
Riscalar
1st Bill Wang

Department of Computer Science and Engineering
Massachusetts Institute of Technology

Cambridge, MA, USA
wangbill@mit.edu

1st Catherine Tang
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

cattang@mit.edu

Abstract—We will build a pipelined superscalar RISC-V pro-
cessor in SystemVerilog that is capable of out-of-order execution,
branch prediction, and speculative execution. An FPGA is perfect
for this project as it allows us to build a processor without the
need to understand how to fabricate hardware, while simultane-
ously allowing us to easily experiment with different processor
optimizations. Initially, we will build two baseline single-cycle
and piplined processors capable of executing the standard RISC-
V instruction set. Then we build and benchmark the superscalar
processor, benchmarking the performance of our processor by
analyzing the number of clock cycles and comparing with the
baseline processor.

Index Terms—Superscalar, RISC-V, Tomasulo’s Algorithm,
Data and Control Hazards, Tournament Branch Predictor, Sys-
temVerilog

I. SINGLE CYCLE PROCESSOR (BILL)

An overview of the entire single cycle processor is sum-
marized Figure 6 within Appendix A. Given that the basic
processor was not our project’s focus, in the following sub-
sections, we just elaborate on specific design choices.

A. Memory Design

We need to work with three classes of memory:

• Instruction Memory: We store our instructions in
BRAM starting from address zero. Each instruction is
32 bits, so our BRAM has a width of 32 bits. Our
BRAM has a depth of 1024 entries. Read and writes to
the BRAM take two clock cycles. To make this work
with single-cycle, we slowed our clock down by a factor
of four. For the sake of the pipelined processor and the
superscalar, we decided to use a single port write first
memory because this allows load words that follow store
words to read the updated value.

• Register File: Our registers are stored in a 2d logic array.
The array is 32 by 32 since we have 32 registers, and
each register holds 32 bits. Reads to our register file are
combinational, while writes are sequential and take one
clock cycle to complete.

• Data Memory: We also implement this in a BRAM of
size 1024. Load words take two clock cycles to complete,
but this is not a problem in the single-cycle because we
slowed down our instruction period as described under
Instruction Memory to account for this.

II. PIPELINED PROCESSOR (CATHERINE)

Because the single cycle processor groups all of the logic
into one clock cycle, the clock period is bottle necked by slow
operations like memory reads and writes. Instead, we are able
to achieve greater efficiency by pipelining our processor into
the 5 stages. This allows for a shorter clock period, increasing
throughput and lowering overall latency. Instead of handling
only a single instruction at a time, our processor is now able
to work on 5 instructions in flight.

We designed the pipelined processor as an intermediate be-
tween the baseline single-cycle processor and the superscalar,
providing an additional more complex benchmark than our
baseline single-cycle processor. With these additional features,
the 5-stage pipelined processor has to handle data and control
hazards. We describe them in the following subsections in
brief because they are a subset of the hazards present in the
superscalar.

A. Data Hazards

Because we are now handling multiple instructions in
flight, we will begin processing subsequent instructions before
previous instructions have finished executing. We may en-
counter read-after-write (RAW) hazards where an instruction’s
operands needs to read a register that is being written to
by an in-progress operation. In these cases, we must stall
the instruction in the instruction decode (ID) phase until the
operand has been calculated or loaded. To implement this,
we create ready signals for the stages ID, EXE, MEM, and
WB. This allow us to stall by inserting NOPs (implemented
as invalid instruction 32’b0) into the pipeline until the ready
signal goes high. One further optimization we can add is to
add in bypassing, so that an instruction that encounters a RAW
hazard does not need to wait until the instruction it depends
on is written to the register after WB and can instead receive
the result as soon as it is calculated.

B. Control Hazards

Control hazards also arise when we start handling multiple
instructions in flight. In particular, we do not know what the
PC following a branch or jump instruction will be until the
instruction completes the execute stage. One option would be
to stall the entire pipeline until the branch instruction has
executed, but this would be a large hit to our cycles-per-
instruction (CPI). Instead, we use basic branch prediction,

Fig. 1. Superscalar processor illustrating the key components of a superscalar processor including the functional units, the reorder buffer and reservation
stations, and the memory units and register file. Figure based off diagram in Computer Architecture by Hennessy and Patterson.

assuming that all branches will not be taken at first and begin
fetching instructions at PC+4 after the branch PC. Once we
have the result of the branch, if we determine that the result is
incorrect, we will replace the incorrectly fetched instructions
with NOPs and begin fetching the instructions at the accurate
PC.

III. SUPERSCALAR (CATHERINE)

This is the primary deliverable of our project. We im-
plemented a pipelined and out-of-order superscalar processor
through Tomasulo’s algorithm. The diagram in Figure 1 sum-
marizes all the components in the superscalar, described in
greater detail in the following subsections. We will describe
the components of the superscalar in the order of instruction
flow through the processor.

A. Implementation of Tomasulo’s Algorithm

1) Instruction Fetch: In the instruction fetch stage of the
processor, instructions based on the program counter are
read from the instruction BRAM, just as in the previous
two processors. One consideration in both the pipeline and
superscalar processor with multiple instructions in flight is
aligning the PC with the instructions. One implementation
challenge is the 2-cycle latency of the Xilinx BRAMs. But
given that the BRAM is pipelined, the throughput should be 1
instruction per clock cycle, with just a 2 clock cycle delay. To
overcome this, we fetch instructions two cycle ahead of when

they are used. In other words, the address we read memory
at is always 2 clock cycles ahead of the PC of the instruction
fetched. We stall the PC for the first two clock cycles until the
first memory result is ready, and then we start incrementing
the PC while fetching the instruction at PC + 8. This leads
to the complication where we need to know the PC 2 clock
cycles ahead of time, which is not always the case when we
have a branch or jump instruction. To overcome this, we stall
for two clock cycles to read an instruction every time we
branch, jump, or mispredict a branch. Although this does add
complexity to the flow of instructions, we found this to be
more performant than the alternative of waiting 2 clock cycles
on every instruction fetch. One other consideration during the
instruction fetch stage is if the rest of the superscalar (meaning
the reorder buffer, reservation station, and instruction queue)
is full, indicated by the iq_ready signal. In this scenario,
we hold the PC constant and we wait until space opens up
before continuing to fetch new instructions.

2) Branch Prediction and Decode: To fetch one instruction
per clock cycle, we necessarily need to know whether the
instruction fetched was a branch. As a result, we added a
small branch decode that checks if the instruction is a branch
and we then run branch prediction on the branches. We keep
track of whether the branch was predicted as taken and we
update the PC with the predicted address. The instruction and
the decision to take or not take the branch is written into the

Fig. 2. Input and output wires for the instruction queue module. This
instruction queue structure is similar to other queues we will implement
including the functional unit results queue and the reorder buffer.

instruction queue.
3) Instruction Queue: Instructions fetched from BRAM

(and for branches the prediction result) will be stored in this
circular FIFO buffer. We need an instruction queue because
there are situations where the next instruction cannot be issued
yet because the reorder buffer (ROB) or the reservation stations
(RS) are full. In this case, we want to continue fetching new
instructions from instruction memory as to not waste clock
cycles but we still need to keep track of our instructions that
have yet to been dispatched (sent to a reservation station). In
our instruction queue design, there are mutliple control signals
going in and out of the instruction queue indicating the status
of the instruction queue itself, as well as the components
interacting with the queue on both ends as seen in Figure
2. On the side interfacing between the memory unit and the
queue, there is a valid in input signal informing telling the
buffer when the next input instruction is valid and should be
stored in the queue. The queue also tells the upstream it is
ready to receive another instruction while it still has room
left in the queue. On the side where instructions are issued,
the instruction queue has an instruction available signal letting
the downstream logic know it can pull an instruction. There is
also instruction read input signal that tells the queue its next
instruction has been read and can now leave the buffer. In our
implementation of this instruction queue, we decided to use
a length 16 instruction queue as we thought this would give
us ample buffer for instruction build up. Once an instruction
reaches the front of the instruction queue, we wait for the
the reservation station the instruction is assigned to (based on
the instruction type) and the reorder buffer to be ready. Then
we issue the instruction along with the reorder buffer entry
number assigned by the ROB to this instruction.

4) Reservation Stations: We had one reservation station
for each functional unit of our design (rs_alu, rs_mul,
rs_brAlu, rs_load, rs_store). If an instruction has a
data dependency that is not yet ready or the functional unit
(FU) is in use, the instruction will be held in the functional
unit’s corresponding reservation station until the data depen-
dency is resolved and the FU is free. As seen in Figure 3,
each row in a reservation station has 9 fields: operation, rob
entry number, Qi, Qj , Vi, Vj , iready, jready, busy. When an
instruction is decoded and sent to the reservation station, if the
instruction’s operand is already known, the Q value is ignored,
the V value is the value read from the register file, and the

Fig. 3. The reservation station above has a depth of 8 and a width of 80 bits.
The breakdown between the 9 different fields is indicated by the bit indices.
The subscripts i and j here correspond to register values 1 and 2. At any
point, either Q or V for a given i and j will be 0. The i and j indicates if
the operands are ready and B indicates that the row is busy.

operand ready bit (iready or jready) is 1. In the case where the
instruction’s operand is unknown, Q holds the re-order buffer
entry number associated with the instruction that will return
the result of the dependent operand. The ROB entry number
comes from the register file, which maps each register to a
ROB entry number if the instruction is still in-flight (in the
ROB) and has yet to be committed. The busy bit indicates
whether a row in the reservation station is free, or has an
instruction currently in it.

5) Functional Units: Our superscalar has one ALU for
general single cycle operations, a multiplier FU and a
divider FU for multiply/divide instructions, a branch ALU
for branch operations, and finally a memory unit to handle
load/store instructions. The branch ALU is specialized to
handle evaluating branch instructions. The reason to separate
out this from the general ALU is because this allows us to
get to branch instructions more quickly, which is crucial to
save potentially wasted clock cycles due to control hazards.
The multiple functional units are the core of what allows us
to achieve instruction-level parallelism, giving the superscalar
a signficant advantage. Here is a table of the number of clock
cycles each functional unit takes to perform its calculation:

Functional Unit Latencies
Functional Unit Latency (clock cycles)
ALU 1
Branch ALU 0 (combinational)
Multiply 6
Memory Unit 2 (L) / 1 (S)

6) Load Buffer: After the operands of a load operation
are known and the source address of the load operation is
known, the instruction is moved into the load buffer first
instead of directly loading from memory. This is important
to handle a different flavor of hazards that are specific to
load and store instructions. If a load instruction occurs after
a store instruction, we need to check to avoid a RAW hazard,
which occurs if both the load and the store happen at the
same address. To determine if hazards exist, we connect the
load buffer and the reorder buffer to check every pair of store
and load instructions in flight if they meet the following two
conditions to constitute a RAW hazard:

1) The store instruction occurs before the load.
2) The store instruction’s address is unknown or known to

be the same address as the load buffer.
Like the reservation station, instructions can be issued from
the load buffer in any order once we confirm that the memory

unit is ready and there are no RAW data hazards.
7) Memory Unit: The memory unit is a module that wraps

around the Xilinx BRAM that serves as our data memory.
The memory unit ready and valid signal outputs to let the
upstream modules know when an instruction can be issued
and the downstream CDB when the output is available to be
read. The memory unit takes in load instructions from the load
buffer and store instructions from the reorder buffer. When
concurrent loads and stores occur, we give priority to the store
because the store takes only one clock cycle, and can allow
more instructions to commit in the reorder buffer.

8) Common Data Bus: The common data bus (CDB) is a
bus that connects to all reservation stations, the store buffer,
and the reorder buffer (which then reaches the register file).
Once a functional unit outputs data, the data is sent on the
CDB, allowing whichever units that depend on the data to
read the data directly. The idea behind a common bus is that
all the hardware components share this wire which broadcasts
information. This means that if multiple functional units need
to use the bus, which in our case, happens not infrequently
because we have a general purpose ALU and branch ALU
which are 1 clock cycle and combinational respectively, there
needs to be some way for one FU to grab the bus and send
its results first. We considered widening the bus to allow
for multiple functional units to write onto the bus at once.
However, we found that this solution does not scale. Instead,
we decided to use a priority-based selector that gives the bus
to FU Alu, forcing FU AluBranch to stall, and then giving the
bus to FU AluBranch in the next clock cycle. By comparing
the ROB entry number of the result with the Q entries of the
reservation stations, we can write the result into the value field
of the dependent operands and into the reorder buffer.

9) Reorder Buffer: The reorder buffer (ROB) supports
speculative execution by storing results of instruction executed
out-of-order and committing them in order. The danger of
speculative execution with out-of-order execution is that mis-
predicted branches can change the state of the processor before
the branches are evaluated. Instructions are placed in the ROB
during the dispatch phase such that they are stored in the ROB
in program order. As seen in Figure 4, each entry of the ROB
has 4 fields: instruction type (ie. OP, OPIMM, MUL), resulting
value of the instruction, destination (which could be an address
or a register file index depending on the instruction type), and
the ready flag, a bit indicating if the instruction has finished
execution. The ROB has a head pointer which is the oldest
instruction that is yet to be committed and the tail pointer,
indicating the newest instruction added to the ROB. If during
an issue phase, an operand value is calculated but still waiting
to be committed into the register file, the operand value can be
read from the ROB instead. The ROB commits the instruction
at the head once it is ready. Commit is the point at which
the system’s state is modified by writing to the register file or
memory. When a branch is speculatively taken incorrectly for
example, the instructions that are executed do not change the
state of the system yet. Instead, commits happen in order so
only once the branch is evaluated do instructions following it

Fig. 4. A N-element reorder buffer is shown above. The reorder buffer ensures
that the elements get committed in order even if executed out of order. The
buffer is a circular FIFO buffer.

get considered. By then, we realize we have taken the wrong
branch, so we flush the ROB and ignore all the instructions
after the branch. One special case are store instructions, which
change the system’s state. Store instructions must be issued to
the memory unit only once they are committed in the ROB
because we do not want to change the system state out of
order. To implement this ROB, we created a module that uses
distributed RAM because we will frequently need to check
and update the ROB every clock cycle. We decided to design
our ROB to be 8 instructions deep, as we need to check the
entire ROB every clock cycle which places a constraint on the
length of the ROB. Each row has a width of

|instType|+ |val|+ |dest|+ |ready| = 4+32+32+1 = 69 bits

based on the 4 fields we described above. In choosing the
length of our ROB, we found that the length of the ROB is
a significant determinant of performance. If the ROB is too
small, this is a bottleneck for the system and instructions will
fill up in the instruction queue and no longer be able to be
even fetched from memory.

B. Optimizations

1) Branch Prediction: This is a performance optimization
allowing us to predict the next program counter right after an
instruction is fetched. We implemented a tournament branch
predictor based off the Alpha 21264 predictor. The branch
predictor takes into consideration both local history (specific
to the current branch pc) and global history (across all recent
branches) to predict the next PC. However, to fit the hardware
limitations, we had to modify the size of the buffers as well as
the number of bits for our saturated counters. Figure 5 provides
the specific details of our implementation.

2) Memory Optimizations: In the original Tomasulo su-
perscalar, the reservation stations contain an additional 32
bit field where the address or the immediate can be stored.
However, we were able to store the information we needed for
each instruction type in other locations as to reduce memory
overhead. For OPIMM and LOAD instructions, storing the
immediate in the place of register value 2 was simple to do. For
STORE instructions, in particular, we could not use the same
technique because we had a rs1, rs2, and immediate field. We
realized we could get around this by storing the immediate or
offset temporarily in the destination field of the reorder buffer

Fig. 5. Our implementation of the tournament branch predictor is shown
above. It is based off the Alpha 21264 predictor.

entry for the instruction because anyways we only execute
STORE instructions in order from the ROB. For BRANCH
type instructions, we ran into the unique challenge of storing
the decision of whether the branch was taken and storing the
alternate PC. For example, if a branch was taken incorrectly,
we need to be able to return back to pc + 4. Likewise, if a
branch was predicted not taken, we would then need to know
pc + immediate. We decided to store the alternate PC in the
destination field of the branch and the value field of the branch
was used to store the predicted take or not take value. Once
the branch is evaluated, we are then able to compare with the
original prediction and decide whether to use the backup PC
or not.

IV. RISC-V (BILL)

A. RISC-V Toolchain

Riscalar is a RISC-V processor. RISC-V allows us to add
custom instructions, and because we wanted the capability
of easily doing that, we wrote our own Python RISC-V
Toolchain. The toolchain is written in a way that’s suited for
easily adding in new instructions by separating instructions
into groups.

B. RV32M Multiply Extension

Riscalar supports the RV32M multiply extension. See Ap-
pendix C for the ISA that our processor supports.

V. BENCHMARKING (BILL)

As hinted at previously, a superscalar processor excels
under two main conditions: when there exists a lot of data
dependencies, and when there exists operations that take a very
long time. As we didn’t implement floating point units (which
are the primary operations where latency exists), there were
only a select few instances where we saw notable speedup with
a superscalar processor. As we want to give a full coverage
of benchmarks, we will demonstrate those as well as other
benchmarks where the superscalar does not do so well.

A basic set of varying ALU operations performed
far worse on the superscalar than our pipelined processor.

Processor Benchmarks
Size of Instructions Superscalar Speed Up
Few (∼ 10) -70%
Medium (∼ 20) -70.2%
Large (∼ 100) -91%

For the first two tests, the superscalar processes around 1
instruction for every 3 instructions the pipelined processor
processes. This makes sense. A pipelined processor with full
bypassing is essentially optimized as much as possible to
do ALU instructions, as the ALU will be kept busy every
single clock cycle. Theoretically, if our processor was perfectly
designed, the superscalar processor should match the pipeline
processor’s speed. However, since the hardware for the super-
scalar processor is so complicated, there were places where we
needed to add in stalls as well as registers to meet timing. The
specific modules will be talked more in the evaluation section,
but the timing issues we encountered were the primary reason
the superscalar performs poorly against pipelined.
Furthermore, we see that the efficiency of the superscalar
decreased as instruction size increased. This is due to the fact
that the reorder buffer and instruction queue had filled, so
the pc is held constant and instructions were not being fed
into the processor. Increasing those modules required careful
planning, as size increases drastically, but mostly because the
logic overhead becomes more complicated, resulting in timing
issues once again.

A benchmark of multiplication and adds (including loads
and stores to and from memory) show that a superscalar
processor outperforms the pipelined processor for certain
sizes. The pipelined processor currently just contains an
ALU; we did not have time to add the multiplier, so the
pipeline values were calculated by hand.

Processor Benchmarks
Size of Instructions Superscalar Speed Up
Few (∼ 10) 6%
Medium (∼ 20) 0.1%
Large (∼ 100) -22%

As above, large numbers of instructions are slower for the
superscalar because control logic overhead increases when
more instructions are in-flight, and because it was difficult
increasing buffer sizes. However, since multiplication take 6
clock cycles, rather than one cycle as is the ALU, we were
able to see some improvement in the superscalar performance
due to parallelism (both from the add/multiplier, as well as the
memory unit).

VI. DESIGN EVALUATION (BILL)

In the following table, we summarize the resource
utilization of our program.

Resource Utilization
Resource Usage
BRAM 0.5%
DSPs 3%

Timing was a big issue for us, as it is for many superscalar
designs, and it greatly affected our design. In particular,
certain sections such as the load buffer and reorder struggled
to meet timing requirements. Because of this, we needed
to pipeline a lot of our designs, which resulted in a loss
of latency. An alternative design we could have approached
was using a slower clock in order to make more components
combinational, but we decided against that approach because
we weren’t sure of the exact timing of each component.
We accomplished our minimum goal of building a working
superscalar processor that supports integer instructions and
RV32M, and completed the primary ideal goals of speculative
execution and branch prediction; furthermore, we also built
working versions of pipelined and single-cycle processors.
Along the way, we also accomplished our tasks that we
did not originally have on our checklist, such as building a
toolchain from scratch to allow easy integration with official
and custom extensions, and memory optimizations described
above. Overall, we met our goals pretty well, and are happy
with the design.
Aside from the obvious use case of processing machine code,
Riscalar is flexible in that custom instructions can be easily
added in. Because we wrote our assembler ourselves, we can
easily fit our processor for any use case people may have.
For instance, if the processor was being used in the context
of cryptography, custom RISC-V keygen, signing/verification,
and AES instructions can be inputted and decoded. IPs can
be used for those modules, so most of the work would go in
the decode and assembler section.

VII. TESTING (BILL)

Unit and integration tests were deployed extensively for
the superscalar processor. We show a few examples in the
Appendix B.

VIII. RETROSPECTIVE (BILL)

Looking back, there were many things we could have done
better:

1) A lot of our logic occurred in the top level file. This
was partially unavoidable as the modules need a center
location to interact with each other; however, there
were many components we could have modularized and
tested individually to ease the debugging process. In
particular, the number of variables neccesary to debug
the entire process as a whole every time grew large
very quickly, so establishing a consistent naming scheme
and grouping modules into larger modules would have
helped.

2) We built three different processors – single-cycle,
pipelined, and superscalar – to aid with benchmarking.
In retrospect, we should have began on the superscalar

earlier, as it’s design was a significant change from the
earlier pipelined and single-cycle processors.

3) One of the main reasons Riscalar didn’t show significant
improvement over our pipelined processor is because
our functional units were not designed for long latency
instructions. In particular, we didn’t have any floating
point operations, which are one of the main reasons
superscalar architecture is advantageous. Looking back,
we should have made it a goal to support floating point
operations, and although it would have been a somewhat
easy fix, by the time we realized, we had other issues
we needed to deal with first.

APPENDIX A
PROCESSOR BLOCK DIAGRAMS

Fig. 6. A Single Cycle Processor with 5 stages. An instruction moves through all 5 stages before the next instruction is loaded in the following clock cycle.
Figure based off 6.004 Lecture Notes.

APPENDIX B
SECOND APPENDIX

Fig. 7. GTKWave output of the Superscalar processor. Tests the swapping of load and store between registers. Basic test that requires no data dependencies.
The instructions are listed below.

addi a1, a1, 4
addi a2, a2, 8
sw a1, 0(x0)
sw a2, 4(x0)
lw a2, 0(x0)
lw a1, 4(x0)

Fig. 8. GTKWave Output of a test of unbypassed 5-stage pipelined processor. There are no data dependencies and therefore no bypassing needed but we can
see a result being generated and written to the register every clock cycle. The instructions are listed below.

addi a1, a1, 1
addi a2, a2, 2
addi a3, a3, 3
addi a4, a4, 4
addi a5, a5, 5
addi a1, a1, 1
addi a2, a2, 2
...

Fig. 9. In this test of the pipelined processor (assembly code below), we test full-bypassing between each of the EXE, MEM, and WB stages. We see that
the only way for the 2nd, 3rd, and 4th instructions to get their results is to use bypassing, because the value of a1 has not reached the register yet.

addi a1, a1, 1
addi a2, a1, 0
addi a3, a1, 0
addi a4, a1, 0
...

Fig. 10. In this test of the pipelined processor (assembly code below), we test full-bypassing between each of the EXE, MEM, and WB stages. We see that
the only way for the 2nd, 3rd, and 4th instructions to get their results is to use bypassing, because the value of a1 has not reached the register yet.

Fig. 11. Here we tested the superscalar with multiple different types of instructions as well as filling the reservation station and reorder buffer.

lw a1, 0(x0)
mul a1, a1, a1
addi a1, a1, 1
addi a2, a2, 1
addi a1, a1, 1
addi a2, a2, 1
addi a1, a1, 1
addi a2, a2, 1
addi a1, a1, 1
addi a2, a2, 1
addi a1, a1, 1
addi a2, a2, 1
addi a1, a1, 1
addi a2, a2, 1
mul a1, a1, a2
sw a1, 0(x0)
lw a1, 0(x0)
mul a1, a1, a1
addi a1, a1, 1
addi a2, a2, 1
...

APPENDIX C
RISC-V INSTRUCTION SET

