
FencePGA
Preliminary Report

Gaurab Das
Electrical Engineering and Computer Science

Massachusetts Institute of Technology
gaurabd@mit.edu

Muhender Raj Rajvee
Electrical Engineering and Computer Science

Massachusetts Institute of Technology
muhender@mit.edu

Abstract—We implement an interactive multiplayer 2-player
fencing-styled game, giving players the ability to attack and
defend using hand gestures and body motions. Player positions
and arm actions are tracked in real time and manifested within
game logic. The game ends when one player loses all their health
because of attacking swipes/stabs by the opponent. This project
utilizes HDMI graphics, image cameras and motion tracking,
networking, and game design methodologies.

Index Terms—Computer Vision, Networking, Collision Detec-
tion, Graphics

I. INTRODUCTION

Motion sensing has been a common theme in video game
design, such as in the Nintendo Wii or the Xbox Kinect,
enabling players to use their entire bodies to control the game,
and allowing for a more immersive gaming experience. A Field
Programmable Gate Array (FPGA) is ideal for designing these
kinds of games because of its ability to execute in parallel
a wide range of tasks from vision sensing and detection to
networking and graphical interfaces. Inspired by our desire to
create a similar gaming experience with friends and family,
we leverage FPGAs to construct a fully-functional interactive
multiplayer fencing game. A high level overview of the entire
system is depicted in Fig. 1, and the hardware game setup
is depicted in Fig. 2. The Camera detects the motions of

Fig. 1. Block Diagram of system consisting of higher-level modules

the players and their remotes, and the IR sensor detects
what action the user wants to take. This paper is structured
as follows: Section II discusses the bounding box module
in-depth, Section III deals with the Attack Logic Module
which also encompasses the SPI TX/RX interface, Section IV
discusses the interactive display interface, Section V evaluates

the performance of our project, and Section VI summarizes
our achievements, goals and lessons learned. The link to our
public repository is github.com/gaurab1/6205-FencePGA.

Fig. 2. Hardware Setup including FPGA, HDMI cable, IR sensor and SPI
wires

II. BOUNDING BOX MODULE (GAURAB)

The task of the bounding box module is two-fold: one
is to track the position and size of the player body, and
the other is to track the position of the hand that holds the
saber. The motivation for detecting the player’s body and
size is to provide a way for the player to move around the
screen and change the size of their body to avoid getting
hit by their opponent. This is a hard problem because we
want to do accurate real-time tracking of the objects with
almost no memory overhead and with insignificant delay. We
achieve these objectives by utilizing a bounding box algorithm
and making a few reasonable assumptions. The player must
tape a sizeable piece of paper on the remote of a particular
predetermined color, and the player must also wear a shirt/top
of a color different from the color on the remote. The bounding
box module aims to track these two different colored objects
separately and with low latency, and give accurate descriptions
of dimensions and size of these objects. Refer to Fig. 4 for a
result of the completed implementation of the algorithm.

https://github.com/gaurab1/6205-FencePGA


A. Algorithm

The high-level flow for the algorithm is shown in Fig. 3. The
algorithm runs in two stages. The first stage is to find the center

Fig. 3. High-level overview of bounding box algorithm

of mass of the pixels that fall within the color range threshold.
Once we find the coordinates, we scan the frame image along
the horizontal and vertical lines containing the center of mass
to see how far we could go along these lines to form a
rectangle that can contain the object, with a flexible parameter
of error threshold. This algorithm is a near-robust estimator of
the true bounding box, as outliers like noise present outside
the object do not greatly affect the rectangle. Based on this
approach, the current frame will include the height and width
estimates of the rectangle using the center of mass estimates of
the rectangle from the previous frame, but because the camera
produces frames at ∼30fps while the system works at ∼60fps,
this method should be frame-consistent.

This novel algorithm leverages the insight that the scanning
of pixels on the monitor happens in a very systematic manner,
and this inherent ordering of the pixels makes it efficient and
fast to utilize center of mass information to predict the bounds
of the tracked object.

B. Implementation Details

We implemented the bounding box algorithm described
previously and tested it extensively via testbenches and FPGA
builds. We also extensively searched for the right threshold
parameters for our bounding box algorithm. As observed in
Fig. 4, our bounding box module works well with an object
of a specific color, and even when we shift the object or
modify the shape by tilting it, the bounding box adapts well
to fit the object without any considerable delay. We are able
to track multiple objects using the bounding box, and thus this
algorithm meets the specifications of our game. Previously, we
only used one channel out of the available 6 channels (RGB
and YCrCb). An additional insight that we had was to utilize
more than one channel for masking, which allowed us to be
more precise with object tracking by filtering out pixels that
did not belong to the tracked object.

III. ATTACK LOGIC MODULE (MUHENDER)

A. Serial Peripheral Interface

We use the Serial Peripheral Interface (SPI) protocol to
enable communication between the FPGAs.

As illustrated in Fig. 5 by the Locations Transmitter
and Syncer modules, the Locations Transmitter transmits the

Fig. 4. Bounding Box algorithm generating a green rectangle encompassing
the pink plastic object

Fig. 5. The attack logic module

player’s current state and the player score status to the oppo-
nent through a SPI transmitter. The syncer waits for input from
both the Locations Transmitter and the SPI receiver before
sending both information to the State Machine for processing.

The SPI data is organized as a stream of bits as in Fig.
6. Each FPGA sends its current state and whether the player
scored a point in the previous cycle to the other FPGA before
performing any game calculations. This way, both the FPGAs
are synced at the start of every video frame’s game logic
computation period. Each player starts with 5 health points
which requires 3 bits, each position requires 11 + 10 = 21
bits, and the saber can be either resting, lunging, or blocking,
which requires 2 bits to store the state. In total, the data is 89
bits long. Adding the extra bit to indicate whether the player
scored brings this total to 90 bits.

On initial flashing, the FPGAs use one of the SPI wires to
send a constant LOW to each other. When the game is started,
the first FPGA to start sends a constant HI to the other FPGA.
The other FPGA receives this, sends a constant HI back to
the first FPGA, and transitions to the game. The first FPGA
receives this too and similarly transitions to the game.

B. State Machine

The core game mechanics are implemented as a finite state
machine (FSM). This FSM module takes in the SPI output
from the other player, the IR input from the IR saber, and the
bounding box output as inputs.



Fig. 6. The player data

Fig. 7. The finite state machine

The FSM starts at Rest. On receiving the ”BLOCK” signal
from the IR saber, it transitions to Block. It transitions back to
Rest when the ”BLOCK” signal is no longer being received
or in 4 seconds, whichever is shorter. In Block, the player can
block an opponent’s active attack, which will be described
later.

The FSM transitions to Lunge on receiving the ”LUNGE”
signal from the IR saber, and transitions back to Rest when
it is no longer being received. The current saber position is
stored on transition to Lunge. While in Lunge and Attack, a
line is actively drawn from this saved position to the saber
location in the current frame.

The FSM transitions to Attack immediately from Lunge.
There are multiple possibilities from this state.

1) If the ”LUNGE” signal is no longer being received, and
the line from the saber start position to the current saber
location intersects the bounding box of the opponent,
then the FSM transitions to Score. The intersection
algorithm is described in a later subsection.

2) If the ”LUNGE” signal is no longer being received but
the line described in the previous case does not intersect
the opponent’s bounding box, then the FSM transitions
to Recover.

3) If the saber position collides with the opponent’s saber
position while the opponent is in Block, then the FSM
transitions to Recover.

In Score, the opponent’s health is decremented by 1. The
FSM transitions to Recover in the next clock cycle.

The FSM stays in Recover for 1 second before transitioning
back to Rest. The player can not take any action while in
Recover. This acts as a cooldown period to prevent blind
slashing without a strategy.

C. Saber Collision Detector

This module checks if two sabers are within a given
collision distance to each other using the Manhattan distance
between the two sabers. This module is only used when the
player’s FSM is in Attack and the opponent’s FSM is in Block.

D. Intersection Detector

This module calculates if a line segment intersects a rect-
angle. The FSM uses this module to determine if a transition
to Score should be performed. This module is only used when
the player’s FSM is in Attack and the ”LUNGE” signal is no
longer being received.

Fig. 8. Example of a case for the intersection logic

In order to do this, the module computes intersections of
the line segment with each of the 4 line segments forming
the rectangle. In order to make this efficient, it exploits the
symmetry of the sides of the rectangle: two sides are vertical
and two sides are horizontal.

For the vertical case illustrated in Fig. 8, the module first
checks if the x coordinate of the rectangle vertices are in
between those of the two ends of the line segment. If not,
then the line segments can not intersect.

If the above check passes, then the module computes vectors
AR1, AB, and AR2. If the cross product AR1 × AB and
the cross product AR2 × AB have opposite signs, then the
line segment AB intersects line segment R1R2. The module
follows a similar logic to compute the intersection with the
horizontal sides.

After these intersections are computed for all 4 sides, the
module returns true if the line segment intersects at least 2
sides of the rectangle and false otherwise.

IV. DISPLAY MODULE (GAURAB)

Using all of the outputs from the top-level attack logic
module, we implement a simplistic game interface that gives
complete information about what is happening in the game. As
seen in Fig. 9, we display the following information through
HDMI:

• The health bars of both players, which are calculated in
the attack module based on how players interact.

• The size and positions of the rectangles of both the
players which are captured by the camera (for the player)



Fig. 9. Game Frontend Display

or by the SPI (for opponent). Because both rectangles
need to be visible, the player is represented as a rectangle
with only an outline and no fill color.

• The positions and status of the saber points of both the
player and opponent on the screen. The color of the saber
depends on the state the saber is in. Additionally, to
differentiate between the player and opponent saber, the
player saber is highlighted and has a cool tracing effect
described in detail in IV-B.

• When the player does attack, they start at an ”anchor
point”, and then finish their attack at another point. The
line joining the two points determines the attack (as de-
scribed in Section III), and so we create a module inspired
by Bresenham’s line-drawing algorithm [1] described in
more detail in IV-A that draws a line efficiently between
the anchor point and the current point of the saber.

Apart from the main game display, we also created visually
appealing opening and ending pages that allow players to tran-
sition in and out of the game synchronously. The start screen is
as seen in Fig. 10, where the player presses ”OK” to transition
into the game. We also show an end screen when any player’s
health goes to 0. This screen is personalized to show who
won and lost the game. In the process of implementing front-
end display modules, we also created useful shape libraries
including lines, triangles and rectangular outlines.

A. Line Drawing Algorithm

We implemented a line drawing algorithm that is efficient
(uses integer addition and subtraction only) and fits in well
with the raster video pipeline of generating pixels from the
top-left to the bottom-right corner. We initially built a naive
line generator based on integer multiplication and comparisons
to match slopes, but we observed that it didn’t work as well
because the generated line wasn’t continuous. To fix this,
we researched line drawing algorithms and implemented a
variation of Bresenham’s line drawing algorithm (seen in Fig.
11).

Fig. 10. Game Start Screen

The Bresenham’s algorithm resembles a Pulse Density Mod-
ulator in that it keeps track of a quantization error and lays
down lines based on whether it is negative or positive. Say for
example that we want to draw a line with slope between 0 and
1 from (x0, y0) to (x1, y1), with x0 < x1. This algorithm starts
at the initial point (x0, y0), and in each iteration it increases x0

by 1 and increases y0 by 1 or 0 depending on what the state is,
and it continues this iteration until we reach (x1, y1). The error
is only dependent on a linear combination of the endpoints
and is updated each iteration. Notablly, it doesn’t involve any
expensive variable multiplication and division operations.

We extend this case to allow for a wide range in slopes
by making minor modifications to the original algorithm.
We adapted this algorithm to fit the raster pattern for video
generation and achieved a line generator that produces a line
every frame given the endpoints with very simple operations
and no memory overhead.

Fig. 11. Screen displaying line from anchor point to saber point, with trace
effects also shown



B. Displaying Saber Trace

To simulate the visuals of a saber’s trace, we created a
module that stores the past history of the saber positions in
a manner very similar to pipelining. We then use this history
of information to create a trail of past saber positions. More
specifically, we use alternating frames in the history of the 12
past saber positions and decrease the size and color intensity of
the saber depending on how far back it was in the history. This
imparts an animated effect to the pixels until they completely
dim out. The result of the trace display module can be seen
in Fig. 11.

V. EVALUATION OF PROJECT

A. Latency and Throughput

At a high level, the game experience is uninterrupted with-
out any significant delays. In order to achieve this, we needed
to fit all game logic computations between two frames, which
is a lot of time. Because of this relatively loose requirement,
most of the modules just rely on a ready/valid protocol to
pass results to each other, with the valid bit set in the clock
cycle the computation succeeded. The bounding box module
produces its output once per frame. Hence, the attack module
also completes one execution cycle per frame.

The SPI synchronization process needs to happen between
two frames. The FPGAs send and receive 90 bits of informa-
tion simultaneously every frame, and the SPI transmitter uses
a data clock period of 100 pixel clock cycles. This leads to a
total transmission period of 9000 pixel clock cycles, which is
comfortably within the 1.2375 million pixels per frame.

B. Timing

We split up large combinational computations to fit between
two rising clock edges wherever possible. Since each multipli-
cation in the cross-product computation can happen in parallel
with each other, the entire computation fits in one clock cycle
and can be done combinationally. However, this still remains
the critical path.

The project has a positive post-synthesis slack of 1.115 ns.

C. BRAMs and DSPs

Storing the camera output in a frame buffer takes up most
of the available BRAMs on the FPGA. Because of this, we
needed to budget the remaining BRAMs to store the opening
screen image by using a very small palette of 4 colors. We
use a total of 68 out of 75 available BRAMs.

We use 26 out of 120 available DSPs. Most of the DSP
usage is for the multiplications in computing the vector cross
products in the Intersection Detector module.

VI. PROJECT GOALS AND REFLECTIONS

A. Individual Contributions

At a higher level, Gaurab worked on the Bounding box
and display modules while Muhender worked on the attack
logic module and all relevant submodules including the SPI
communication.

More specifically, some of Gaurab’s contributions to the
project include the conception and implementations of the
bounding box module, processed IR input module, and all
front-end display modules such as the start screen display,
end screen logic to display the winner and loser, and the in-
game displays including the players, sabers, health bars and
attacking lines. Some of the things that Gaurab is especially
proud of is the conception of a novel bounding box algorithm,
and his research in efficient line drawing algorithms.

Muhender’s contributions include clearly defining the game
mechanics and implementing the core game loop including the
synchronization step, the game logic FSM, and the collision
and intersection detectors. Of particular interest is the imple-
mentation of the intersection module with cross products that
fits perfectly within two successive rising clock edges.

Both Muhender and Gaurab were together pivotal in brain-
storming ideas relating to the overall game and individual
modules and the integration of individual modules to form
the complete game.

B. Project Features and Checkoff List

Based on our discussions during the presentation and final
stretch meeting, we have a list of completed items from the
checkoff list.

1) We successfully achieved the base commitment of creat-
ing and integrating the Bounding Box, Attack Logic and
Display Graphics modules to have a 2-player playable
game.

2) We also achieve the goals in the checkoff list. We
inplement health bars that are functional and updated
properly when an attack occurs. We have also added
functionality for interactive start and end game scenes.
In the end scene, the player is informed of whether they
won or lost the game.

3) We we able to achieve some of the stretch goals from
the checkoff list. In particular, we implemented the saber
tracing effect.

ACKNOWLEDGEMENTS

We would like to thank the staff of 6.205, including profes-
sor Joseph Steinmeyer, the LAs, and the TAs of the class for
providing us with great constructive criticism and for helping
us debug some of our code.

REFERENCES

[1] Zingl, Alois. “A Rasterizing Algorithm for Drawing Curves.” (2012).

APPENDIX

The players need to set up before starting the game.
1) In order for the FPGA cameras to detect the bounding

boxes of the players, tape a pink envelope to the body.
2) Stand at a distance of 1-2 meters from the camera.
3) Attach a white piece of paper to the back of the remote

in order for the FPGA to track it.
4) Ensure proper white lighting and a dark background.


	Introduction
	Bounding Box Module (Gaurab)
	Algorithm
	Implementation Details

	Attack Logic Module (Muhender)
	Serial Peripheral Interface
	State Machine
	Saber Collision Detector
	Intersection Detector

	Display Module (Gaurab)
	Line Drawing Algorithm
	Displaying Saber Trace

	Evaluation of Project
	Latency and Throughput
	Timing
	BRAMs and DSPs

	Project Goals and Reflections 
	Individual Contributions
	Project Features and Checkoff List

	References

