
Poor Man’s VR: Raymarching with Stereoscopic
Offset and Gyroscopic Control

Final Report
Marco Andrade

M.I.T.
77 Massachusetts Avenue,

Cambridge, MA 02139
marcoand@mit.edu

Aidan Zev Blum Levine
M.I.T.

77 Massachusetts Avenue,
Cambridge, MA 02139

azb@mit.edu

Benjamin Hunsberger
M.I.T.

77 Massachusetts Avenue,
Cambridge, MA 02139
bhuns19@mit.edu

Abstract—An implementation of the raymarching rendering
technique in hardware to produce three-dimensional visuals from
signed distance functions. The scenes may be explored and
manipulated through a gyroscope, allowing for a real-time change
in viewing angle. A stereoscopic offset will be produced on the
scenes via rendering in blue and red from different positions
that reproduces human depth perception when paired with blue-
red 3D glasses. The intended effect of these techniques is a
‘poor man’s virtual reality,’ as the three-dimensional scenes will
appear tangible beyond the screen and may be manipulated in
the physical world.

I. COMPONENT OVERVIEW

At a high level, our project consists of a scene, two
raymarching renderers that render the scene from two eye po-
sitions, and a gyroscope that controls our view direction. With
these parts combined, you can view our scene with the illusion
of 3D when wearing red-blue glasses. However, implementing
this project involves overcoming many technical challenges,
including making a renderer, signed distance functions, and
gyroscope angle control, all purely on hardware. Our current
block diagram for our stereoscopic renderer is shown in Fig.
10. Below, we explain our latest version of each of these
components and then show the progress we have so far.

II. RAYMARCHER

Raymarching is a rendering technique that involves march-
ing a ray through a signed distance function (SDF). To
compute the color at a pixel, the raymarcher calculates the
ray from the camera in the direction of the pixel and marches
it through space until it hits the surface of the SDF or has
traveled too far and is counted as having missed the target
object. An illustration of how this works is shown in Fig. 1,
where the circle’s radius is the SDF value at its center, and
the ray continues moving forward by that SDF value until
it reaches the surface. For more details on the raymarching
algorithm, see this blog. Our raymarcher is implemented as a
finite state machine, which is shown below in Fig. 2. After
receiving a pixel location, it normalizes the ray to that pixel
and then switches between an awaiting SDF state and a
marching state, until one of the end conditions is reached.

Fig. 1: Raymarching visualization from 9bitscience blog

III. RENDERER

Our renderer module contains a raymarcher and a frame-
buffer. As pixels are computed by the raymarcher, they are
saved to the frame buffer. Right now, we are rendering in
full 24-bit color for easier debugging, but will later switch to
each renderer only storing one color (red or blue), reducing the
size of a framebuffer entry to 16 bits. We are also planning on
reducing the number of bits per color as far as we can without
visibly hurting image quality, to allow for larger images to be
rendered.

At the same time that the raymarcher is rendering pixels,
the framebuffer is being independently read by the HDMI
pipeline from lab 4. This allows rendering to occur at a speed
completely independent of the monitor refresh rate.

A. Lighting

After a ray has hit a surface, we need to compute the color
for that point. To create semi-realistic lighting, we first need to
calculate the normal of the surface at that point. This can be
easily computed by sampling our SDF at three more points
near our point of contact. By finding the change in depth
corresponding to moving a small amount along the x, y, and
z axes away from the point of impact, we recover the x, y,
and z components of an approximated normal to the surface
following the formula below.

https://michaelwalczyk.com/blog-ray-marching.html
https://9bitscience.blogspot.com/2013/07/raymarching-distance-fields_14.html


Fig. 2: Raymarcher module state machine

normal = normalize(

sdf(x+ ϵ, y, z)− sdf(x, y, z)
sdf(x, y + ϵ, z)− sdf(x, y, z)
sdf(x, y, z + ϵ)− sdf(x, y, z

)
Once this normal has been calculated, we compute the dot

product of that normal with the direction to each light, and
sum over all the lights. This gives a good estimate of how
much diffuse lighting this point would receive, allowing you
to appreciate the 3D nature of the shapes.

Fig. 3: Demonstration of normals being rendered on three
spheres

B. Stereoscopic Effect
We are rendering two versions of our scene from two nearby

points to create the illusion of depth when viewed through red-
blue glasses. Finding the points to render at involves finding

the forward view direction from the gyroscope, as well as
the right and up vector. With these three vectors, we can
compute the two eye locations by adding the right vector to
the origin for the right eye and subtracting it for the left eye.
From here, we produce two mono-color renderings from those
eye positions onto the plane produced by the right and up
vectors. We make one of these mono-color renderings the red
and of them the blue value of the output image, completing
our illusion. We found best results in practice by setting the
overlap of the red and blue renderings to be white (by making
the green channel the minimum of the red and blue channels),
displaying the white body of an object as the area seen by
both eyes, with blue and red ranges on either side of the object
representing the perspective from either eye.

Fig. 4: Field of stereoscopically offset spheres at varying
distances

The stereoscopic offset relies on a specific distance from
the width of the eyes, and as such the user must be a specific
distance from the monitor depending on its size for the 3D
effect to fully work. In combination with proper lighting, the
stereoscopic effect works quite well.

IV. GYROSCOPE

From a high level, the functionality we are aiming for from
our gyroscope is being able to adjust the view angle of the
3D rendering created by the Raymarcher by moving it around.
This involves wiring the Inertial Measurement Unit (IMU) to
the FPGA, capturing and decoding the data received from the
IMU in the I2C format, processing the data to be in a useful
format, and then using the data to calculate the view angle for
both views.

A. IMU

The IMU we are using is the MPU-6050. This IMU is
capable of returning the angular velocity around the x, y, and
z-axis as well as acceleration in the x, y, and z-direction. For
our purposes as specified above, we will only be capturing the
angular velocity. In order to connect the IMU to the FPGA,
we are using a breadboard as an intermediary to facilitate
connection. With the breadboard withheld, the connections
are seen in Fig. 5. The VCC and GND connections serve to
provide power to the IMU. The SDA and SCL connections
are the data and clock, respectively, for the I2C standard.



Additionally, there are two 4.7kΩ resistors being used as pull-
up resistors on the SCL and SDA line. In the breadboard,

Fig. 5: IMU to FPGA Connections

B. MPU-6050 Verilog Module

With the MPU-6050 connected to the FPGA, we now need
to decode the information that is being passed through in
the I2C standard. In order to this, we utilized a package
developed by Daniel Moran in VHDL [4] and later translated
into Verilog by Alon Levy [5] From this module, passing
through pmodb[1] and pmodb[2], which contain the I2C data
and clock, respectively, the system reset, and an enable flag,
we are able to retrieve gx, gy, and gz which are the angular
velocity around the x, y, and z axis in degrees per second as
a 16 bit signed integer.

C. Normalization

With the rotational velocity along all three axis received, we
can move on to processing this data so that it is returned in a
useful format for the raymarcher module. First, we need to deal
with some of the drift that occurs on the gyroscope. In order
to accomplish this, we perform a normalization process. When
button 2 is pressed, the values from the gyroscope are summed
for 220 clock cycles. Then, the summed values are divided by
220. The value of the gx, gy, and gz is then subtracted by this
amount to compensate for drift. Also, after the subtraction of
the average value, the values of gx, gy, and gz are shifted
to the left by 7, in order to constrain the change between
−512°and 512°. This ensures that the values being output by
the gyroscope are manageable.

D. Process-Gyro Module

This module handles the conversion of the normalized and
scaled gx, gy, and gz values to actual yaw, roll, and pitch
values. This module assumes a start of yaw, pitch, and roll
of 0, 0,0. Then, the module is constantly summing the values
and saving them. Then, every 10000000 cycles (10 times a
second), the module divides the value by 100000000 (which
is a multiplication by 43 in fixed point). After adjustments for

the angle positioning, the new values are added to the stored
pitch, yaw, and roll. Then, the running sum is reset and it starts
again.

E. Sine Module

In order to perform the calculations required to then cal-
culate the view angles using the yaw, pitch, and roll, we
required a fixed-point sine module. In order to accomplish this
efficiently, we created a lookup table module, which contains
180 values of sine in 16.16 fixed point. Additionally, we
created a sine module and a cosine module, which can handle
inputs from 0°to 360 °and will return the appropriate signed
16.16 fixed point number.

F. View Output

The final module involved in processing the view direction
is the view output module, which takes yaw, pitch, and roll
and calculates an up vector, forward vector, and right vector.
This is done by using the following equations:

F⃗ =

 cos(pitch) · sin(yaw)
− sin(pitch)

cos(pitch) ∗ cos(yaw)



U⃗ =

 sin(pitch) · sin(yaw)
cos(pitch)

sin(pitch) ∗ cos(yaw)



R⃗ =

 cos(yaw)
0

− sin(yaw))



The main difficulty we encountered when writing this portion
was that we were running out of DSPs attempting to instantiate
a sine or cosine module (as described in the previous section)
for each vector calculation. To solve this, we ended up using
just two sine functions, and making an FSM with 29 states.
These states were mostly repeated but involved: 1 high level-
state for vector (IDLE, UP, FORWARD, RIGHT, FINISHED),
another medium level-state for direction (X, Y, Z), and a final
low-level state for which portion of the sine calculation we
were on (UPDATING VALUES, CALCULATING, FINAL-
IZED).

V. SIGNED DISTANCE FUNCTIONS

Signed distance functions will be used in our implementa-
tion to take in a point in space and determine the minimum dis-
tance that point is from the surface of an object. If this distance
is negative, the point is inside the object. Different functions
may be used to render different scenes and shapes, and the
distance returned by the functions helps us to determine what
color and shading to apply to a point when raymarching.



A. Menger Sponge

The SDF we have chosen to use as a goal point for this
project is that of a Menger Sponge. The Menger Sponge is
a fractal that has enough complexity to create an interesting
scene that captures the ability of raymarching, while not being
too heavy in calculations to be infeasible for our system,
having only one square root and minimal multiplications of
large numbers. The approach to performing the calculations for
this SDF in appropriate timing is that of a state machine. This
implementation removes some of the complexity down the
line of debugging the calculation module implementations and
timing errors. The state machine for this follows a changeable
number of iterations to select how complex the sponge will
be and includes many brief stages for the process of gathering
signed minimums and calculating the square root. Vector
calculations leverage the struct feature of System Verilog,
storing x, y, and z values within each vector. A series of helper
functions to find the absolute value of a vector and to subtract
two vectors create a more readable and easy-to-modify state
machine. The result is a complex scene that is well-tailored to
a 3-dimensional viewing environment.

The test benching for the Menger Sponge was accomplished
by creating a working Python version of a Menger Sponge
SDF using simpler and more reliable tools and then comparing
this output to that of our System Verilog SDF.e

B. Shape Fields

While impressive, the Menger Sponge does a poor job of
capturing the lighting and depth of the system, and as such we
produced more SDFs demonstrating fields of differing shapes
and planes. The rounded surfaces strongly demonstrates the
3-dimensional lighting effects, while a series of overlapping
planes spanning back in the SDF demonstrate this dimension
through depth and distance. In what was a failed attempt
at creating a cone SDF, we made an interesting effect that
produced a series of planes stretching back behind any objects
in the foreground. When an object was centered over these
receding planes, they would appear to bend to the outline of
the shape in front of them. We abandoned creating the cone
and continued experimenting with this effect. Beyond this, we

VI. FIXED-POINT NUMBER REPRESENTATION

We are using fixed point numbers for greatly reduced opera-
tion complexity compared to floating point numbers. We were
originally using an 8.16 representation but started running into
some issues when calculating the norms of vectors. This makes
sense since we have to store the squared magnitude of a vector
to normalize it. Since that representation can hold a maximum
value of 128, we can only normalize a vector with a length of
slightly over 10, which is not enough for our scenes. To reduce
the risk of precision issues or overflow like this occurring, we
upgraded to a 16.16 representation.

In hindsight, this led to lots of waste in our system, and
the best option if we had more time would be to vary the
representation as needed, based on which calculations are
currently being run.

VII. FINAL FUNCTIONALITY

A. SDF Rendering

Our fractal raymarching is able to successfully render a
Menger Sponge as intended, with the scene being viewable
in three dimensions by a shifting view angle input. The sides
are given distinct colors based on the normal. We found a
sponge of an iteration depth of 4 to be of optimal complexity,
as it was able to run smoothly while producing an object of
impressive complexity.

The frame rate depends on the scene being rendered, varying
from 15 on simple scenes with multiple renderer units (which
will be elaborated on below), to around 1 frame per second for
expensive scenes that fill the screen. The frame rate depends
not just on the scene, but also how many pixels are filled by the
object, since filled pixels are much more expensive to render
than the white background, since shading requires additional
calculations.

Fig. 6: Inner corner of the Menger Sponge

(a) Looking in from the surface (b) Viewing the outer surface

Fig. 7: The face of the Menger Sponge

Following further experimentation with unique SDFs, we
create a few unique demonstrations of depth with various
shapes in our 3D space.

B. Limitations

All of our significant limitations in our renderer are caused
by the number of DSP’s available on our board. These DSP’s
came from all of the math functions (primarily square root)
that were needed to render our scenes. Though this did not
prevent us from rendering the scenes we created, it heavily
limited our frame rate by limiting us to only having one or
two raymarching units per scene.



Fig. 8: A unique SDF of a cube in an infinite space

The simplest way to increase the frame rate for our renderer
was to increase the number of raymarchers rendering the scene
at a time. This was a trivial improvement, but we could never
fit more than three units on our board even with a single static
sphere as our scene. While working on this part of our project,
we observed very inconsistent DSP usage as we increased
our complexity. For example, a moving sphere scene with
one raymarcher used only 14% of our DSP’s, but with two
raymarcher used 85% of our DSP’s, even though it should’ve
increased usage by somewhere between 50-90%. Furthermore,
the build script took a long time to run for projects that use
near the board’s maximum capacity, and often crashes near
the end. This means it often takes an hour to attempt a build
just to see that it wouldn’t fit on the board or broke timing
requirements.

To attempt to improve our board usage, we tried to replace
our most expensive operations with simpler approximations.
The most expensive part of raymarching is normalizing rays,
since it requires one square root and one division module. As
an alternative, we wrote an approximate inverse square root
module that used a lookup table to find a guess and then ran
a few iterations of Newton’s method. If this module worked,
it could replace all square root and division modules in our
system. This module generally worked when testbenching, but
struggled with overflow on larger numbers since it required
raising the input to the third power. This overflow was fixable
by resizing our number representation or shrinking our scene,
but we also experienced larger errors. More fatally, it used
up even more space on the board than our previous version.
This space usage did not make sense, but given the build
difficulties mentioned above, we decided to stick with what
we had working and not to use this module for our project.

C. Visual banding

Another minor issue with our project is that frames are
visible while changing, causing banding from top to bottom.
There is an easy solution to this problem, but we do not have
enough RAM on our board to implement it. The easy solution
is to create a double buffer, where the calculated frame is
copied over to the rendering buffer when it is complete. On a
board with more RAM, this would look much smoother.

D. Gyroscopic Viewing

The Gyroscope module is currently fully capable of tracking
the pitch, roll, and yaw. Additionally, the processing module
is capable of converting the pitch, roll, and yaw into a right,
left, and up angle. This is integrated into the view renderer,
and effectively view tracking is enabled. There are a few
limitations with the actual IMU itself. There is a large amount
of drift that the IMU has. This can be somewhat reduced by
using the ”normalization” feature, which averages the gx, gy,
and gz over a period of time and then uses that value to
subtract from the respective gyroscopic outputs. This is not
exhaustive because there are other fluctuations in the value
reported by the IMU even when still. One way that we could
have solved this issue further is using a complementary filter,
which would use the acceleration data from the IMU to help
verify the gyroscopic output. However, we are limited by the
computational power of the board, as mentioned previously,
because a filter that would improve the data effectively would
require many mathematical operations.

Fig. 9: Sample Raw Output from Gyroscope

E. Combined Features

Unfortunately, given the limited power of our FPGA, we
were unable to allow all features - the fractal signed distance
function, the gyroscopic viewing, and the stereoscopic effect
- to be rendered in unison. We strongly believe that should
we have had a larger board, all pieces would have functioned
together properly but were met with limitations of available
DSPs. The primary case where we could not combine all of
these parts was that the stereoscopic effect involved doubling
from one to two renderer units, which did not fit with our
more complex scenes. However, this was not a big issue,
since the stereoscopic effect looks the best on simpler scenes
(not fractals), where your brain can easily interpret what it is
seeing.

VIII. CONTRIBUTIONS

A. Aidan Blum Levine

Aidan worked on the core renderer and raymarching mod-
ules, including implementing the math and algorithms. This
included writing and testbenching many fixed-point modules,
and debugging many timing issues. Aidan also experimented



with our stereoscopic offset and parallelizing by adding more
raymarching units.

B. Ben Hunsberger

Ben worked primarily on the signed distance functions, and
integrating them into the raymarcher. The Menger Sponge took
the longest, with an extensive process of test-benching the state
machine. Beyond this, he worked on other SDFs that would
better capture the additional capabilities of the raymarcher by
demonstrating depth and distance in fields of shapes.

C. Marco Andrade

Marco worked on the sourcing, wiring, decoding, and
processing of the gyroscope. This involved debugging the
gyroscope physically with an oscilloscope as well as writing
the code to turn the raw data into usable view angles by the
renderer. To support this, Marco wrote test benches and used
manta to interface with the gyroscope’s raw output as it was
decoded. Finally, Marco worked to debug resource issues when
integrating the gyroscope (and respective processing) into the
system as a whole.

IX. VIEW OUR CODE

https://github.com/AidanBlumLevine/6111-Final-Project

REFERENCES

[1] https://projectf.io/posts/square-root-in-verilog/
[2] Inigo Quilez, menger fractal - 2011.

https://iquilezles.org/articles/menger/
[3] Ultra cheap exact Menger sponge.

https://www.shadertoy.com/view/sdSBWc
[4] MPU 6050 VHDL

https://github.com/danomora/mpu6050-vhdl
[5] MPU 6050 Verilog

https://git.sr.ht/∼beepbeep/mpu6050-ulx3s
[6] Raymarching blog https://9bitscience.blogspot.com/2013/07/raymarchi

ng-distance-fields 14.html

https://github.com/AidanBlumLevine/6111-Final-Project
https://projectf.io/posts/square-root-in-verilog/
https://iquilezles.org/articles/menger/
https://www.shadertoy.com/view/sdSBWc
https://github.com/danomora/mpu6050-vhdl
https://git.sr.ht/~beepbeep/mpu6050-ulx3s
https://9bitscience.blogspot.com/2013/07/raymarching-distance-fields_14.html
https://9bitscience.blogspot.com/2013/07/raymarching-distance-fields_14.html


Fig. 10: Block diagram for our stereoscopic version


	Component Overview
	Raymarcher
	Renderer
	Lighting
	Stereoscopic Effect

	Gyroscope
	IMU
	MPU-6050 Verilog Module
	Normalization
	Process-Gyro Module
	Sine Module
	View Output

	Signed Distance Functions
	Menger Sponge
	Shape Fields

	Fixed-Point Number Representation
	Final Functionality
	SDF Rendering
	Limitations
	Visual banding
	Gyroscopic Viewing
	Combined Features

	Contributions
	Aidan Blum Levine
	Ben Hunsberger
	Marco Andrade

	View our code
	References

