FPGA-Based Real-Time ADS-B Scanner

Youran Gao, Hasan Zeki Yildiz, Yichen Gao

Abstract—Automatic Dependent Surveillance-Broadcast (ADS-
B) is an aircraft surveillance system that is installed on most
aircraft. The ADS-B system is used by air traffic control, in-
air collision avoidance systems, and other similar applications.
The messages are transmitted over UHF radio at 1090 MHz
using a standardized scheme published by the International Civil
Aviation Organization (ICAO). In our system, the signals are
captured using a Software Defined Radio (SDR), digitized using
a Raspberry Pi microcomputer, and processed on a AMD Xilinx
Spartan 7 FPGA platform in real-time. The signals are then
visualized over an HDMI interface to display aircraft locations
and information on a monitor. The system offers low-latency and
low-power visualization and processing of ADS-B data packets.

Index Terms—Automatic Dependent Surveillance-Broadcast,
Field Programmable Gate Array

I. INTRODUCTION

Automatic Dependent Surveillance-Broadcast (ADS-B) sig-
nals, emitted periodically by aircraft transponders, provide
critical navigational information such as position, speed, and
heading. This project aims to achieve real-time decoding
of these signals using FPGA. Further, utilizing an HDMI
interface, the decoded information is visually presented on a
screen, enabling accurate tracking of aircraft locations.

ADS-B is used in critical aviation safety applications such
as air traffic control, the Traffic Collision Avoidance System
(TCAS), and fleet management. Real-time processing is not
just a technical requirement but a crucial necessity, as any
interruptions during key events, particularly during traffic
avoidance alerts, could have serious implications. Our project
aims to provide a proof of concept for a low-latency decoding
system using FPGA.

II. THE ADS-B MESSAGE
A. Radio Transmissions

ADS-B signals are transmitted at 1090MHz by aircraft
up to twice a second, and present a unique challenge in
processing. To process the data, we determine the noise floor
to establish a practical threshold for distinguishing between
“high” and “low” signals. Given that each bit is transmitted
every microsecond and the entire ADS-B message takes only
120 microseconds, the theoretical bandwidth of 1 Mbit allows
for the potential transmission of approximately 8300 messages
per second. To ensure that all messages are processed in real
time, we must commit to a throughput of no less than 8300
messages per second. The structure of the downlink message
is shown in Figure [I]

Manuscript received December 13, 2023; Youran Gao, Hasan Zeki Yildiz,
and Yichen Gao are with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology (email: youran,
hzyildiz, ygao7 @mit.edu).

Preamble (8 us)

_-I-!]::I-!ﬂ:::

Data (56 or 112 us)

UL

S
10 10 00 01 01 00 00 00|10 01 10 10 01 O1 10 01
101100 10

Fig. 1. An example of ADS-B message [1]

B. ADS-B Data Format

An ADS-B packet is 128 bits long and consists of six
components:

e 16 bit preamble

¢ 5 bit downlink format

e 56 bit message (including a 5 bit type code)
e 24 bit ICAO code

e 3 bit CA (transponder capability)

e 24 bit CRC

We will highlight the components that are most important
to the decoding process, which are the message, ICAO code,
and the CRC.

C. Type Code

The ADS-B system utilizes a 5-bit type code for message
identification, of which there are 8 unique message types, and
of which we specifically concern ourselves with 5. Despite the
existence of additional message types in the standard, not all
are actively used by aircraft. Each message is comprised of
51 bits, and the message types of interest encompass crucial
information such as aircraft identification, surface position,
airborne position, airborne velocities, and aircraft status.

D. ICAO Code

ICAO assigns a unique 24-bit code to every aircraft for their
transponder, a designation that remains fixed throughout the
entire lifespan of the aircraft. These codes are systematically
organized by the country of registration. Of particular note is
that every ICAO code on a U.S. registered aircraft starts with
0xA, a fact we will utilize in our design.

E. CRC Error Correction

The cyclic redundancy check (CRC) error correction bits in
ADS-B provides a robust means of error detection, allowing
us to identify and disregard messages containing errors. Fur-
thermore, the system is designed to allow for the correction

of 1-bit errors. However, since the radio frequency used for
ADS-B transmission is in the Ultra High Frequency range, the
error rate is quite high. In addition, there is no synchronization
between planes. Despite this, since most messages are re-
broadcasted within one second, and there are only a limited
number of aircraft present in any given area, this does not
present a issue in practice.

III. HARDWARE INTERFACE

The hardware interface of the device is as follows. The
analog signals that are broadcasted from aircraft are received
by our SDR, which communicates with the Raspberry Pi over
USB. Then, the Raspberry Pi translates the analog signal into
a stream of digital signals to be sent over the SPI interface to
the FPGA. The FPGA then processes this signal, calculates the
aircraft information, and then outputs the result over HDMI
to a monitor.

Signal SDR USB Raspberry Pi 3 spI FPGA HOMI Display
receive ADS-B analog to digital calculate ADS-B radar monitor
plane signals translation information showing planes

Fig. 2. Physical Hardware Interface of the System

A. SDR to SPI

A simple program was written in C to run on the Raspberry
Pi to interface between the SDR and the FPGA. The module
tunes the SDR to 1090MHz and sets a sampling rate of 2
Mbits/s. As the data is received, a noise floor is calculated,
and the analog signal is converted into a digital signal through
the scheme detailed in [I]]. This digital signal is then sent to
the FPGA over SPIL.

IV. MESSAGE DECODING AND PROCESSING

A. Message Extraction and Error Correction

In this project, the SPI_rx module, previously employed
in other labs, has been repurposed for the ADS-B system.
This module operates with a SPI clock speed of 1IMHz and

incorporates a combinational CRC error-checking mechanism.
Upon successful decoding and validation, the module commu-
nicates the ICAO code, ADS-B message, and type code to the
message multiplexer.

sdi icao 24
Message Extraction
and

BRAM

msg 51 Message addr 13
ype 5 Muitiplexer [~ - = 7

addr 13

7
data 48 a

A (write) B(read)
WIDTH: 48 bits
DEPTH: 23

sci Error Correction

Raspberry Pi | FPGA input_data information
51 48

Airplane Information
(each of the blocks is a separate module and takes in data and output information separately)

! Surface Airborne Aircraft
Callsign J { Position Position J [Velocity J

Aircraft

Status Target

1 MHZ
(SPI Clock) 100 MHZ

Fig. 3. Block diagram of the ADS-B Decoder

B. Message Multiplexer

After the error correction and message extraction, the
message multiplexer coordinates the processing of the ADS-
B message. Based on the 5-bit type code, the multiplexer
sends the message to the appropriate module to process the
information received. This could be the callsign, airborne po-
sition, airborne velocity, etc. These modules are implemented
according to the ADS-B specification. Once it receives the
processed information back from the airplane information
decoding modules, it is stored to the BRAM.

To calculate the BRAM address the information is stored to,
we take the ICAO address of the aircraft and hash it from 24
bits to 10 bits. It is unlikely for there to be any hash collisions
as we expect to pick up signals from 30-50 aircraft at any
given time. The last three bits of the BRAM address is based
on the type code, as there are 8 types of information that is
transmitted over ADS-B. In total, the BRAM address is 13 bits
(10 bits from hashed ICAO address, and a 3 bit type code).

C. ADS-B Message Decoding Modules

There are different modules that correspond to the several
types of ADS-B messages that can be sent by aircraft. Each
of these modules has a different implementation based on the
ADS-B specification.

Some modules are relatively straightforward, while others
require significant processing. Of particular note is the module
that processes aircraft location. Due to the encoding used by
ADS-B, there is be non-trivial amounts of math calculations
that are required, which necessitates the use of floating-point
and CORDIC IP modules.

In total, we have 5 submodules, each of them takes in 52
bits long messages and output up to three 48 bit outputs of
decoded information.

e callsign: We exclude the 3 bit aircraft category and
encode the 8 character callsign using 6 bits. Then, it is

converted into our own encoding for use by the graphics
pipeline.

e airborne_position: The airborne position of the
aircraft can be calculated through a method known as
“locally unambiguous position decoding”. This method
involves knowing a reference position within 180 nautical
miles of the airplane. As we know that our receiver is not
strong enough to receive signals from more than even 100
nautical miles away from the receiver, it is appropriate
to use MIT’s coordinates as the reference location. This
approach is less complex than the method known as
“globally unambiguous position decoding”, which does
not require a reference location but does requires two
different messages (which are received at different times).
This necessitates the use of more BRAM storage on the
FPGA and complicates the processing required.

Additionally, we calculate the altitude in this module. The
decoding process for altitude is more straightforward, and
aircraft sends altitude information in either barometric
altitude (based on atmospheric pressure) or GNSS (based
on GPS satellites). We decode accordingly and convert
the result to feet, following the convention used in this
project.

e surface_position: Surface position is similar to
airborne position but does not contain altitude; instead, it
includes the speed of the aircraft on the ground. We use
exactly an identical procedure to decode the position in
this module as the airborne position module.

e aircraft_velocity: Aircraft velocity is transmitted
as two separate components. There is a north-south
component and an east-west component. This allows us to
calculate both the velocity (by calculating the magnitude
of this vector), as well as the heading (by calculating
using inverse tangent).

e status: The aircraft operational status message is de-
signed to provide various ancillary information about
an aircraft. Different versions of the ADS-B standard
have different format for the status message. In our
implementation, we use version 2 of the specification,
which is the most widely adopted version. This ancillary
information contains properties about the aircraft itself,
such as the navigational accuracy, barometer accuracy,
operational mode, among others.

D. Aircraft Information BRAM

This BRAM of width 48 bits and depth 2'3 bits is the
primary storage location for all processed aircraft information.
The write port is clocked at 100 MHz, and data is written
by the message multiplexer. The read port is clocked at the
72.5 MHz (HDMI clock speed), and is read by the graphics
pipeline.

Given the constraint of limited BRAM capacity, our project
employs a hashing strategy for [CAO codes, since the number
of unique planes 224 exceeds available resources. The chosen
hash function involves truncating the initial four bits (typi-
cally ‘1010’ for U.S. planes) and XORing the top 10 bits

with the bottom 10 bits. This approach significantly reduces
the required storage capacity, while reducing the chances of
hash collisions. To accommodate the different message types
associated with each plane, a 3-bit message type code is
implemented, allowing for the storage of up to 8 distinct
message types per aircraft.

Therefore, our BRAM address has length 13 (10 bit ICAO
hash + 3 bit message type code). In Figure 4] we have detailed
the bitfields of each of the messages we store. The timestamp
is based on a 10ms counter starting from the time the FPGA
has been powered on. The callsign is stored using an ASCII-
like encoding with 6 bits per alphanumeric character. The
heading, horizontal rate, vertical rate, altitude, display X, and
display Y are stored using fixed point integers. The latitude
and longitude are stored using single-precision floating point
numbers.

47

timestamp

47 42

0 callsign

47 38 29 16

0 | heading | horizontal rate vertical rate
47 16
latitude altitude
47 32
0 longitude
47 21 10
0 disp x disp y

Fig. 4. BRAM format for each type of aircraft information. Each row
represents a different message type code, starting with O (top) and ending
with 5 (bottom)

V. GRAPHICS PIPELINE

The graphic pipeline is tasked with visualizing the ADS-B
data and producing a video signal over HDMI. The visu-
alization consists of sprites representing each plane over a
color map of the state of Massachusetts and its immediate
surroundings. The plane sprites show the location of each
plane, the 7 character alphanumeric call sign, the heading in
degrees and as an arrow, and the airspeed in knots. Figure [3]
below shows the general data flow in the graphics pipeline.

A. Plane Lookup

During the active draw period of the frame (including
horizontal blanking intervals) this module iterates through the
entire Airplane Information BRAM. For each plane entry, it
checks the timestamp to make sure the messages enclosed are
newer than 60 seconds. Once a plane which has been updated
recently is found, it will then read the rest of the entry related
to that plane from the BRAM. If any required data field is
incomplete, the module advances to the next airplane.

Cleanup
Fifo

21 Screen Coordinates

Sprite
Draw

Video Control
Signals

Plane
Lookup

Draw Planes
Frame Buffer
82 [FIFO 82 Draw J

Plane Plane T l

Data Data video Control

Signals
Lab4

— : HDMI
Pipeline

Airplane
Data +
BRAM !

Fig. 5. Block diagram of the Graphics Pipeline

Once an entire plane’s worth of data is gathered, the Plane
Lookup module puts it into the Draw FIFO to be drawn in the
next vertical blanking interval. This continues until the module
has gone through all 1024 potential plane entries, after which
it halts until the next active draw interval.

81 71 61 19 10 0

scrng | SCrny callsign spd | hdg
Fig. 6. Bitfield diagram of the data in the Draw FIFO
B. Draw FIFO

The Draw FIFO is a BRAM FIFO generated using the
Xilinx FIFO Generator 13.2 IP module. It is 82 bits wide
and 64 entries deep. This depth was chosen to limit BRAM
usage while not limiting the number of airplanes that could
be drawn. It exposes to the modules using it an empty signal
and a valid signal.

We must clear all planes on the screen and draw the fresh
planes during the vertical blanking time, as this is the time
when the signals in the visible portion of the screen are not
being drawn.

Since the vertical blanking time is much shorter than the
active draw time, we must not waste any cycles during the
vertical blanking time. The use of the Draw FIFO allows us to
complete the plane fetching process during the lengthy active
draw time.

C. Planes Draw

The Planes Draw module is the main module coordinating
the cleaning and drawing of the plane sprites to the Frame
Buffer. It activates during the vertical blanking interval and
first cleans the Frame Buffer. For cleaning, it holds a Cleanup
FIFO that holds the screen coordinates of all planes drawn in
the previous frame.

After cleaning, it draws the planes located in the Draw
FIFO, putting the coordinates of each plane drawn into the
Cleanup FIFO to be cleaned during next frame.

The states of the module are detailed in the state transi-
tion diagram in Figure [/| When sprite_draw_ready is

asserted, the Sprite Draw module is signaling that it can accept
a new sprite.

blanking &
~draw_fifo_empty &
~cleanup_fifo_empty

blanking &
~draw_fifo_empty &
cleanup_fifo_empty

sprite_draw_ready &
cleanup_fifo_empty &
draw_fifo_empty

sprite_draw_ready &
=cleanup_fifo_empty

cleanup_fifo_valid

sprite_draw_ready &
cleanup_fifo_empty
& ~draw_fifo_empty

sprite_draw_ready &
~draw_fifo_empty

DRAW
WAIT
draw_fifo_valid

Fig. 7. State Transition Diagram for the Plane Draw Module

sprite_draw_ready
& draw_fifo_empty

D. Cleanup FIFO

The Cleanup FIFO is another BRAM FIFO generated using
the Xilinx FIFO Generator 13.2 IP module. It is 21 bits wide
and 64 entries deep.

E. Sprite Draw

Sprite Draw module is tasked with turning the plane data
coming from the Planes Draw module into actual sprites in the
Frame Buffer. It uses sprite based text, numbers, and arrows
to draw each sprite into the Frame Buffer. The writing is
done 8 pixels at a time, both for simplicity and for speed. It
uses a combinational implementation of the Double-Dabbble
algorithm (adapted from RealDigital website [2]) to turn the
binary heading and speed data into decimal text. It also uses
a simple combinational LUT to pick the correct arrow for the
heading.

Besides a draw mode, it also has a clean mode used during
the clean up phase. In clean mode, it still goes over the same
frame locations, except instead of the pixel data from the Sprite
Sheet, it simply writes all zeroes.

The Frame Buffer write addresses are protected against
wrap-around on the edges of the screen. Each Sprite takes
approximately 130 cycles to draw.

&
DIGIVI1l
111 205

Fig. 8. An example sprite for a plane with the call sign “DIGI741” that is
moving at 111 degrees at a speed of 205 knots

F. Sprite Sheet

The sprites used by the Sprite Draw module reside in a
BRAM module. There are 48 sprites in total: 26 letters, 10
digits, 8 arrows, 1 small square (unused), period, comma, and
a space character.

G. Frame Buffer

The Frame Buffer is a large chunk of BRAM containing
a 1-bit 1280-by-720 pixel image overlay, containing all of
the plane sprites. The data is laid out in 115,200 horizontal
lines of 8-pixels each. This buffered drawing method allows
us to separate the drawing and fetching of plane data, greatly
simplifying the drawing process. It is also by far the biggest
chunk of BRAM this project uses, accounting for over half of
our usage.

H. Background ROM

This is another large chunk of BRAM, containing a 1-bit
640-by-360 pixel map of the Greater Boston Area. Since the
background resolution is less important compared to the sprite
text resolution, it is only kept at a quarter resolution to save
memory. It is used by the Renderer.

1. Renderer

The Renderer reads the pixels from both the background
ROM and the Frame Buffer, and renders them over HDMI.
For each pixel it first checks if it is a filled in Frame Buffer
pixel. If so this pixel is colored in with the text color.

If not, it colors in the pixel according to the Background
ROM. Since both the background ROM and the frame buffer
use 1 bit color, this module is where the 24-bit RGB color is
added.

J. HDMI Output Pipeline

This last module is replicated from Lab 4, and is tasked with
producing the HDMI signals. It produces the frame control
signals, such as hcount, vcount, and blanking that is
used. The color values created by the renderer is turned into
the TMDS signals needed for HDMI in this module.

VI. ANALYSIS OF RESOURCE UTILIZATION

The Spartan-7 XC7S50 FPGA we utilized contains 75 dual-
port BRAM tiles at 36 kilobits each. It further has 120 DSPs
for digital signal processing.

In terms of BRAM tiles, the usage is broken down as
follows. For ADS-B decoding, the aircraft information BRAM
has a size of 48 x 2'3 = 393.2kb, which requires 11 BRAM
tiles. For the graphics pipeline, the frame buffer has a size of
1280 x 720 = 921.6kb, which requires 26 BRAM tiles. The
background ROM consists of 640 x 360 = 230.4kb, requiring
7 BRAM tiles. The sprite sheet, which has a size of 3 kilobits
requires 0.5 BRAM tiles. Finally, we use 10 BRAM tiles for
FIFO logics. In total, the 54.5 BRAM tiles out of 75 available
(72.6%).

In terms of DSPs, we use 19 out of 120 available DSPs
(15.8%). They are used for floating-point multipliers, adders,

subtractors, and CORDICs that are required to decode the
ADS-B information.

It is difficult to optimize the amount of BRAM that is used
as the most of the BRAM is used by the frame buffer and
background ROM, which are required for the HDMI output.
Depending on what specific fields are required by the end user
of the ADS-B information, it is possible to reduce number of
fields stored, and thereby reduce the amount of BRAM used
for storing aircraft information.

VII. TIMING REQUIREMENTS

ADS-B signals have a maximum data rate of 1 Mbit/s, with
each message lasting 120 microseconds. In adherence to the
real-time processing requirements, our system must be de-
signed to process each message in less than 120 microseconds
to ensure reliable processing.

A theoretical critical latency can be calculated by counting
the number of cycles required for a worse-case message to
get from the SPI input to the Aircraft Information BRAM.
As long as the data can make it to the Aircraft Information
BRAM in less than 120 microseconds (12,000 cycles at 100
MHz), we can be sure that no information will ever be lost.

The critical latency occurs when an “airborne location”
message is received due to the use of many multipliers and
dividers along this path. From the SystemVerilog logic and us-
ing the Floating-Point Operator v5.0 Datasheet, we determined
that the maximum theoretical latency for this message is 230
cycles. This is less than the requirement of 12000 cycles, and
represents a theoretical maximum throughput of 55 Mbit/s.

To verify that the FPGA can reliably process data at the
maximum ADS-B data rate of 1 Mbit/s, we designed a stress
test program to simulate this scenario. The test program
written in C contains a pre-created dump of valid ADS-B
messages captured over a two hour period, and interfaces
with the FPGA over SPI. The dump contains 7,813 ADS-B
messages at 128 bits each, which equates 1 megabit of data.
During the test, the data was sent over SPI at a target rate of
1 megabit per second. All data was successfully processed on
the FPGA at this data rate.

Accounting for delays from the software and the latency of
the SPI chip on the Raspberry Pi, the Pi was able to send
1 megabit of data in 1.02 seconds, representing an actual
throughput of 0.98 Mbit/s. Therefore, we are confident that
we have met the latency requirements.

The worst slack time for the design was 1.835 nanoseconds.
This is acceptable within the context of the fastest clock
domain (100MHz) of the design.

VIII. RETROSPECTIVE

The design can accommodate most use cases of ADS-B.
Instead of a graphics pipeline, one can use another module
more suited to their application’s specific needs. For example,
one could design a module for collision avoidance for use in
aircraft avionics, or a module that takes the ADS-B data and
uploads it to flight tracking websites. Since we do not perform
any special treatment of the data in the Plane Information

yegiess

H{S1,
yos2180

E393190é08
(5 Fe

Y3358,

HRL
082529

5%8°884

Fig. 9. Example of the system tracking various planes around Boston

BRAM, one can connect the read port of the Plane Information
BRAM to any application of their choosing.

In terms of the project checklist, we have reached all of
the goals in our goal, as we have successfully implemented
all five ADS-B processing modules. We have also success-
fully rendered a real-time updating map of planes with their
callsign, speed, and headings. We also completed one of the
stretch goals to display the heading of each plane using a
rotated arrow sprite.

For the arrow sprites visually representing the heading, it
was suggested to us that we implement it functionally using
a module. However, since each sprite is only 8-by-8 pixels
big, we found through preliminary testing using image editing
software, that any angle that is not a multiple of 45° looked
unintelligible in a 1-bit color context. This only allowed us to
have 8 arrow directions, which could easily fit into our Sprite
Sheet. We ended up going with this option.

The biggest bottleneck in the graphics pipeline was the
available BRAM. The amount of BRAM limited both the peak
resolution (720p), and the time we had available for drawing
each frame. With more RAM, a dual frame buffer system could
have been implemented. This would increase the time available
for the drawing from the current 66645 blanking time to the
whole 16.5 ms frame time. In a future implementation we
could move the Frame Buffer from the BRAM to the onboard
DDR3 memory to solve this issue.

IX. CONTRIBUTION STATEMENT

Youran worked on the the C code required to interface
between the SDR and the FPGA, the message multiplexer,
the SPI receiving and error checking, and test-benches for the
decoding modules. Yichen worked on the logic for decoding
ADS-B information in each of the five submodules. Hasan
worked on the graphics pipeline, including the sprite and plane
drawing logic, as well as the plane lookup for interfacing with
the BRAM.

X. SOURCE CODE

Both the SystemVerilog code as well as the C code used
for driving the SDR are available at:
https://github.mit.edu/youran/fpga—adsb

XI. ACKNOWLEDGEMENTS

We express our gratitude for the advice and guidance
provided by the 6.2050 teaching assistants, Joseph Feld, and
the instructor, Joe Steinmeyer throughout the process of im-
plementing this project.

REFERENCES

[1] J. Sun, The 1090 Megahertz Riddle, 2nd ed.,
https://mode-s.org/decode/content/introduction.html

[2] “Binary to BCD and BCD to Binary” www.realdigital.org
https://www.realdigital.org/doc/6dae6583570fd816d1d675b93578203d

https://github.mit.edu/youran/fpga-adsb
https://mode-s.org/decode/content/introduction.html
https://www.realdigital.org/doc/6dae6583570fd816d1d675b93578203d

	Introduction
	The ADS-B Message
	Radio Transmissions
	ADS-B Data Format
	Type Code
	ICAO Code
	CRC Error Correction

	Hardware Interface
	SDR to SPI

	Message Decoding and Processing
	Message Extraction and Error Correction
	Message Multiplexer
	ADS-B Message Decoding Modules
	Aircraft Information BRAM

	Graphics Pipeline
	Plane Lookup
	Draw FIFO
	Planes Draw
	Cleanup FIFO
	Sprite Draw
	Sprite Sheet
	Frame Buffer
	Background ROM
	Renderer
	HDMI Output Pipeline

	Analysis of Resource Utilization
	Timing Requirements
	Retrospective
	Contribution Statement
	Source Code
	Acknowledgements
	References

