DigiSketch Preliminary Report

1*' Lydia Patterson
Department of EECS

2" Edwin O. Ouko
Department of EECS

3" Fahnmusa J. Edwards
Department of EECS

Massachusetts Institute of Technology — Massachusetts Institute of Technology — Massachusetts Institute of Technology

Cambridge, USA
ljewel @mit.edu

Abstract—DigiSketch is a two-player version of Etch-a-Sketch
with saving and expanded drawing capabilities. In this design,
users can construct multicolored lineographic images using two
rotary encoders and view them on a monitor via HDMI. These
drawings can then be saved on an SD card and loaded back onto
the device at any time. Further, with differential signaling, two
FPGAs can draw on the same canvas simultaneously. Finally,
this system features a graphical user interface (GUI) that allows
users to change the drawing color & stroke width and slide show
through the images saved on their SD card.

I. HIGH-LEVEL DESCRIPTION

SD Card Interface
loc, color, : :
(stroke width Communication Module

draw

<—{ scale]<—[Video Sig Gen
) \

GUI Sprite

e e

|
Video Mux

loc, color,
User Input Module strokewidthj

color, stroke width

Frame Buffer

red, green, blue
Fig. 1. High-Level Block Diagram

Our project was broken down into four components: the in-
put modules, the communication modules, the video pipeline,
and the SD card modules. The user and their collaborator use
rotary encoders to provide drawing input signals which are
written to the on-board frame buffer (BRAM). The SD storage
modules copy images from the frame buffer to the SD card
and back as needed allowing slideshow and permanent storage.
The video pipeline modules render the image currently sitting
in the frame buffer to the screen, allowing the actions of the
users, the live sketch, to be visualized.

The input modules handle input from buttons, switches,
and rotary encoders and interpret them as cursor directions,
drawing color, stroke width, or merely other control signals
like reset, draw, or slide-show. The rotary encoders provide
directional input and can also be used to change the drawing
color and stroke width. An alternative to using the rotary
encoders is also supported using a combination of 4 switches
for directions and 2 buttons.

Cambridge, MA, USA
eouko @mit.edu

Cambridge, MA, USA
fahnmusa @mit.edu

To allow collaboration between two sketchers, the commu-
nication module sends the user input from one FPGA to the
other so that the sketches of one player appear on the second
player’s screen too. The module uses differential signaling to
transfer cursor location and other parameters to and from the
second FPGA. The entries are then written to the frame buffer
as if they were inputs from the host FPGA.

The storage component extends the on-board storage by
allowing some images to be stored in the SD card for use
as templates or simply to save progress. Storing images on
the SD card also makes it possible to not lose images when
the FPGA is unplugged. Once the user and the collaborator
have finished drawing, the image is saved to the SD card from
where it can be fetched back to the frame buffer and used as
if it were always there.

II. THE SD CARD INTERFACE: PERMANENT STORAGE,
USING TEMPLATES, AND SLIDE-SHOWING SKETCHES

A. Design Explanation

The SD interface module links the SD controller module
(which writes and reads directly from the SD card) and the
rest of the system allowing for writes and reads between
the on-board block RAM and the SD card. Besides enabling
permanent storage beyond power-off cycles, the module also
supports slide-showing: displaying previously saved sketches
one at a time, usage of old sketches as templates for new
sketches, and resetting the permanent storage by deleting old
images.

The module takes in draw, slide_show, reset_SD_card,
and manual_slide_show_enabled control signals which ini-
tiate either drawing, saving to permanent memory, or slide
showing of images.

To support permanent storage, the first 4 bytes of the first
sector of the SD card is used to store the index where the
next new image would be saved. Therefore upon startup, the
module reads the first sector to obtain the address so that
not only future drawings saved without overwriting currently
stored images but also to enable slide show only up to the last
stored image. Afterwards, the system goes into an idle state
from which drawing, slide-showing, or resetting the SD card
could be initiated using the control signals.

If the draw control signal is high, user inputs encoding
direction, color and stroke width from the rotary encoders are
being written to the frame buffer as the user or the collaborator

draws. Upon switching off the draw signal, the module saves
a snapshot of the frame buffer to the SD card and increments
the index in the SD card where the next image will be written.
The original image on the frame buffer is not modified and
should the user desire to draw another image, they would need
to erase it by drawing on it with a color consistent with the
background color of the image.

If the slide_show signal is switched on, the module reads
the address of the last image from the SD card and then starts
fetching images from the SD card to the frame buffer. It reads
a single image from the SD card and writes it to the frame
buffer then it enters a brief dormant state of about 1 second
where the current image remains in the frame buffer, allowing
the image to be displayed for that long. Once the 1 second of
dormancy has elapsed, another image is fetched from the SD
card thus overwriting the previous image in the frame buffer.
This fetch and rest cycle is repeated until all the images that
had been written to the SD card have been displayed.

The module also supports an alternative way to display
previous sketches. When manual_slide_show is high, the
module allows one to display the next image using a button
instead of the automatic rest period. This allows one to quickly
scroll to the template of choice or any other sketch that they
would want to display. If slide_show or manual_slide_show
is switched off or all images have been shown, the module goes
to idle state and waits for future signals. To draw on a template
(previously saved sketch), use either automatic or manual slide
show like described above and turn off the switch responsible
for the slide show once the right sketch is reached. One can
then activate drawing by turning the draw signal back on
again to draw on the template. Once the drawing is complete,
the sketch is saved as a new image to the SD card instead of
overwriting the template.

One may occasionally want to delete all the previously
saved images in the SD card. We support this using
reset_SD_card control signal. When reset_SD_card is
high, we lazy-delete the images in the SD card by overwriting
the address where the next image will be saved (equivalent
to the address after the last image saved in the SD card).
This ensures that new images are saved the index will be
incremented from newly set index and thus overwriting any
other image in the SD card.

The module was implemented using a finite state machine
with 11 states namely:

o start_sec_addr_read: This the entry state. The module

waits for a ready signal.

o read_addr: The module reads the address from the SD
card. If either of the slide-show signals is high, the mod-
ule transitions to slide_show_new_sector. Otherwise it
transitions to ¢dle state.

e idle: The module is waiting for draw or slide-show
signals

o slide_show_sector: The module is actively reading a
sector from the SD card and writing it to the frame buffer

o slide_show_new_sector: The module is waiting to start
reading the next sector from the SD card

e slide_show_next_image: The module is waiting to start
reading the next image from the SD card. If it has reached
the last image it transitions to idle

e drawing: The module is waiting for the user and collab-
orator to finish drawing

e saving_sector - the module is saving a sketch from the
frame buffer to the SD card sector

o finished_saving_sector: the module finished saving to
a sector of the SD card and is moving on to the next.

e start_sec_addr_write: The module is waiting for a
ready signal.

o overwrite_addr: The module is overwriting the address
saved in memory either to increment it or reset it.

The overall state machine diagram is as shown in the figure
below:

slide_show /
manual_slide_show_enabled,

START_SEC_ADDR_READ

IDLE

DRAWING

|

draw
off

}4—{ READ_ADDR
slide_show /

manual_slide_show_enabled

SLIDE_SHOW_NEW_SECTOR I:I SLIDE_SHOW_SECTOR

Draw on
Template

draw
FINISHED_SAVING_SECTOR

Finished Saving an Image or
Islide_shaw or
Imanual_slide_show_enabled

SLIDE_SHOW_NEXT_IMAGE

OVERWRITE_ADDR '7

SAVING_SECTOR START_SEC_ADDR_WRITE|

reset_SD_card T

Fig. 2. SD Card Interface Module FSM

B. Design Evaluation

The SD card has a capacity of 2 GB or 231 bytes. Each
image stored in the frame buffer has 640 x 360 entries where
each entry has 4 bits. While copying a single entry from the
frame buffer to the SD card, we expand it to a byte so that it
occupies 640 x 360 x 8 bits or simply 360 x 640 bytes. While
this uses twice as much space in the SD card as we absolutely
need to use, we can still store 9320 sketches in the SD card
before running out of space. In practice, we are unlikely to
get close to this number.

III. DRAWING CONTROLS AND VIDEO PIPELINE
A. Design Explanation

This section highlights both the user input modules and
the connection to the video pipeline. The user’s input on the
FPGA device is interpreted by the user_input.sv module as
the cursor’s x and y location, the cursor color, and the stroke
width. Currently the x and y location are being controlled
through two rotary encoders similar to a real life etch a sketch.
Pressing down and turning one of the rotary encoders will

cycle through stroke width. Pressing down and turning the
other will cycle through the 16 different colors. The pinout
for the rotarty encoders is displayed in the figure below.

CLK | ———» pmodb[3]
Rotary
Encoder oT | —m88» pmodb[2]
A
SW | ——— | pmodh[5]
CLK | — pmodb[7]
Rotary
Encoder DT _ pmodb[&]
B
W | —m pmodb[4]

Fig. 3. Rotary Encoder Pinout

The user input module then passes this information along
to the frame buffer module which acts as a sort of canvas.
The frame buffer is a dual port block RAM with a depth of
360x640 corresponding to the canvas size and a width of 4
corresponding to the amount of bits for color.

The frame buffer uses the hcount and vcount signals that
are being created by video_sig_gen.sv along with the x and
y coordinates of the cursor and stroke width to determine
whether or not to color the pixel. If the hcount and vcount are
within the stroke width’s radius of the x and y coordinates, the
current color is written into the frame buffer. Writing happens
to both ports of the BRAM, one for the brush coming from
the user input module, and one for the brush coming from the
communication module.

At the same time, the frame buffer is being read from the
same hcount and vcount. The 4-bit color is then transformed
into 24-bit color using a switch case and this is output by the
frame buffer module.

The GUI sprite is a module separate from the frame buffer
which displays the users current color and stroke width choice
on the left side of the screen. The GUI sprite module takes
in the current cursor color and stroke width, along with the
hcount and vcount to render this static image on top of the
canvas.

The canvas is scaled up by a factor of 2 to match the
720x1280 resolution and the color from the frame buffer is
passed along the rest of the video pipeline where it is merged
with the GUI sprite and passed along to the TMDS encoders
and serializers.

B. Design Evaluation

The total amount of BRAM Memory available is 2,760,000
bits. Space is saved by making the frame buffer 360x640 and
scaling the image up. Four bits of color are written to the frame
buffer thereby giving it a total size of 921,600 bits which is
33% of the total available storage.

It takes one clock cycle to write to the frame buffer and two
cycles to read to the frame buffer. The frame buffer module is

currently unpipelined which may be leading to some aliasing
issues on screen.

IV. COMMUNICATION MODULE

video_sig_gen
[new_frame

pmoda[1] <— v loc x, loc_y,

| io_sel, diff data out [. .) color, stroke width [)
— IOBUFDSr—{ diff_io.sv «———————— User Input

pmoda[e] -— h I S
diff_data_sync

From other FPGA:
loc_x, loc_y, »
color, stroke width From this FPGA:
loc_x, loc_y,

color, stroke width

diff_data in ——————————
L » synchronizer |«

‘——» Frame Buffer

clk_100mhz (| butfered_clk_100mhz
BUFG

J

Fig. 4. Communication Protocol

The communication module facilitates DigiSketch’s mul-
tiplayer feature. The goal is for drawings created by either
FPGA to appear on both displays simultaneously. Since the
controls to video pipeline works by using the cursor’s location
along with the selected color and stroke width to write to the
appropriate pixels in the frame buffer, that information is also
sent to the other FPGA as a 26-bit data packet so that frame
buffer can be updated as well.

A. Data Packet Structure

Those data packets are structured as follows:

e x-1loc [25:16]: The position of the cursor in the x
direction. Since there are 640 pixels in the x direction,
this field is 10 bits wide.

e y—loc [15:7]: The position of the cursor in the y
direction. Since there are 360 pixels in the y direction,
this field is 9 bits wide.

e color [6:3]: The “ID” of the color that is currently
selected by the user. Since our system supports up to 16
colors, this field is 4 bits wide.

e sw [2:0]: The line width that is currently selected by
the user. Since our system supports up to 8 stroke widths,
this field is 3 bits wide.

B. Communication Protocol

To minimize the number of wires in our design, we’ve
employed differential signaling. In the final state of our project,
one differential pair (two wires total) facilitates bidirectional
communication. This module uses a custom messaging pro-
tocol (modeled after the IR lab [1]) that involves varying the
duty cycle for each piece of information sent. By default, the

i

SYNC 0 1

Fig. 5. Communication Protocol

line is held high. The transmission begins with a sort of sync
period where the duty cycle is 50%. Afterwards, the 26-bit

message is sent—starting at the MSB. Zeroes are represented
by a duty cycle of 25%, and ones by 75%. To prevent any
ambiguity with the last bit, the transmission ends with another
sync period.

C. Finite State Machines

The transmission and reception modules each operate with
an FSM. The transmission module (diff_tx.sv) attempts to
transmit the 26-bit data packet on each new frame. The
receiving module (diff_rx.sv) reads the synchronized output
of the differential signaling input buffer (IBUFDS) and re-
constructs the message to be sent to the frame buffer. Their
FSMs are outlined in the following figures. As a note, but the
receiving module FSM uses the following format: signal_in /
signal_counter_range / data_index.

\[— i==26 ~N
IDLE — trigger_in—> SYNC —w
'data_in[0]
data_in[8]
i==26 *L
'data_in[i]
ONE data_in[i] ZERO -<
it it+
data_in[i] ldata_in[i]
Fig. 6. Transmission Module FSM
< B A
IDLE 0/(X,X)/0 SL 1/(.5 -m, .5+ m)/0 SH 0/(.5 - m, .5{/ m)/8

T r 0/(.75 - m, .75 + m)/X DL

0/(.75 - m, .75 + m)/26

1/(.25 - m, .25 /X
DONE DHO e
[
/(.75 - m, .75 + m)/X
8/(.25 - m, .25 + m)/26 ‘
‘ DJ:!'l 0/(.25 - m, .25 + m)/X
J

Fig. 7. Receiving Module FSM

Reducing the number of differential pairs from two to one
required that some logic be added to determine whether the
differential I/0 buffer (IOBUFDS) was transmitting or receiv-
ing. The transmission and receiving modules are wrapped in
a simple major FSM (diff_io.sv) that receives by default and
transmits outgoing messages when the line is quiet. This FSM
is outlined in the following figure:

Further, to keep the line high when both FPGAs are idling,
an internal pullup resistor is added to one of the lines (and a
pulldown to the other).

D. Timing/Latency Evaluation

The user input is written to the frame buffer on each new
frame, so the communication module has that amount of

rx_state != IDLE

rx_state != IDLE

RECV

'message_waiting
IDLE

message_waiting

trigger_in &&
rx_state == IDLE

TRANS

tx_state != IDLE
tx_state == IDLE

Fig. 8. Major FSM

time to send and receive the data packets. It takes ~ 5.5us
(550 clock cycles +~ 100MHz clock) to send one message. In
the worst case, an FPGA has to receive an entire incoming
message before transmitting. Thus, data is made available to
the other FPGA in at most 2 x 5.5 ~ 11us, which is more than
enough time given that our frame speed is 30 fps (~ 33.3ms
per frame). The current state of the communication module
satisfies our timing constraints and meets one of the two stretch
goals described in the project checklist. From here, we have
room to experiment with implementing CRC.

V. IMPLEMENTATION INSIGHTS

Here are a couple of implementation insights that have come
up by this point in the project.

o Encode colors as a 4 bit number to write to frame buffer
saving space.

o Instead of only writing to the frame buffer where the
cursor is, using the already incrementing hcount and
veount to write to the frame buffer.

o A lot of time was lost to trying to get the differential
signal output buffer (OBUFDS) to work. However, it
was eventually discovered that OBUFDS isn’t explicitly
necessary for outputting differential signals. Throwing the
output and its negation on two different lines is sufficient.

o When running a clock through a clock manager and also
using it to power multiple modules, the clock must first
be buffered.

o Another thing to consider during the design process is
the IOSTANDARD configuration of the pins. We were
lucky to have everything work out, but in future projects
it would be good to consider that IOSTANDARDs
aren’t always compatible with each other. For example,
BLVDS_25 requires that all other pins in the same bank
also be 2.5V, and TMDS_33 isn’t always happy to share
a bank with LVCMOS33.

VI. EXTERNAL REPO & CONTRIBUTION STATEMENTS

A link to our external repository is as follows:

https://github.com/oukoedwin/6205project.

A. Lydia Patterson

Lydia designed, implemented, tested, and evaluated the
communication interface end-to-end. She also contributed to
the high-level design of the system—particularly the GUI and
the user input to video display pipeline. With respect to the
report, she created the high-level diagram and wrote the sum-
mary, the communication section, and a few implementation
insights.

B. Edwin O. Ouko

Edwin worked on interfacing the SD card with the rest of
the system to allow saving and fetching of images from the SD
card, usage of previous sketches as templates, and supporting
permanent storage on the SD card. He also implemented
the slide-show functionality of the system. For the report,
he worked on the High-Level Description and the SD Card
Interface sections.

C. Jordan Edwards

Jordan implemented the module that interprets the user
input and passes it along to the frame buffer. He also im-
plemented the module that uses the cursor location, color,
and stroke width to write to the frame buffer. He designed
and implemented the basic GUI sprite. Jordan also set up the
video pipeline and put things together in the top_level.sv
file. He also performed qualitative evaluation of the rough
implementation of the system.

D. Acknowledgements

6.205 course staff were consulted in the implementation of
this project, particularly Joseph Steinmeyer, Adrianna Woj-
tyna, and Joseph Feldman.

REFERENCES

[1] Author: 6.205 Fall 2023 Teaching Staff, “Lab 03: Catching Some Rays”,
6.205 Website October 2023.
https://fpga.mit.edu/6205/F23/assignments/week03/checkoffO1

[2] Author: 6.205 Fall 2023 Teaching Staff, “Lab 05: Checkoff 01: An
PopCat By Any Other Name”, 6.205 Website October 2023.
https://fpga.mit.edu/6205/F23/assignments/week05/checkoffO1

