RSA FPGA Implementation
Preliminary Report

1** Joseph Kim
Department of Electrical Engineering and Computer
Science
Massachusetts Institute of Technology
Cambridge, MA, USA
joekim02@mit.edu

Abstract— We present an implementation of RSA in
hardware on an FPGA (Field-Programmable Gate Array), as
well as a communications protocol between two FPGAs. This
design allows for two computers to establish a secure channel to
send and receive messages between each other, without an
eavesdropping third party being able to discern the plaintext
messages. The system is intended for use as a demonstration in
classroom settings, supporting a side-by-side view of encrypted
and decrypted media.

Keywords— RSA, cryptography, FPGA, Montgomery
Multiplication, Euclidean Algorithm, UART, SPI
L InTRODUCTION (CAMPBELL)

This project uses FPGAs (Field-Programmable Gate
Arrays) to facilitate a demonstration of RSA cryptography.
Traditional methods of setting up a secure channel between
two parties include non-trivial amounts of networking
configurations, which can be avoided by using a physical
connection between two FGPAs. FPGAs are flexible enough
to accommodate a variety of hardware designs and reap the
benefits of specialization.

However, using them in the context of RSA
cryptography comes with some challenges. RSA cryptography
involves numerous mathematical operations that are non
trivial to implement on hardware, such as modular
exponentiation and inverse modulus. When attempting to
expand the RSA bit-depth, it is easy to run out of available
space on the FPGA and encounter timing issues with modules
that work at a lower size. Another issue is with entering and
receiving messages from the FPGA. Though this project uses
FPGAs packaged with a dev board, the switches, buttons, and
lights available are cumbersome and are limited in their
expressibility. For this reason, we elected to use
communication protocols to send and receive data via
computers, which provide a much more convenient user
experience.

Our design set out to meet

requirements:

the following

1) Implement RSA to some non-trivial bit-depth
2) Allow wusers to send encrypted data between
computers

2" Stephen Campbell
Department of Electrical Engineering and Computer
Science
Massachusetts Institute of Technology
Cambridge, MA, USA
sjcr@mit.edu

3) Implementation of at least one of a custom multiplier
or a modular exponentiation module

Our implementation is parametrized by the desired
RSA bit-depth M. All of the mathematical operations are
performed with modules of sufficient size to accommodate
numbers of size M. Additionally, the packetization scheme for
sending messages between computers and FGPAs used
packets of length M. We were able to verify that the modules
worked in simulation with sizes up to 512 bits. However, we
encountered sizing and timing issues when synthesizing our
design for deployment on the FPGA. We were able to
synthesize our system with up to 128 bits of depth, but only
the system with 64 bits of depth was able to meet timing
constraints.

Our design can send messages from FPGAs to
computers via the UART (Universal Asynchronous
Receiver-Transmitter) protocol and between FPGAs via the
SPI (Serial Peripheral Interface) protocol. Though we were
able to have FPGAs receive data from computers via UART,
persistent issues when scaling this to the packetization scheme
prevented us from implementing this in our final design.

We chose to implement modular exponentiation
because we believed it would be a more interesting challenge.
The operation itself seemed initially simple, but the modulo
operation presented a significant obstacle in improving
throughput, as the traditional method of division would cause
a significant slowdown of the entire messaging pipeline.

1L Top LEVEL DESIGN (Kim)

The top level design of the project can be seen in
figure 1.

User Interface
W
Switches
- [0:2]
Serial Data
Interface
A 4

Virtual COM Port

(FTDI Drivers) Mode Select

Y
RSA SPI
J TX Controller m Receiver E
RSA SPI
.

Figure 1: Top level design

1l

FTDI
Module
(FT2232H)

i

The setup of the project will involve 2 laptop computers, each
connected to a separate FPGA, which will be the mode in
which these devices will send messages back and forth. The
FPGA’s will have a direct connection and utilize the SPI
protocol in order to transmit data between each other, and the
messages that are sent will be rendered on one of the screens.
The laptops will communicate by utilizing the USB-UART
handler and the PySerial library API. The FPGAs themselves
will hold an implementation of RSA, an asymmetric
cryptosystem, in order to encrypt and decrypt the exchanged
messages.

II1. CRYPTOGRAPHIC ENGINE (KiM)

We selected RSA-512, which utilizes 512-bit
modulus in its cryptographic algorithms. While RSA-512
cryptography can be broken quickly and cheaply today [1],
larger key sizes were deemed to be too large to fit onto an
FPGA, and the goal is to show the feasibility of implementing
cryptographic algorithms on FPGAs. If size turns out to be
less of an issue than predicted, more secure key sizes may be
considered.

An overall view of the cryptographic engine can be
seen in figure 2. The engine consists of three parts: key
derivation, encryption, and decryption.

Key Generation Module

—p [255:0} >]
q[2550] | 256-bit Multiplier N [511:0] >
N 7 511:0] >
256-bit Multiplier Modular (21101
Inverse)i d [511:0} >

]

21644

Encryption Module

-
message [511:0]_
%. [[511 D‘] _’ Modular hertext (511 01—
e (15 01 Exponentiator cyp [511:0]
[16:0]
—

Decryption Module

cyphertext [511:011{)|)]
N 15110} IModular

message [511:0]—>

e [16:0} Exponentiator
Figure 2: Cryptographic Engine
A. Key Derivation

Key derivation of RSA takes two 256 bit prime
numbers as inputs, and returns an asymmetric key pair
consisting of a public key (N,e) and a private key (N,d). The
public key is known to everyone, but the private key is kept
secret and is only known by the receiver.

Key derivation for RSA begins with the selection of
two 256 bit prime numbers, p and q. These are
deterministically chosen for now. However, an implementation
for randomly generating prime numbers will be completed in
the future. These are then multiplied together using a 256 bit
multiplier to produce the modulus N. The numbers (p-1) and
(g-1) are also multiplied together in order to derive the private
exponent d.

The public exponent e and the private exponent d
must be related in that ¢ * d = 1 mod (p-1)(g-1). This also
implies that ¢ and d must additionally be relatively prime to
(p-1)(g-1), otherwise they would not have a modular
multiplicative inverse. In practice, the public exponent e is
fixed to be 2'°+1, and d is computed by applying the extended
euclidean algorithm on the exponent e and the base (p-1)(q-1).

Given that this is only run once during startup, we
can choose to sacrifice performance here in favor of a smaller
area.

B. Encryption and Decription

Encryption and decryption rely on an efficient modular
exponentiation module to achieve high throughput. However,
reducing intermediate products is extremely expensive as they
require an operation akin to a division. As a result, we use
Montgomery multiplication [2] to reduce the reliance on
division of the modulus and achieve a high throughput, as well
as a repeated squares approach for exponentiation to reduce
the runtime further.

Montgomery multiplication utilizes a constant R such
that R and the modulus N are coprime, and R > N. In practice,
R can be set to a power of 2, given that N is a product of two
primes. The operation to transform a number x into
Montgomery form is defined as

X=x* Rmod N.

Addition between numbers in Montgomery form can be
performed without change. However, multiplication between
two numbers requires the removal of the extra factor of R by
Montgomery Reduction. The following algorithm performs
this Montgomery Reduction, which can also be used to
transform a number in Montgomery form back to its original
value:

function REDC(X):
m = ((X mod R) * N’) mod R
t =(x-m*N)// R
if t <0: return t + N, else: return t.

This algorithm also requires the derivation of N’, which is
derived by using the extended euclidean algorithm on N and R
to find numbers N, R’ such that NN’ - RR’ = 1 = gcd(N,R).
Despite the additional cost from this computation, this runs
much faster than the naive approach to multiplication by
utilizing a power of 2 for the constant R, making division
operations much faster.

With this, we present the algorithm for modular
exponentiation, which uses a repeated squares approach with
Montgomery ~ Multiplication as the intermediate
multiplications:

function mod_exponential(x, e, N)
// computes x°* mod N
/I x and e are assumed to be bit strings of length n
running_prod = 1
current_base =x % N
for i in range(1, n):
ife[i] == 1:
running_prod=REDC(running_prod * current base)
current_base=REDC(current_base * current_base)
return running_prod

Encryption of a message m utilizes the recipient’s public
key pair (N,e), and uses the algorithm above to compute m®
mod N. Decryption of an encrypted message ¢ involves the
recipient’s private key (N,d), and uses the algorithm above to
compute ¢® mod N, which is equivalent to the original
message.

V. CoMMUNICATION ProTocoLs (CAMPBELL)

An important goal of the system is the ability to be able to
easily use it in a classroom environment. We elected to use
computers as the starting point of the data transmission to
enable a variety of media to be sent.

The overall data path goes from one computer to an
FPGA, then to another FPGA and computer. This system has
the advantage of being full-duplex, as each FPGA has its own
encoding and decoding modules and independent receive and
transmit modules.

sw[1:0]

ready
encrypted valid
[M-1:0] valid
— header [H-1:0] . TX Byte uart txd
| TXBrdee | bye(rl Level ’
Decrypted message [M-1:0]
[M-1:0] ready
signal
ready
valid valid
RX Bridge | byte [7:0] RX Byte vart rxd
header [H-1:0] Level
ready
message [M-1:0]
Figure 3: UART Modules
A. Packetization

Packetization accomplishes several objectives: it provides
framing and context for the data being sent, it helps avoid
overwhelming the FGPA with too much data at once while
maintaining throughput, it serves as a convenient way to group
data for encryption and decryption, and it provides for data
verification. Packetization was achieved via “bridge” modules
(inspired by Fischer = Moseley’s Manta UART
implementations), which converted data from packets to bytes.

To meet these goals, the data sent from computer to
computer is packetized into M-bit (where M is the message
bit-depth) chunks. This size was chosen since it is the
maximum size the RSA module can process and thus
maximizes the effective throughput of the system. Each is
accompanied by a 32-bit header. When data is encrypted or
decrypted, the header is preserved and reattached to the
processed message.

The header uses the following format, by bits:

0 : data flag
1 : start flag
2 : raw flag

3-6 :reserved

7-14 : transmission ID
15-22 : packet #

23-31 : packet data length - 1

A computer may want to send a transmission that is more
than the M bits long. To make this possible, a packet-level
protocol is needed. The first step is sending a START packet.
This packet is differentiated by having the start flag of its
header be 1. Subsequent packets have 0 for their START flag
and have the same transmission ID as the START packet. The
contents of the START packet include information about the
data type, and the total transmission size in bytes and packets,
in the following format, by bits:

0-7 : data type
8-15 :reserved

16: : number of packets

Each packet is encoded by the RSA encryption module and
sent to the other FGPA. This FGPA then decrypts it and sends
it to the other computer. It can then recover the complete
transmission by concatenating the contents of each packet. It
can also verify that it received all the packets in the
transmission by checking that each packet number less than
the number of packets specified in the START packet was
received. Using the data type bits in the START packet, it can
interpret the data it received and parse it into a known
representation.

B. Computer with FPGA Communication

Communication between the FPGAs and the computers is
achieved through the FPGA’s on-board USB-UART handler
(FT2232HQ). The FPGAs implement 8N1 UART which the
computers receive/transmit via a Python script using the
PySerial library API. Switches on the FPGA determine
whether the data sent to the computers is decrypted, encrypted,
or both at once. For maximum bandwidth, the ‘both’ option
should not be selected. The FT22232HQ supports up to
12MBaud, and therefore the computers and FPGAs use
12MBaud UART communication.

Because the FPGA is subject to memory limitations,
it may send a signal to the computer if it is currently unable to
accept more incoming packages. Signals are a special kind of
packet with no body; they use the same bits as the package
headers but have data flag set to 0 and their transmission_id
identifies what kind of signal is sent. The system uses two
signals, “stall” and “unstall” to manage data coming into the
FPGAs. When the FPGA’s pipeline is clogged, it sends a stall
signal after finishing its current transmission. Once it becomes
unclogged, the FPGA sends an “unstall” signal which the
computer recognizes and begins sending data once more.

C. FPGA with FPGA Communcation

Communication between the FPGA’s is achieved via
two SPI busses driven at 24MHz to avoid bottlenecking the
12MBaud UART. Every time a packet is sent, the SPI bus’s
select line is driven low, which allows for easy data framing.
Packets are sent bit-wise, starting from the header, from MSB
to LSB (Most Significant to Least Significant Bit). This
achieves higher throughput than UART, which requires
grouping by bytes with start and stop bits. The receiving
FPGA is aware of the header and message sizes and stores
each as the bits arrive. SPI proved to be much more simple to
implement than UART due to its ease of data framing.

Iv. EvaLuartion (Kim)

In this section, we will evaluate our design based on
resources utilized and timing metrics, and offer insights into
where problems arose and how we overcame them.

Table 1 contains the resource utilization of our
design, in terms of Slice logic. Presently, we were only
successful in synthesizing our design using key and message
sizes of 128 bits. However, we ran into issues with the Vivado
software attempting to synthesize large-scale designs. We
were successful in synthesizing 128-bit RSA, but increasing
this size to 256 caused the software to crash. This could be due
to the sheer size of multiple registers and implementations of
some of our modules, but the actual cause is unknown.
Vivado reported that no DSPs or BRAMs were utilized in our
design, which could be changed in the future with better
implementations.

Table 1: Utilization of slice logics

1. Slice Logic

| Slice LUTs

| LUT as Logic
LUT as Memory

Slice Registers
Register as Flip Flop
Register as Latch

| F7 Muxes

| F8 Muxes

* Warning! LUT value is adjusted to account for LUT combining.

Our timing requirements utilized a 100 MHz clock,
and we were almost able to meet the timing requirement with
64 bit depth; however, the modular inverse computation
seemed to have a negative slack after synthesis, and we were
unable to determine the cause of this. However, given that the
modular inverse was only utilized once during startup, we
deemed this to be a minor issue. Scaling the design to 128 bits,
however, additionally introduced negative slack in our
decryption module. However, the rest of the modules were

able to meet timing requirements. The current problem,
however, is that implementing faster algorithms and modules
will likely incur an area cost that could be problematic when
synthesizing the entire design. As a result, we had to optimize
for cheaper modules for area, at the cost of better latency and
throughput

Currently, our design has met the minimum
requirements of being able to send and receive messages, as
well as being able to encrypt and decrypt these messages to be
displayed on a laptop, albeit with some minor issues. Meeting
the ideal goals would take much more effort as we discuss in
the next section. With minimal changes, we would be able to
emulate a small conversation between the two boards, as well
as fix the underlying issues regarding negative slack and some
resource problems.

V. FURTHER DEVELOPMENTS (Kim)

Here, we discuss how our implementation could be further
modified, given additional time, to account for various factors
and use cases.

One issue with our current design is space limitations. The
size of the modules, due to the large size of the various
quantities, prevented the design from being scaled to
quantities larger than 128 bits. Trying to fit this requirement
would require more research on different algorithms to
conserve area, at the cost of speed, or fundamental changes to
our top level design. Utilization of more space in BRAM may
also alleviate space issues, as the various values could be
stored in there while not in use, reducing the need for large
sized registers. Another possible way to save space would be
to modify the top level design to reuse certain modules, such
as reusing the modular exponent module to both encrypt and
decrypt messages.

Another future development would be the generation of
random primes for key generation. Currently, our design is
very simplified, and the primes are deterministically selected
for each board; however, this is obviously insecure as
recycling keys in this manner makes the attacker’s job easier
in determining the private key of either party. This also means
that once a private key is recovered, messages from previous
sessions can also be decrypted. Nondeterministically
generating primes for key generation solves this issue;
however, due to the complex algorithms that generate random
primes, this work would likely have to be done on the laptops
and sent to the boards using the communications protocol.
This would require minor modifications to the setup phase of
our top level design to receive these randomly generated
primes.

Our stretch goals would require major changes and refactoring
of the top level to accommodate. One of our goals was to
attempt to implement a symmetric key encryption scheme,
which would also require a key exchange protocol to negotiate

a shared secret between the two parties. The simplest method
would be the Diffie-Hellman key exchange, which can be
implemented with changes to the communications pipeline as
well as the reutilization of our modular exponent function.
However, symmetric encryption algorithms such as AES
would require further research and experimentation to be
implemented. Sending audio and video was also another of
these goals, which would require additional modules and
functionality to be implemented.

VI. RETROSPECTIVE

This project has given us much insight into the world
of digital design. It highlighted many subtle issues that arise
when attempting to write implementations that will eventually
be flashed onto a physical board, and it is a very different
experience compared to writing the same thing in software.
This section aims to detail some of these revelations that we
encountered.

- Because debugging hardware can be a frustrating task
to do, utilizing simulations can give valuable insight
into the behavior of a specific system or module.
However, even the simulation has its limits, as we
discovered especially in debugging our various
cryptography modules. Verilog can surprisingly
handle incredibly large numbers to use in its
simulations, as it had no complaints when we tested
our modules with 512 bit numbers in some places.
However, even that has its limits, as discerning
outputs in gtkwave was a horrible experience because
the software had a lot of problems in displaying these
512 bit numbers.

- Area proved to be a significant problem, as some of
the operations within modules were attempting to
multiply two extremely large numbers within a single
clock cycle. This would, of course, explode our
resource utilization, and we had many instances
where the build of our design attempted to utilize
more resources than were physically present on the
FPGAs, which would obviously not build. The
experience would have been a lot smoother had we
continuously reminded ourselves to keep this idea in
mind as we designed the modules.

- The AXI protocol of managing FSMs was extremely
helpful in making sure each module began working
when they were supposed to. Many computations
were often stalled by other computations; for
example, computing a modular inverse required the
repeated use of a divider to obtain the quotient and
remainder, and utilizing AXI made the logic of
waiting for the divider to finish much simpler. If
given the opportunity to redo this project, we would
continue to use this protocol given its familiarity,
though there may be better suited protocols.

VII. ACKNOWLEDGEMENTS & CONTRIBUTIONS

The workload was split between the two major
components and based on each person’s familiarity with each.
Joseph handled the cryptographic engine and its related
modules, while Stephen worked on communications,
including the UART and SPI protocol and modules.

During the development of the low level UART
modules, Fischer Moseley’s Manta UART implementations
were referenced [3]. We would also like to thank Joe
Steinmeyer and the rest of the 6.2050 staff for making the
class fun and interesting, as well as helping debug various
components of the project.

V. Source CobpE

The repository containing all code and testbenches
can be found at https://github.com/Jierark/EncryptED.

VI. REFERENCES

[1] D. Goodin, “Breaking 512-bit RSA with Amazon EC2 is a
cinch. so why all the weak keys?,” Ars Technica,
https://arstechnica.com/information-technology/2015/10/b
reaking-512-bit-rsa-with-amazon-ec2-is-a-cinch-so-why-a
11-the-weak-keys/#:~:text=The%20cost%20and%20time%
20required,even%20computing%20novices%20can%20fo
llow. (accessed Nov. 22, 2023).

[2] P. L. Montgomery, “Modular Multiplication Without Trial
Division,” Mathematics of Computation, vol. 44, no. 170,
pp. 519-521, Apr. 1985. Accessed: Nov. 22, 2023.
[Online]. Available:
https://www.ams.org/journals/mcom/1985-44-170/S0025-
5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf

[3] F. Moseley, “Manta: An In-Situ Debugging Tool for
Programmable Hardware,” Manta Documentation,

https://fischermoseley.github.io/manta/ (accessed Nov. 22,
2023).

