace_c
but without output_result. Second, we use
LOADB to load yi, yi, 0 into FMA A, B, and C
values, then WRITE without replace_c but with
output_result.

With the square magnitudes xi · xi + yi · yi in hand,
we call the special instruction OR to check whether any
square magnitudes are greater than 4. For any that are, the
instruction stores iters, the iteration at which the point
diverged. One nuance is that our fixed-point numbers will
overflow because points that diverge continue to diverge
more and more. To address the overflow, for each pixel,
we only store iters if we have not yet stored iters for
that pixel before. One optimization would be to break out
of the loop if every pixel has already diverged. To do so,
OR would need to output a single bit back to the controller.

At the end of the iterations for loop, we call
SENDITERS to send the sixteen computed iteration counts
to the frame buffer. We add 16 to y_counter and 16*dy
to y_val, because we have completed 16 pixels in parallel.

Once we finish both outer loops, FBSWAP tells the frame
buffer that the current frame is ready to display. We then
pause to allow the user to zoom in by pressing btn[1].
When the user presses the button, we zoom in by adding
a small value to x_min (0.16409) and y_min (0.07591),
subtracting the smallest value we can represent with our
fixed-point numbers from dx and dy (0.00098), and then
jumping back to the start of the two outer loops. We chose
these particular numbers to zoom in around a starfish valley
centered at z = −0.563− 0.643i, as seen in Figure 1.



3. Design Evaluation

Latency and Throughput We have low latency per
cycle, but the controller only process a command every
two cycles. This bottleneck lowers the throughput of our
system by half. We chose to make the controller a finite
state machine to make it easier to reason about, although
it would be possible to increase throughput by executing
multiple instructions at once. Our design does not require
pipelining because the FMA computation already fits within
one clock cycle. A future improvement would be implement
prefetching so that the controller can process one command
every cycle or even process several commands at once.

BRAM and DSP Usage We utilized 37.33% of available
BRAM and 15.00% of available DSPs, as well as 37.03%
of LUTs and 7.18% of slice registers. Our FMA blocks
are logic-hungry because we demand single-cycle reads and
writes from the input and output buffers. Using BRAMs for
the input and output buffers would reduce LUT usage, but
it would defeat the purpose of parallelism because BRAMs
only support at most two reads and writes at once. Similarly,
all our BRAM utilization comes from our frame buffer prior
to HDMI. We already store a lean representation of color
in four bits, so we do not believe we can reduce BRAM
usage. In terms of congestion, although we have a few very
long registers (768 bits for all FMA inputs), every triplet of
words (48 bits) acts independently. As a result, Vivado is
able to synthesize lines that do not need to stay physically
close, making congestion not a concern.

Timing We ran on the HDMI clock (74.25 MHz, period
13.468 ns). After Vivado optimized our design, we had a
Worst Negative Slack (WNS) of 1.031 ns and Worst Hold
Slack (WHS) of 0.018 ns. To improve timing, one step
would be to pipeline the FMA’s combinatorial multiplica-
tion. Another step would be to pipeline the FMA output
registers so that Vivado would not need to synthesize them
using logics because of the single-cycle write and read
constraint. We ran preliminary experiments using 44-bit
fixed point numbers, but these did not meet timing. We have
not tried using 32 FMAs, but our FPGA has the necessary
resources and it is likely we would meet timing.

Deliverables We began with two main goals: (1) our
GPU should be able to multiply large matrices and (2) our
GPU should be able to render the Mandelbrot fractal with
16x parallelism, a gradient of colors, and at more than 1
frame per second. At the end, our GPU is indeed able to
multiply matrices and render the Mandelbrot fractal. The
Mandelbrot frame rate is 3 FPS (depending of course on
max_iters, which is by default 63). Because we imple-
mented an instruction set, our GPU is general-purpose and
can do more than we have tested on it so far. Thus, for matrix
multiplication we fully met our goals. For Mandelbrot, we
met all our goals except to reach 60 FPS. But we are still
very happy with the frame rate as is, because the Mandelbrot
set is computationally intensive. With 10 FLOPs required
per iteration per pixel, rendering one frame requires an
overall 64.5M FLOPs (for max_iters of 63). We believe
that further optimizations as outlined above, along with short

circuiting out of the inner loop when all pixels have already
diverged, would be sufficient to reach around 30 FPS.

4. Team Member Contributions
Early in the project, Hanfei extensively researched real-

world GPU designs and read documentation. Hanfei set
up several meetings with Darren for input on our block
diagram. Laker set up a meeting with graduate student
Andrew Feldman to consult on GPU design.

Laker and Hanfei jointly designed the FMA module.
Laker developed the controller as a finite state machine and
wrote the Python compiler from assembly-style language
into machine code. Hanfei developed the two versions of
memory module, one without FSMs and one as an FSM,
the latter being used as the foundation of the current mem-
ory module. Hanfei implemented the commands LOADI,
SENDL, LOADB, WRITEB and testbenched them. Hanfei
also wrote the HDMI module. Laker implemented the mem-
ory commands LOAD, the new LOADB, and WRITE.

Hanfei and Laker jointly designed the shuffle function-
ality in the input buffer, which was crucial for Mandelbrot.
Laker wrote the assembly-style program that computes the
Mandelbrot set. Additionally, Laker debugged extensively in
simulation. When we encountered bugs on hardware, Laker
built a system to step through the assembly program with
checkpoints, including the ability to inspect any register in
the program by using switches on the board. In effect, the
debugging setup created a testbench on hardware. Laker also
wrote the program extension that allows zooming in.

Hanfei created the the top level diagram for the final
report. He wrote sections 2.2, 3, 4, and 5. He also created
Table 1 and Figure 3. Laker created Figure 1 and Figure
2. He wrote sections 1, 2.1, 2.3, and 2.4. Hanfei and Laker
collaborated on section 2.5 and both proofread the report.

5. Retrospective
Testbench, testbench, testbench! Due to our testbench-

ing, when we compiled our program and flashed it on to
hardware, there were only a couple minor bugs, and within
24 hours of our first compile, we had a Mandelbrot display
that was almost correct. However, we spent too much time
in the initial design and implementation stage trying to
make our design general purpose. When we began to imple-
ment the Mandelbrot fractal, we ran into several roadblocks
that actually provided a direction for what new features
to implement, expanding both the generality of our GPU
and its specific usefulness for Mandelbrot. In hindsight, we
should have put our design on hardware sooner. Creating a
hardware debugging system was critical to reduce debugging
from O(∞) to O(n).
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