
FPGA Minigolf
Sebastien Lohier

Department of Physics
Massachusetts Institute of Technology

Cambridge, MA, US
slohier@mit.edu

Abhinav Goel
Department of Mathematics

Massachusetts Institute of Technology
Cambridge, MA, US

amgoel@mit.edu

Lawrence Shi
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, US

lrshi@mit.edu

Abstract—We present a design for a FPGA-based Minigolf
simulator. Players will use a controller to aim, and can then
swing the controller to take a swing in the game. The design
can be split into three major parts: User Input, Game Logic,
and Visualization. The User Input portion is comprised of an
ESP32 which is connected to our main FPGA board by BLE.
The Game Logic and Visualization modules is done entirely on
the FPGA board. Once a user-created map has been selected,
the board calculates the state of the game based on the User
Input. Then the game is displayed on to a screen using HDMI.
An audio experience is also available if headphones are supplied.
The screen visualizations will have two modes. A top-down view
of the map and an over-the-shoulder perspective view of the ball.
8

I. PHYSICAL COMPONENTS

Most of the physical design can be attributed to the user
input portion of the design. This consists of:

• Adafruit HUZZAH32 ESP32 Feather: This micro-
controller computes with the logic involved with collect-
ing user data.

• MPU6050: This peripheral collects accelerometer data
which is refined into player input

• Xilinx Urbana Board: The board calculated the game
logic and visualization.

II. USER INPUT

A. Wiring

Fig. 1. Image of our controller

The wiring consists of the ESP32, a button, and the
MPU6050. The accelerometer is driven using the 3V port of
the feather board. It communicates with the board using the
SCL and SDA ports. The button is operated with pin 14 acting
as a Pull Down input. The pin constantly reads 1 until the
button is pressed and it is connected to ground leading giving
a reading of 0. To power the board, we are using a portable
charger with a usb port.

Fig. 2. Wiring diagram of our controller

B. Code

The ESP32 begins by establishing a BLE connection with
our main FPGA board. Using the service and characteristic
UUID’s the board is able to locate the board and begin com-
municating. During the main loop of the ESP32, it constantly
collects accelerometer data from the MPU6050 using an I2C
connection. When the button is pressed the micro-controller
goes into a ”swing mode”. While in this mode the board finds
the maximum acceleration. When the button is released the
ESP32 sends the maximum acceleration, during the duration
of the button press, to the FPGA board over the established
BLE connection.1

C. BLE communication

The Urbana board has a built-in MS50SFB-001 which
deals with the intricacies of BLE communication .The module
then communicates with the rest of the board using UART
communication with a baud rate of 115200. When a UART
sequence is completed, our UART communication module
triggers a valid input flag which notifies the game of a new
user input. This will be ignored unless the Game Logic module
is ready for a new user input. In which case the Game Logic
will accept the input and move the ball.

1Note: The acceleation sent to the board is limited to 8 bits.



D. UART

The UART communicator is implemented as 3 state FSM.
This includes an idle state, a collection state, and a processing
state. During the idle state the UART module wait for the the
UART TX line to go down. At this point it transitions to the
recieving stage where, by polling at the baud rate the module
builds up a byte of information. When the transfer is done,
the module sets a data rdy flag to 1 to notify the game logic
that a new user input has been registered.

III. GAMEPLAY LOGIC

A. Map Selection

Each map is represented as a 160 (width) x 90 (height)
array of logical pixels. Note that these logical pixels are
distinct from the display pixels, where the latter is handled
by the visualization logic. Each file contains 160x90 lines,
where each line is a single number which represent the terrain
at that position. We will use a 0 for the hole, 1 for a square
wall, 2 for grass, 3 for sand, and 4-11 for different diagonal
walls. The pixels are ordered according to left-to-right, then
top-to-bottom priority.

We store these .mem files in BROM upon initialization of
the map.

The user is able to create their own map using any ASCII
art website. They can then use our python script to turn it into
a .mem file. Finally they can build and flash it onto the board
to play.

Fig. 3. FSM of gameplay logic.

B. Ball Movement

We represent the game state as an FSM, as shown in Figure
1. Upon launching the game, after doing some visual setup,
the ball starts in the Ball Resting state. In this state, the state
machine waits for a user input. Once the user input module
detects player input via Bluetooth, the state transitions to the
Ball Moving state.

Once the ball is moving, the state can transition to either
Ball Resting, In Hole, or On Wall Collision. In the Ball
Moving state, the ball decelerates at a fixed rate depending
on the terrain type (grass or sand). Our grass deceleration
value is −2 ∗ 1

256
pixels
frame2 , and our sand deceleration value is

−10 ∗ 1
256

pixels
frame2 , where the game is running at 60 frames

per second. These values correspond to visually reasonable
deceleration.

The x and y positions are updated at every frame according
to the ball position at the previous frame, ball speed, and ball
direction. To calculate the horizontal and vertical components
of the position deltas, we use Python to generate a .mem file
containing 360 cos and sin values, and we wrap that in a
cos/sin lookup module that builds and reads from a BROM
using those values.

C. Direction, Speed, and Collisions

The direction is encoded as a 16-bit number for an angle
(between 0 and 360), which is precise enough for gameplay
purposes. However, we need to be more precise for the ball
speed and position than numbers of logical pixels. We choose
to represent these as 16-bit fixed point numbers, with 8 bits
before the decimal point and 8 bits after the decimal point.
This ensures that we can obtain a precision of up to 1/256 of
a pixel while still being able to represent all possible x and y
values using the remaining 8 bits.

To calculate collisions, we see if any part of the ball is
overlapping with any wall terrain. We do this by querying the
copies of our map BROM 1 pixel ahead in all 4 directions.
If any of these 4 queries are on a wall, we know we have
touched a wall on that side. The incidence angle is then passed
to a reflection logic module, which calculates and modifies the
resulting direction of the ball to correctly simulate a reflection
off of that wall. Then, the gameplay transitions back to the
Ball Moving state.

We have also implemented 45-degree diagonal walls. The
walls are detected in the same fashion as orthogonal walls, but
the incidence and reflection angles are calculated differently.

IV. VISUALIZATION AND AUDIO

There are two different ways to construct a visualization of
the game based on the provided information from the game
logic.

A. Static View

Fig. 4. Top-down view

The first way consists of a static view, where the whole
course is shown on the screen, as well as the current position
of the ball, and the current trajectory of the ball.



As shown above, the map of the current mini-golf hole is
represented by a 160 by 90 map, with 90 horizontal rows, and
160 columns. Thus, each position in the map is represented
by an 8 by 8 pixel square. Additionally, the visualization is
given the ball position (16 bits each for x and y position,
with 8 bits before and after the decimal point), as well as the
angle of ball, which would be an integer from 1 to 360, in
degrees.

A sprite module, given pixel coordinates, calculates the
RGB values for each pixel. This process consists of a few
steps. Dividing both coordinates by 8 yields the position of
the map the pixel would be a part of, and then reading from
the map,from BROM, yields the RGB value of the pixel.
Essentially, this version is just a shrunken view of the whole
map.

However, we also need to show the ball. We have the
position of the center of the ball, but with much more
precision than just integer coordinates. The original idea was
to just use integer coordinates in the 160 by 90 map, and
to turn the corresponding 8 by 8 square of pixels into the
ball. However, then the ball movement was not fluid, so we
set a pixel as the center of the square. Given ball position
ballx[15:0] and bally[15:0], the pixel that is the center of
the ball is approximated as ballx[15:5] and bally[14:5]. Once
we have this, we construct the ball as shown in Figure 4 to
appear round. We construct the hole to be round in a similar
manner.

Fig. 5. Ball and Hole Construction

Additionally, we also have a trajectory for the ball. This is
done by finding the pixels a distance of 30, 60, and 90 away
from the center of the ball in current direction given. We find
the sin and cosine of our angle using the lookup table, and
can then calculate the component in each direction. We had
to pipeline 4 cycles for calculating RGB values above, so this
lookup table does not use any additional cycles.

Thus, this completes the static version of the map. It
takes the map file, and the current state of the game,
and displays that position. By updating the map files and
the palette files, additional features can be added, which
could seamlessly use without updates to this module. This
visualization for a very simple map is shown in Figure 5.

B. Dynamic View

Fig. 6. Over the shoulder perspective

The basis of our the Dynamic View is a transformation
of form traditional Field-of-Vision to the 2D screen of the
monitor. We begin by mapping the top half of the screen to
the sky, to give the user a sense of perspective. The bottom
half of the screen will be the golf course. We want to map each
pixel to some position on our map, which will then correspond
to some RGB value.

The calculation begins by first defining the position of our
camera. We do this by placing the camera directly behind
the position of the ball. The actually position is determined
by the cosine and sine of our view angle. The cosine/sine
values are stored within a BROM which is accessed 2 cycles
after the each query. We use these same cosine/sine values to
calculate our field of vision.

Fig. 7. Mathmatical Model for visualization

Consider the graphic above. Our perspective will be at
the position of the Camera, which is determined by placing
the camera directly behind the position of the ball. Directly
behind means in the opposite direction of the view angle.
Additionally, we have the points Far Left and Far Right in
our diagram, which correspond to the the furthest distance of
points that we cannot see.

Essentially, the triangle formed by the Camera (also called
Near), Far Left, and Far Right are points that are too close to be



seen properly. (The diagram is not to scale, as this triangle is
actually very small). Our screen will consist of all the points
inside the trapezoid with vertices Far Left Far Right, Right
Horizon, and Left Horizon. To do this, we will take each row
of our screen, and match it with some horizontal row going
from the red left edge to the blue right edge. We will scale
it appropriately to match with the 1280 pixels per row of the
screen. We make some assumption about how close Far Left
and Far Right will be from the camera, and set it to be our
bottom row of the screen. We will proceed to halfway up the
screen, which will be the row from Left Horizon to Right
Horizon (which will be mathematically defined in terms of
the camera position, Far left, and Far right).

Now, the triangle in our diagram has vertex angle 110
degrees. This means that from our viewing angle (call it θ,
we can see 55 degrees to the left and to the right. We take
two cycles to learn the sin and cosine values of the three
angles θ, θ + 55, and θ − 55. This allows us to calculate the
coordinates of any point.

To calculate the coordinate of any point, we first find
the map coordinate of the first and last pixels of the same
row. Then, by taking a weighted average of those coordinates
we determine the map coordinates of a pixel. We refer to the
magnitude of a row to be the distance from the camera to the
point on the edge of the row. The near point has magnitude
0, which means that it is just the position of our camera.

Now, we can use fixed point arithmetic to calculate the x
and y coordinates of each of the far positions.

far leftx = camera posx − (cos (θ + 55) · far mag)

far lefty = camera posy − (sin (θ + 55) ∗ ·far mag)

far rightx = camera posx − (cos (θ − 55) ∗ far mag)

far righty = camera posy − (sin (θ + 55) ∗ far mag)

Where θ is the direction the player is looking. Now, we
calculate the map position of the corresponding coordinate
when given some vcount and hcount representing a pixel
on the screen. Having the camera positions as well as far
coordinates helps because they define a set ratio that all points
must then follow. We follow the corresponding formula

lx =
360

360− vcount
·(far leftx)+(1− 360

360− vcount
)·nearx

rx =
360

360− vcount
·(far rightx)+(1− 360

360− vcount
)·nearx

x =
hcount
1280

· lx +
1280− vcount

1280
· rx

The same is done for the y coordinate. This works because
we see that the density of points further away has an inverse
relationship with how close we are to the camera. Thus, the
golf course itself, which would not be too far from the camera,
would be heavily represented with vcount closer to the bottom
of the screen. We then just take a weighted average to find the
exact point.For reference note the left and right horizon points
are generated when vcount = 361. And the Far left and Far
right values are generated when vcount = 720

We also allowed the adjustment of the far mag value to give
the user control of their view height. This way players could
move up and down in their current position.

Now, once the map location attributed to a pixel
has been calculated, we can just proceed in a similar
fashion to the static module by using the Map BROM.
However, there is one more layer of complexity
as the calculation of the ball is non-trivial and a
mapcoordinatemightnotbepositive.Thus, wegenerateaborderof223unitsofadarkgreen”outofbounds”area, whichensuresthatanyallmappositionsarepositive.

Due to the magnitude of the calculations required to gen-
erate our perspective view, it cannot be done in one cycle. To
circumvent this, it has been pipelined so that it takes around
50 cycles for a coordinate to be generated given some hcount
and vcount.This is partially due to the size of our position
variables. To ensure no overflow our positions are 40 bit fixed
point numbers. More importantly divisions are the most costly,
so only one was done, which was 360

360−vcount , where a 40
cycle divider was used. Moreover, large multiplications were
pipelined into 6 cycles.

Once this part was done, a ball sprite was inserted into the
code to appear on the pixels corresponding to the ball position,
as well as touching up the hole to make it appear circular.

Additionally, to the score is also displayed on the FPGA
using the seven segment controller implemented in an earlier
lab.

C. Additional Visual Features

We created grass and sand texture to make the 2D and
3D representations look more realistic and polished. This was
accomplished by pseudo-randomly mapping each 2x2 cluster
of pixels to one of two colors using a 16-bit linear feedback
shift register (LFSR). This LFSR runs through all pixels once
when the map is initialized. This mapping is stored in a BROM
that lives in the top level module whose inputs and outputs are
passed down to child modules.

D. Audio

Audio clips for the ball hitting a wall and the ball going into
the hole are played whenever these events happen. The raw
audio clips (in .wav form) were downloaded online, and we
used Python to convert these files to an 8-bit, 12kbps format.
This data is stored in .mem files for the FPGA to use. We
have a module that handles Pulse-density modulation (PDM)
is used to generate the speaker audio.



V. DISCUSSION AND EVALUATION

1) Latency Analysis: In terms of the latency of our game,
the largest delay paths came from the calculations needed for
our over-the-shoulder rendering calculations. The other delay
paths were trivial in magintude. The rendering required 40-
bit multiplications and division. Using separate division and
multiplication modules, we were able to do each in 40 and 6
cycles, respectively. Additionally, each of our BROM accesses
took 2 cycles. Putting this all together, our 3D rendering
module took a total of 50 cycles. To align this module’s output
with the required HDMI signals, we pipelined our top level
module accordingly.

We found this overhead unavoidable; without the heavy
cost of our multiplications and divisions, we would not be
able to make a realistic 3D rendering of our map. However,
the latency is negligible because the gameplay runs at 60 fps,
which is several orders of magnitude slower than our clock.

2) RAM Usage: We have 4 types of BROMs within the
design. The first of which was used to store Cosine/Sine values
to be used for angle calculations. These BROMS had a width
16 bits and a depth of 361. This BROM was used a total of
8 times. This works out to a total bit cost of 5.776 KB. Our
second BROM was used to store the map information. This
BROM had a width of 4 bits and a depth of 14400 (160 width
by 90 height). This BROM was used a total of 6 times for a
total BROM usage of 43.2 KB. Third, we used a BROM to
store the randomized texture data. This BROM had a width of
1 bit and a depth of 7200. This BROM was used twice for a
total usage of 1.8 KB. Fourth, 2 BROM’s were used to store
the audio data. Each with a width of 8 bits. One had a depth
of 65536 and other has a depth of 9600. For a total usage of
75.135KB. Our total BROM usage totals to 125.911 KB.

Looking at the post place util file, our design has a
utilization percentage of 90.67% and our DSP utilization
30.85%.

3) Timing Constraints: Due to our design choice of not
using a frame buffer, our logic was constrained to the clock
speed of the HDMI signal generator, which is 74.25 MHz. We
got around this by using pipelined modules for our divisions
and multiplications. We met this timing constraint, with a
positive slack of.

Additionally due to the interface of our game logic and
our audio logic we cross from a faster to slower domain to
mediate this we put two registers in between them to prevent
metastability of the registers.

4) Use Cases and Goals: Our system was built for the
purpose of simulating mini-golf. While the 2-dimensional view
and playing with buttons on the FPGA allowed people to play
the game, the main aspect that should have be captured is to
resemble golfing in real life. This was accomplished this by
adding the bluetooth controller on the golf club, as well as
over-the-shoulder perspective.

The commitment goal was to complete a simple prototype
of a golf simulator, which could be player solely on an FPGA

with a 2-dimensional view, which was completed. The goal
was to have a controller that would use bluetooth, as well
as a realistic over-the-shoulder perspective, which both took
some time, but were completed. Essentially, these goals were
to create the game, and then make it realistic.

The stretch goals were to add additional features to the
game. Some of these were completed like adding texture to
the map, as well as adding diagonal walls with appropriate
collisions. There were additional features, such as portals,
that could have been added to the map itself that we did
not implement. However, these changes would not be very
difficult, as maps could easily be changed to add more features,
and this could be reflected in the game logic by adding another
case statement about how the game logic should change if
such an element is encountered. Another feature that could
be added is allowing players to customize their experience by
being able to choose different types clubs. The only code that
would be needed is game state changing the maximum power
parameter per club.

One other use case we could implement with our system
would be to make the game multiplayer (two people play
against one another on the same system). This would not take
too many changes, as mostly the game logic would have to
store game state values for both players and switch between
them appropriately. The controller would work as usual and
the visualization would show whatever the game state would
tell it.

Our most in-depth implementation would be that of the
over-the-shoulder visualization. From the beginning, it would
have to use ray-casting, but having a closed rectangle meant
having issues in hitting walls and corners. Using an infinite
boundary allowed going in all directions for an unlimited
distance, and setting ”undefined” points identically to the
boundary. This allowed for the same algorithm to be used
for all points.

One feature we realized could be done in a better way is
being able to read multiple maps from our BROM. Currently,
the system is set to only play one map, and so multiple maps
cannot be played in a single build, even though they are
written. We could change this by merging all maps into a
single file, and having all BROMs read from that single file.
The game state could store some map variable which would
be used in the BROM address to determine position should be
read from for a specific map. .

A. Contributions

The user input, which includes the construction of the
controller, the code of the controller, and the communication
with the FPGA, was done by Sebastien. The gameplay, which
consists of ball position and speed calculation and tracking, as
well as interactions with various map elements, was done by
Lawrence. For the visualization, the static view was done by
Abhinav, while the over-the-shoulder view was done by both
Abhinav and Sebastien. Additional features like texture and
audio were added by Lawrence, while diagonal walls were
added by Sebastien. All members contributed in writing maps,



pipelining the code to fix timing errors, and writing the report.

B. Code Repository

https://github.com/Gflex39/6.111 fin proj



Fig. 8. Total system design


