
RISCY ML
Armando Moncada

Electrical Engineering and Computer Science
Massachusetts Institute of Technology

moncadaa@mit.edu

Lee Morgan
Electrical Engineering and Computer Science

Massachusetts Institute of Technology
leeban@mit.edu

Abstract—The proposed project is a pipelined RISC-V System-
On-Chip composed of two main modules: a RISC-V processor
that supports RV32I instructions, and a machine learning mod-
ule, which contains several processing units to quickly perform
common machine learning computations. The goal is to provide
a complete SoC that can provide clear performance differences
in ML computing against a standard RISC-V processor.

Index Terms—Digital Systems, Processor, Pipelined, Matrix,
Field-Programmable Gate Array (FPGA)

I. INTRODUCTION

This system has two main components:
• A 4-Stage RISC-V Processor capable of executing one

instruction per cycle. Any types of hazards are handled
accordingly and sacrifice performance to ensure correct-
ness of the program. The processor can accept a file
containing a program to be run, and when the processor
gets compiled it can run the program provided in that file.

• A Matrix-Multiplier module that can perform a multi-
plication of matrices of generic size. This module uses
a shared memory space with the processor, allowing for
programs to dynamically create matrices that uses the
module.

The two components work seamlessly together via an AXI-
like interface, and can be accessed via a few custom assembly
instructions. The RISC-V GNU Compiler Toolchain was also
utilized to write programs in C and compile them into binaries
that the processor can read.

Source code can be found here.

II. PROCESSOR

A. Current Implementation

At this point, we have implemented a 4-stage pipelined
processor capable of performing instructions in the RISC-V
RV32I dataset. To ensure proper encoding and execution of the
instructions, we have referenced the official published RISC-
V ISA manual [1]. The four stages included are the fetch,
decode, execute, and writeback stages.

a) Fetch stage: The Fetch stage contains the instruction
memory BRAM module and its interface. This stage is in
charge of keeping track of a program’s current place in
memory, and making requests to the instruction memory. The
BRAM that is utilized is currently 32 bits wide, and can hold
128 instructions. When mapping memory addresses to memory
addresses, the bottom two bits are ignored and then searched
based on the remaining bits. This is in place to keep consistent

with the byte offset requirements set forth in the RISC-V ISA.
For example, if the current PC that needs to be fetched is 0x1C,
the fetch module will remove the bottom two bits and send a
request for the instruction at address 0x7.

The BRAM used in this module have a clock latency of two
cycles. Without any jumps in memory, this does not produce
any problems. The pipeline will just lag by 2 cycles but will
still process an instruction every cycle. However, we found
this limitation to be quite problematic whenever branches are
taken. However, once a branch misprediction takes place, all
instructions that are currently being processed in the BRAM
must be annuled. We can a accomplish this by setting a flag for
exactly 3 cycles before proceeding with the requested branch
pc. For any cycles where that flag is set, we will simply ignore
those outputs. Once the flag is reset, we can proceed with the
pc corresponding with the branch. This does cause a loss of 3
cycles, so more work is needed for mitigating this issue. Loops
will be quite detrimental to performance on this processor.

b) Decode stage: The Decode stage is where 32-bit
words are processed to prepare for execution. This is especially
important for detecting hazards within the pipeline, where a
source register matches a destination register of an instruction
in the execute or Writeback stage. If this does occur, we need
to ensure the processor does not move the decoded instruction
to the Execute stage, and that the Fetch stage does not send a
new instruction to the Decode stage, which would overwrite
the current instruction that initiated the stall. Signals will be
sent downstream to execute to not process the next instruction,
and sent upstream to Fetch to maintain the same instruction
at its output.

c) Execute stage: The Execute stage has two main roles:
processing decoded instructions or sending requests to external
modules. Processing decoded instructions will vary based on
the type of instruction, but fundamentally they are all taking
2 parameters as inputs and producing a single output. The
two parameters could be two numbers to be added together,
or two numbers to compute bitwise XOR. Once the result is
produced, it is moved along to the Writeback stage where it
can be written back to the register file.

Sending requests is a more involved process, and opens the
door to a new type of stall. To keep the system as modular as
possible, any external modules will follow a similar process
for making requests. Each external module, whether that be
memory or Machine Learning modules (to be discussed in
detail in section III), will be required to provide a ”busy” and

https://github.mit.edu/moncadaa/6205_processor


”done” signal, so that the processor can know when it can
make a new request. If the busy flag is low, the processor sends
in all the required signals, and proceeds with the instruction
to the Writeback stage. But if the busy flag is high, then the
processor must stall. This means that Execute cannot pass
its current instruction to the Writeback stage. Additionally,
the Decode cannot pass an instruction to Execute, and Fetch
cannot pass an instruction to Decode. All stages will be frozen
in this manner until the external module is no longer busy and
the processor can send the request.

d) Writeback stage: The Writeback stage is the last stage
for the processor before an instruction is fully processed. If
the current instruction must write to a destination register, then
we must send in the request to the register file to write to that
register, using the data provided from execute. This works
without issue for all instructions except for LOAD type, where
it uses an external module and it also writes to a register.
Here, we must wait for the memory module’s ”done” flag to
let the processor know that the LOAD data is ready to be
retrieved and saved into a register. If the done flag is not set,
then we must not make any write requests to the register file,
and additionally let all upstream stages know to not move any
requests to the next stage. In other words, Execute should not
move the instruction to Writeback, Decode should not move
to Execute, and Fetch should not move to Decode.

B. C Compilation
To make uses cases more realistic, we looked into finding a

way to compile C programs into binary that the processor can
read. We learned that the RISC-V GNU Compiler Toolchain
is currently the standard for creating such binaries. The
translation from the compiled object files to our processor was
not straightforward, however.

The first main issue was getting the address spaces for the
processor to compile code correctly. It seems that there were
default starting addresses for the code, stack, and heap that
did not correlate with our programs, and were often much
too large, requiring more BRAM than what we had space for
on the FPGA. We got around this by designing some entry
assembly code in sw/entry.S and then utilizing a linker script
in sw/link.ld to correctly map our address spaces and start
with the entry program that eventually calls the main() of the
compiled C program.

Another issue occurred while initializing the processor’s
BRAM to contain the program’s code. The Vivado builder
looks for these files in a specific format, and we could not get
GNU’s objcopy tool to get it in the format that we specifically
needed for the initialization. In the end, we decided to use a
tool provided by SiFive called elf2hex that can help us get
the string hexadecimal dump in a format that we could use. It
still required some editing in order to manually remove some
problematic metadata, but overall, it make the translation from
compiled object files to hexadecimal much more bearable.

C. Memory-Mapped Input/Output (MMIO)
A powerful abstraction commonly used in embedded sys-

tems is MMIO. This allows users to perform special functions

that interact with hardware through their typical load and store
functions. Our primary use case of this was printing data or
characters to the console.

When a program attempts to store to address 0x40000000,
an address well out of the range of the program’s address
space, the processor instead uses the store data and sends
it, along with a few flags, through the USB UART bus. A
corresponding Manta program senses these data writes by
looking out for those flags, and then prints to the terminal
that is running the python program.

While this abstraction was quite useful, we quickly ran
into issues with timing. After sending a packet via UART,
the python overhead with receiving the data, printing, and re-
sponding back to the processor was so large that the processor
would be done with the C program before the python program
could even write a single character. To fix this, we made this
MMIO call a blocking call, where we wait for the the python
program to give a full confirmation that it indeed received
data and is done printing to the console. This resulted in a
functionally correct interface, but also one that was horribly
slow. This often costed us millons of clock cyles that would
not have been there normally.

D. Further Discussion and Areas for Improvement

There are definitely improvements that we can make to the
processor to improve CPI. Our biggest improvement will likely
come from more intelligent caching. To preserve functionality,
we ended up just fetching an instruction every 3 cycles, just
how the BRAM can provide. This helped make our CPI much
more consistent, even in the face of many for loops.

We would also consider expanding the MMIO to utilize
more of the hardware on the FPGA. We could have easily
made abstractions to map the LEDs, GPIO, switches, and other
peripherals on the board. Another consideration would be to
develop an I2C or SPI bus that was abstracted away by MMIO.
Finding a different way to print to a console without leading
to millions of wasted cycles would also be a crucial next step.

We are also soon looking into a superscalar design to help
improve performance. We define superscalar as a processor
capable of handling multiple instructions per cycle. Initially,
we had anticipated this to be a difficult task, and one that
would be part of our reach goals. However, there are simple
ways we can use multiple processor pipelines to improve
performance. One primary method we are considering is
utilizing a secondary pipeline that takes branches, to avoid the
huge cost in cycles every time a branch is mispredicted. If we
have two pipelines, one where the branch is taken and another
where it is not, we can proceed with instructions seamlessly by
simply choosing the correct pipeline when a branch instruction
is executed.

III. MATRIX MULTIPLICATION

A. Top Level View

We have implemented a matrix multiplication module
(MMM) that can perform multiplications on matrices of
variable sizes. Because we wanted to be able to do small,



more accurate matrix multiplications, and larger, quantized
multiplications, we decided to give it the capability to treat
matrix elements as 32 bit values, or 8 bit values, both in
reading and writing. If the write 8 bits signal is 1, then
it will write the output elements to memory as four 8 bit
values, stored together in one 32 bit value, since each address
in memory corresponds to 32 bits. If it is zero, then each value
will be stored with 32 bits. If read 8 its signal is 1, then it
will read each 32 bit value coming from memory as four 8 bit
values. If it is zero then it will be read as one 32 bit value.
The multiplication begins when the 1 cycle start mult signal is
received. Along with that comes the addresses and dimensions
of each matrix. Also, the multiplier and shift values are sent
to the MMM too. These values are used for quantizing results
from 32 bits to 8 bits when we try to write with 8 bit values.

Fig. 1. The Naive Matrix Multiplication Algorithm Used

The MMM sends back a busy and one-cycle done signal to
the caller, along with the dimensions and address of the output
matrix. It sends other values to the memory management unit
(MMU), including the read enabled and write enabled sig-
nals, which signal to the MMU if we need a read or write to be
completed. It also sends in indices which correspond to values
that we want to grab from the right matrix and left matrix,
which are calculated inside the MMM. The MMU sends a
busy and one-cycle done signal to the MMM, along with the
left val and right val that were attained from memory reads.
Lastly, it outputs the write floor value to the MMM, which
signifies the lowest unoccupied index in memory that has all
indexes above unoccupied. The MMU works by checking if it
should read or write, waiting for the read or write to complete,
then returning to the WAITING FOR OPERATION state. It
also interfaces with the BRAM in order to make reads and
writes. The MMU and MMM also take in clock and reset
signals. A top level matrix multiplication setup can be viewed
on the last page.

The operation of the MMM (when reading and writing 32
bits) starts when it is in the IDLE state. If it is in this state, and
the start multiplication signal has risen, then the module starts
following the algorithm in Figure 5 below [2], and going to the
RUNNING state, where the iteration and setup for reads are
handled. Once a read is necessary and possible, it goes into the
WAITING FOR READ state, where it gets S[m,k] and P[k,r]
through calling the MMU to read both values simultaneously.

This works because we use a dual port BRAM. Also, the
matrices are flattened and stored in memory in row-major
order. Once the reads are complete, they are multiplied and
added to the total. Once k==G, however, we stop reading and
instead go to the WAIT FOR WRITE stage, where we wait
for the MMU to write the total value to memory such that
the output matrix is also stored in row-major order starting
at region floor. Then the total is reset and we go back to
the running state and continue this algorithm until we reach
m==A, meaning that all rows have been read. This is the end
of the multiplication, and the done signal is set to 1 for one
cycle, the busy signal goes to zero, and we return to the idle
state.

The operation is similar when reading 8 bits, except that
we now grab four values from each matrix at a time. Also,
the right matrices are stored in column-major order, so we
can grab multiple contiguous column values at a time. We
also quantize and store our output values four times before
concatenating them and writing to memory. To be able to have
the 32 bit and 8 bit multiplication in the same module, we
shifted down the values of the indices we used by two when
reading/writing 8 bit values instead of 32 bit values.

B. Performance Evaluation

In order to test the performance of the MMM, we set
up multiple testbenches, running it with matrices of varying
lengths. We first did a quick multiplication between two 4x4
matrices, reading the values as 32 bits or 8 bits. The 32 bit
implementation took 4730 ns and the 8 bit implementation
took 1370 ns. For 8x8 matrices, we see 9 microseconds for
the 8 bit implementation and 34 microseconds. We can see
that the 8 bit implementation runs about four times faster than
the 32 bit implementation. Upon further inspection, one can
notice O(n3) time complexity, as a doubling in length led to
a 8x increase in time. Clearly, the 8 bit alternative performs
faster but at the cost of resolution of the data. The performance
was tested in hardware with the rest of the system.

C. Further Discussion and Areas for Improvement

In the age of information and internet of things, it has be-
come increasingly important to have fast running computations
on resource constrained devices. Through this project, we have
created a dynamic processor which can run assembly code,
including code that we had compiled from C. This allows us
to write C code that runs on an FPGA, with the addition of a
custom matrix multiplication function. This processor can be
used to complete a variety of tasks and has shown to be much
faster than doing a traditional for loop within the C program.
For further work, we plan on increasing the performance of
the matrix multiplication unit through further optimization,
and eventually adding in the capability to perform small
machine learning prediction tasks, like classifying images of
the MNIST dataset.



REFERENCES

[1] A. Waterman, et al. ”The RISC-V Instruction Set Manual,” SiFive
Inc., https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
(accessed Nov. 13, 2023).

[2] S. Datta, “Matrix multiplication algorithm time complexity,” Bael-
dung on Computer Science, https://www.baeldung.com/cs/matrix-
multiplication-algorithms (accessed Nov. 15, 2023).



Extra Fig 1: Top Level View of Matrix Multiplication Setup

Extra Fig 2: State Diagram for Matrix Multiplication



Extra Fig 3: Memory Management Unit State Diagram


