
SIFTPGA
Evelyn Fu

Electrical Engineering and Computer Science
MIT

Cambridge, US
evelynfu@mit.edu

Shruti Garg
Electrical Engineering and Computer Science

MIT
Cambridge, US
sgarg@mit.edu

Abstract—In this paper, we present an implementation of the
Scale-Invariant Feature Transform (SIFT) algorithm in System
Verilog to be run on an FPGA. This algorithm, used in many
computer vision pipelines, executes a number of computation
heavy steps on many pairs of images to detect and match
keypoints across video frames. We design a customized hardware
system that parallelizes these tasks and accelerates the SIFT step
of a vision pipeline that can be easily integrated into the rest of
the vision pipeline in software. We also present our evaluation
metrics and analyze the performance of our system compared
to strictly software implementations. Our code can be found at
https://github.com/shrutigarg914/SIFTPGA

I. INTRODUCTION

Scale-Invariant Feature Transform (SIFT) is a classic and
widely used method in computer vision for describing, detect-
ing, and matching features between images of the same scene,
taken at different angles and scales. It is often used as one
step in the pipeline for many computer vision applications,
such as object recognition, robotic mapping and navigation,
image stitching, 3D modeling, gesture recognition, and video
tracking. As engineers and researchers delve into larger-scale
vision problems, it is important to keep computation times low
in order to facilitate efficient iteration and improvement. In
addition, computational efficiency also becomes a bottleneck
for online systems, which often have to trade performance in
order to keep up with live data. Therefore, we wanted to in-
vestigate designing custom hardware systems for foundational
vision algorithms in order to speed up entire vision pipelines,
focusing on SIFT.

A. Algorithm Overview

The main steps of the algorithm given an image are as
follows, as described in the OpenCV docs [1]:

1) Initial detection of Scale-invariant extrema.
a) Build the scale space or Gaussian pyramid for the

image. Refer to Fig 1 for a visual of the process.
The blur is increased along the row (the green
arrow). The second last image in each row is down
sampled, then used as the first image in the row
below (blue arrow).

b) Apply the Difference of Gaussian (DoG). That is,
compute the difference of each individual pixel for
pairs of adjacent images in a row. Note that this
step might call for attention to representation of
the floating point numbers and bits used, for the

Fig. 1. Gaussian Pyramid. Image courtesy of [2]

Fig. 2. Extrema in the Difference of Gaussian Pyramid. Image courtesy of
[1]

values of these differences are quite small for the
majority of the image.

c) Identify pixels whose DoG value is greater than all
26 of their neighbours (shown as green dots in Fig
2). These local extrema form our initial array of
potential keypoints.

2) Refining Keypoints
a) If the intensity of the location of the pixel is

less than the threshold defined then this pixel is
discarded.

b) To remove edges, compute the Hessian matrix to
compute the principal curvature.

3) Building Descriptors
a) To add to the scale invariance, an orientation

is computed for rotational invariance. To do so,
compute the gradient magnitude and direction for



Fig. 3. High level overview of the system (Evelyn)

the neighborhood around each keypoint. Create a
histogram with 36 bins for 360 degrees and add to
each bin a value proportional to the magnitude of
the gradient for all the pixels around a keypoint.
The highest peak is used to calculate the orientation
of the keypoint.

b) A 16x16 neighbourhood around the keypoint is di-
vided into 16 sub-blocks of 4x4 size. For each sub-
block, an 8 bin orientation histogram is created.
These 128 bin values are represented as a vector
to form a keypoint descriptor that can be compared
across frames to stabililse matches.

4) Keypoint Matching
a) Now with keypoints in both images, a nearest

neighbour search associates matching keypoints
between the frames.

b) To improve matching, get rid of matches where
the second closest match is too close (has a ratio
of greater than 0.8) to the first one as it might just
be the result of noise.

B. Design Specifications

There are certain fixed parameters in the system design
chosen based on memory and time limitations:

1) Image Size: Inputs assumed to be 64 by 64 8 bit
greyscale images.

2) Pyramid Size: We are using a fixed-size pyramid of 3
octaves and 3 levels of blur per octave.

II. HIGH-LEVEL SYSTEM OVERVIEW

Figure 3 shows the setup of our system and its integration
with an external computer, running a software vision pipeline,
at a high level.

III. COMMUNICATIONS (SHRUTI)

The data transfer between the computer and the system
happens over serial UART. Though slow, UART was chosen
for ease of implementation. There are two major use cases
for this line of communication: during operation/evaluation
and during debugging/development. There are two main forms
of structures of data we will want to transmit: images and
lists of values. For operation, the system needs to be able
to receive a 128 by 128 greyscale image and transmit its
calculated keypoints and matches. For debugging and testing
during development, it would be useful to transmit images of
different sizes from the FPGA board to the computer, and to
receive images in return so we can verify our modules.

On the computer, the transmission of images and reception
is done by python scripts. These scripts are relatively easily



Fig. 4. Detailed diagram of the Gaussian Pyramid module (Evelyn)

modifiable to receive different outputs. This script does pre-
processing such as resizing the image and converting it to
greyscale. To do the latter, the script takes a weighted average
of the red-green-blue pixel values to convert to greyscale:
0.2126R + 07152G + 0.0722B [3]. The weights account for
perceptual luminance.

On the FPGA, the actual modules handling the protocols are
in verilog and systemverilog based off of the ones generated by
Manta [4]. These modules allow the user to define a parameter
CLOCKS_PER_BAUD, which has been set to 50, and with the
use of the 100MHz clock this leads to a 2MHz baudrate. There
is a start and a stop bit with 8 data bits for a total 10 bit packet.
(There are no parity bits). Therefore all of our data will be sent
in 8 bit widths.

On top of these base modules, there are 3 variations of simi-
lar simple FSMs to transmit images, keypoints and descriptors

when the respective BRAMs are ready. The images are sent
pixel-by-pixel, each keypoint is sent as 2 8 bit values (one
for each coordinate), and the descriptors are sent as 12 8 bit
packets.

IV. KEYPOINT DETECTION

A. Gaussian Pyramid (Evelyn)

A detailed diagram of our design for the Gaussian Pyramid
module can be seen in Fig 4. This module reads in data of the
original video frame image and determines the pixel values for
each image in the Gaussian Pyramid which is outputted to be
stored to 9 pairs of identical BRAMs (18 total) at the top level,
one for each image of the pyramid. We duplicate the BRAMs
so they can be used simultaneously by the Difference of
Gaussian and Gradient Pyramid modules. Within this module
are 6 BRAMs meant to temporarily store intermediate images



within the pyramid, at each octave. We use these buffers since
while computing the next image in a pyramid, we need to
maintain the ability to read from the previous image while
storing the new image. To create the images in the pyramid,
we have one image blur module for each octave and one image
resize module for each octave transition.

The Gaussian Pyramid design can be broken up into the
following portions:

1) FSM: The Gaussian Pyramid module computes each
image in the pyramid following an FSM, where the states are
IDLE and one state for each image in the pyramid, named as
O[octave]L[blur level]. When we have finished receiving the
original image from UART, a start signal will be triggered,
allowing the Gaussian Pyramid module to move from the
IDLE state to O1L1. When this state transition is made, the
module will begin reading from the BRAM that stores the
original image and store this image, which is the octave 1
level 1 image, both in the first octave 1 buffer and in the
BRAMs for this image in the pyramid at the top level.

Once we have finished reading every pixel of the image, we
transition to O1L2 and trigger the octave 1 blur image module
to start. This blur image module will read from the first octave
1 buffer and directly write the blurred image our to the second
octave 1 buffer and to the according BRAMs at the top level.

Once the blur module signals that it is complete, we transi-
tion to O1L3 and similarly trigger the blur module, except this
time we will read from the second octave 1 buffer and write
to the first octave 1 buffer and out to the according BRAMs
at the top level for this image.

Once the blur module signals it is done again, we transition
to O2L1 and trigger the octave 1 to octave 2 resize module,
which reads the last blurred image from octave 1 out of the
first octave 1 buffer and writes to the first octave 2 buffer and
out to the according BRAMs at the top level.

The same flow of blur, blur, resize, is continued throughout
the rest of the states. We use combinational logic based on
which state we are in to switch which BRAMs the submodules
read from and write to. Since we need the previous image in
a pyramid to construct the next, this process must be done
sequentially.

2) Blur Image: The Blur Image module uses a Gaussian
Blur submodule, which computes the blurred value at a given
pixel in the image by computing a weighted average of the
pixels in the 3x3 neighborhood around that pixel. The code
for computing this weighted average was taken from [5]
and modified slightly. The Blur Image module loops through
each pixel in an image and collects the 9 pixels in the 3x3
neighborhood, taking 18 cycles total for 9 reads. Once these
pixels are collected, the Gaussian Blur submodule, which is
pipelined to take 3 cycles, is triggered. The result of the blur is
written out to the blurred image BRAMs at the original pixel
coordinate. When the blur for each pixel has been calculated
and written out, it pulls the done signal high for one cycle to
tell the FSM to continue.

3) Image Half: The Image Half module uses nearest neigh-
bor resizing to halve the size of the last image in each octave

to use as the first image in the next octave. It iterates through
every other coordinate value, (x, y) in the larger image and
writes the value of that pixel to the address for (x/2, y/2) in
the downscaled image. Once it has finished with the last even
address of the first image, it will pull the done signal high for
one cycle to tell the FSM to continue.

B. Gradient Pyramid (Evelyn)

The gradient pyramid is stored as 18 BRAMs at the top
level. Since we need to know the gradients in the x and y
direction to determine orientation for descriptor generation,
we use 1 BRAM for the x gradient and 1 for the y gradient
for each image in the Gaussian Pyramid. The Gradient module
reads from one image BRAM and writes the x gradient and
y gradient for each pixel out to the corresponding x and
y gradient BRAMs. Therefore, we have 9 instances of the
Gradient module in our top level to calculate each gradient
image in parallel. The Gradient modules are triggered to
start once the Gaussian Pyramid module signals that it has
completed. Inside the gradient module, we use an FSM that
starts in the IDLE state and when triggered, iterates over all
the (x, y) coordinates in each image, reads the pixels adjacent
on the x axis to our desired coordinates in the next two states,
calculates the gradient in the next state and saves it to the x
gradient BRAM, then repeats with the y axis. The gradient is
calculated according to the following equations:

∆x = (px+1,y − px−1,y)/2

∆y = (px,y+1 − px,y−1)/2

Once all coordinates are iterated through, we return to the
IDLE state and pull the done signal high for one cycle.

C. Keypoint Finding (Shruti)

This module takes the gaussian pyramid, and writes key-
points for that pyramid in a BRAM. More specifically, this
module first takes the difference of successive gaussians in
each octave, giving us 6 BRAMs. Then it goes through and
writes the coordinates of all the points in each of these three
octaves that are local extrema (either greater than or less than
all of their neighbours). A general overview is given in Figure
5. Each of the submodules is explained in further detail below.

1) Difference of Gaussian (DoG): Since the Difference of
Gaussian is calculated between blur layers of the same octave,
we parameterize this module for the size of the image at each
octave. It is a simple module that reads the same address from
both the BRAMs it is given and writes their difference in a
new BRAM. As each level only has 3 images, we need 2
instances of DoG per octave. Each DoG These are chained
such that the second DoG modules will start when the previous
ends to handle reading from the middle blur level’s BRAM for
both DoGs in the same octave. For a scaled up version of the
system, we can set these up such that there are two sets of
DoG modules such that all DoG modules in that set read from
unique BRAMs and therefore we can parallelise the generation
of the Difference of Gaussian BRAMs.



Fig. 5. An overview of the module for finding keypoints (Shruti)

2) Find Extrema: In a more general case, this submodule
should take a voxel of 3 by 3 from each octave’s stack of
difference of gaussians to check if its center is an extrema (as
shown in Figure 2. Since we have 2 difference of Gaussian
images in each octave, this requirement reduces down to
needing to look at the 8 neighbours in the same BRAM, the
corresponding pixel in the other BRAM and its 8 neighbours
(for a total of 18 pixels being considered at each checking
step). Note that the pixels on the edges at each scale of the
images (so pixels with less than 9 immediate neighbours)
are not checked for extrema as they will not provide us
enough information to be a keypoint. This module is mostly
implemented as an FSM to read pixel values and output
keypoints as shown in Figure 6, but the actual check for a pixel
being an extremum is performed with a constant cominational
logic once the appropriate values are loaded in. Also, since
there are only 2 images being considered, the module checks
and writes keypoints for both images simultaneously.

When started this module first loads the 18 pixels centered
around (1, 1). Once, loaded if the combinational logic indicates
the pixel in one or both BRAMs is a keypoint, the module will
indicate to its parent module to write the keypoint(s) it outputs
at that cycle. It will then shift the voxel over by one column
(i.e. discard the values from the leftmost pixels, shift the voxel
values to their left neighbours, and then load in the values for
the rightmost pixels in the voxel), and repeat the check and
write. We do this shift to reduce the number of cycles we
spend waiting for reads espescially when we already have 12

of the 18 values we need for the next check. However, when
the voxel hits the right edge of the picture, we will need to
move down a row which means we will have to load in more
than just the rightmost values. We choose to go back to the
start of the next row and load all 18 values (this allows us to
reuse the logic from the first starting state in the FSM). Thus,
we go through the entire DoG image and indicate whenever
we find a keypoint.

3) Keypoint BRAM: The entries into the BRAM are in the
form {x, y, l} where x and y are the pixel number along
the x or y axis, and l is a one bit representing which of the
two DoG BRAMs the keypoint is from in the given octave. To
identify which octave keypoints are from, we write a 0 value
in the BRAM after each octave’s keypoint finder is done and
before the next octave’s keypoint finder starts. Looking for
this 0 value when traversing the BRAM then can tell us which
octave the keypoint belongs to.

Here it is worth noting that the same point in the image will
be represented by different coordinates at different octaves,
since the images scale down. So if we parameterize the
keypoint modules by their size (as we have done), the bit
width of the coordinates will be different. The way we have
handled this currently is to simply index into different parts of
the data, and handle each octave’s keypoints separately when
transmitting them. In retrospect, a much cleaner and easier
approach would have been to simply pad the coordinates so
they were the same width before concatenating them.



Fig. 6. FSM checking for extrema given two DoG BRAMs (Shruti)

D. Descriptor Generation

This module relies on both the keypoints and the gradient
BRAMs. For each keypoint, the module will take a 4 by 4 pixel
grid and for each quadrant generate a histogram representing
what the gradients look like in that patch.

1) Orientation (Evelyn): This submodule is used by the
Histogram submodule to determine which ”bin” the orientation
of the gradient at a given pixel is in. We categorize the
orientations into 8 bins, which split the 360-degree orientation
space into 45 degrees each. See figure 7 for a visual.

Fig. 7. Orientation Bins

We determine the bin using the separate x and y values of
the gradient from the gradient pyramid. Due to the nature of
how we section the orientation space, we can generally use
the table I to compute the bins without having to compute the
angle directly:

Some exceptions to this table are made to handle the
boundaries of the bins, where we follow the rule that at a
boundary, we fall counterclockwise.

2) Histogram (Evelyn): The Histogram submodule takes
in an (x, y) coordinate and valid in signal and determines a
histogram describing how many pixels in the patch of 4 pixels
where it is the upper left corner fall into each bin. This uses
an instance of the Orientation submodule. Since up to 4 pixels
in a patch can fall into each bin, each of the 8 bins requires

x > 0 y > 0 abs(x) > abs(y) bin
T T T 0
T T F 1
F F T 2
F T F 3
F F T 4
F F F 5
T F F 6
T F T 7

TABLE I
ORIENTATION DECISION TABLE

3 bits, resulting in a 24-bit output. This histogram and a valid
out signal are outputted once all the orientations are computed
for the patch.

3) Descriptor BRAM: The BRAM is structured such that
the entries are the width of a histogram (24 bits wide) and four
entries in the BRAM correspond to a full descriptor. These can
then be transmitted entry by entry with each entry being sent
in 3 packets of 1 byte.

4) Generating the descriptors (Shruti): This module was
again an FSM, that went through the list of keypoints and for
each keypoint writing a histogram for each of the four patches
in the Descriptor BRAM. For each keypoint, it determines
where the top left corner of the 4 x 4 pixel grid will lie.
Generally, this will be 2 to the left and 2 above the keypoint
(such that the keypoint is the left corner of the lower right
patch). However, for edges (when the keypoint is in the second
row or column), the grid starts at the edge or corner. Given
this top left corner of the grid, we can now cycle through
each patch by adding/subtracting 2 to give the histogram
submodule the top left corners of the 4 patches to generate
the 4 histograms. The module keeps track of how many 0s
it has seen and stops writing descriptors once it has seen 3
(which indicates we have reached the end of the third octave’s
keypoints).

In addition to cycling through all the keypoints, a major
role of this module is also to route the correct BRAMs to the



histogram submodule. There are 6 sets of 2 gradient pyramids
to choose from when evaluating the histogram, and putting
this logic away in this module instead of top level or in the
histogram itself keeps the layout cleaner. Given the octave
state we are in and the level bit, we use combinational logic
outside the FSM to do this routing of data.

5) Current State of the System: Here we will note that
this particular module does not work on hardware yet. All
the submodules are test benched and work in simulation.
However, when combined with the previous modules and put
on hardware, the descriptors sent back to the computer are
too little and nonsensical. Both team members have spent sad
long hours (on the scale of about 20 combined) debugging the
system to go from ”what is even happening” to ”we think the
module is reading wrong values from the Keypoint BRAM
and terminating early, and our sending module seems like
its changing what is actually stored on the BRAM.” If we
had more time we would probably finish writing a bigger
testbench that tests the connections between the previously
tested system, and honestly maybe bin the current module and
re-write it with cleaner design choices (such as reformatting
the keypoints BRAM, or even splitting it into three different
BRAMs).

V. EVALUATION

A. UART

We relied heavily on our UART framework to evaluate the
function and accuracy of our system. Since we were working
with images, it was helpful to visually see the results of
our modules. The system currently identifies keypoints that
visually make sense and resemble the keypoints found by
python. For example, the keypoints lie in major regions that
would help identify the image and its subjects. Please refer to
the Appendix for the visuals on our results.

B. Python Scripts

To evaluate the accuracy of our code, we wrote python
mirrors to our SystemVerilog modules as we were testing each
of the units individually. Comparing the results from the FPGA
with the results from the scripts often helped us debug the
system. These functions then can be put together for a working
system in python.

Additionally, Evelyn wrote a python script to calculate
keypoint matches using nearest neighbors and use OpenCV’s
libraries to visualize matches between keypoints in two im-
ages. We tested this on keypoints generated with our python
mirror. An example of matching using the data from our
python mirrors can be seen in the appendix. Also, Shruti
wrote code to send an image and receive the keypoints and
descriptors from the FPGA that we would later merge the
matching and visualization code into.

C. Speed

We wanted to evaluate the speed of our system, and try to
optimise it, but it fell outside the scope of the time we had. The
idea was that we will have the FPGA keep track of the time

passed since an input image is fully received and the output
corresponding to that image is ready to be transmitted. These
timing counters will also be useful (and necessary) when we
pipeline the system in addition to just evaluation. Depending
on the magnitude of the value, timing information can be
sent back over UART or displayed on hardware in binary
using the small LEDs. This can then be measured against
how long c++ code takes to run similar keypoint generation
and matching processes on similar images. The code we were
intending to benchmark againt is this repositor for FPGA-
Video-Processing, on GitHub [5].

VI. DISCUSSION

A. Space Constraints

While designing and implementing this project, we had to
revise our original goal to accommodate a limited number
of BRAMs and space within each BRAM. For example, we
realized that one 64x64 image almost entirely takes up all 36k
bits in a single BRAM. Additionally, a lot of our design was
oriented around optimizing for speed, since we assumed we
could later buy external memory to deal with memory limits.
For example to be able to calculate the descriptors and gradi-
ents in parallel, we wanted to duplicate our Gaussian Pyramid
storage, and to avoid having the calculate the gradients for
each pixel every time it appeared in a patch around a keypoint,
we computed the gradients while the keypoints were being
evaluated and stored them, also taking up multiple BRAMs.
Therefore, given we only have 72 BRAMs to use, we had to
limit our original goal of using 4 octaves and 4 blur layers per
octave, with an original image size of 128x128 to instead using
a 3x3 pyramid and an original image size of 64x64. Given
how small these images are, we also could not use the usual
descriptor size for SIFT of 128 entries, which looks at a 16x16
pixel patch around each keypoint. Instead, our descriptors are
only 32 entries long and looks at 4x4 patches. Given these
sacrifices, our total BRAM count theoretically comes to: 1 -
original image, 18 - Gaussian Pyramid, 6 - Gaussian Pyramid
Buffers, 18 - Gradient Pyramid, 12 - DoG, 1 - Keypoints, 1
- Descriptors = 57 BRAMs. It is worth noting that because
of bugs we could not fix in the descriptor generation, many
BRAMs are optimized out and only 37 BRAMs are in use
after compiling.

B. Future Work

We learned a lot while working on the project, including a
lot about how not to design things. Firstly, we would fix the
bugs with descriptor generation. Next, we would implement
keypoint matching on the FPGA. Finally, we didn’t get around
to optimizing our design for time, so we would want to
pipeline it. We would also probably want to use external
memory to be able to handle larger images and get more
descriptive results.

REFERENCES

[1] “OpenCV: Introduction to SIFT (Scale-
Invariant Feature Transform).” Opencv.org, 2020,
docs.opencv.org/4.x/da/df5/tutorial py sift intro.html.



[2] Weitz, Edmund. SIFT - Scale-Invariant Feature Transform, 2016,
weitz.de/sift/.

[3] Brandon Rohrer. ”How to Convert an RGB Image
to Grayscale.” 139. Signal Processing Techniques.
https://e2eml.school/convert rgb to grayscale (accessed 22 November
2023).

[4] Fischer Moseley, ”Manta: An In-Situ Debugging Tool for Programmable
Hardware,” 2023.

[5] Yu George, FPGA-Video-Processing, (2021), GitHub repository,
https://github.com/georgeyhere/FPGA-Video-Processing

APPENDIX
FIGURES FROM OUR RESULTS

Fig. 8. Gaussian Pyramid on Buff Doge

Fig. 9. Python matching script

Fig. 10. Keypoints on a few different images

Fig. 11. Gradient Pyramids (x axis)



Fig. 12. Gradient Pyramids (y axis)


