
13.56 MHz RFID Emulator
Final Report

1st Matthew Cox
Department of Electrical Engineering & Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

coxm@mit.edu

2nd Nathan Shwatal
Department of Electrical Engineering & Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

nshwatal@mit.edu

Abstract—We present a design for an FPGA-based 13.56 MHz
RFID utility, integrated with a PCB analog front-end. It can
emulate an RFID card, successfully interfacing with an actual
RFID system. The design allows for selection between a number
of different cards. It also includes the digital logic for emulating
a card reader, and future work might endow the system with a
more capable analog front-end that can support the card reader
function.

Index Terms—RFID, FPGA, 13.56MHz, PCD, PICC

I. INTRODUCTION

Radio Frequency Identification (RFID) is a system by which
mobile items (such as ID cards, microchips in pets, and
containers transporting items on a factory floor) communicate
small amounts of data to readers (such as a tap pad or a
scanner), where the energy to power the mobile item’s circuitry
comes exclusively from an electromagnetic field put out by the
reader. Previous 6.205 projects have implemented a 125kHz
version of RFID on an FPGA. We instead implemented the
more modern, 13.56MHz version of RFID (described in the
ISO 14443A specification). The ISO 14443A specification
provides for more data throughput and modes of communi-
cation than 125kHz, and also supports modern systems, such
as MIT’s current access control system.

We aimed to emulate both sides of the system, to be able to
act as a mobile tag and also as a reader. Due to shortcomings
of our analog front-end, the physical system is only able to
act as a mobile tag, but the digital side implements the logic
of both sides.

II. TERMINOLOGY

• PCD (Proximity Coupling Device): the RFID card reader,
which reads the data stored on the PICC

• PICC (Proximity Integrated Circuit Card): a RFID card
or other (usually passive) proximity device that holds data

• UID: the Unique ID of a PICC, which can be 4, 7, or 10
bytes in size

III. SUMMARY OF RFID SPECIFICATION: RF INTERFACE

The RF interface for 13.56MHz RFID is defined by ISO
specification 14443-2 [1]. There are two versions of the RF
interface: A and B. Because MIT’s access control systems use
type A, we constrain our project to type A: supporting both

type A and B increases complexity of the analog front-end
but has practically no impact on the complexity of the digital
system, so because this is a digital design class, we prefer to
make a minimum viable analog front-end which supports only
type A.

The ISO specification supports multiple data rates. For
purposes of this explanation, we look at the fc/128 data rate
(that is, each bit lasts for 128 cycles of the 13.56MHz carrier
frequency), which is the slowest data rate in the specification
and the one which all devices are required to support. There
are modes with increased data rates (such as fc/64, fc/32,
and fc/16), but we chose not to implement them because we
preferred to avoid the added complexity, and we found no
evidence that MIT’s access control system supports faster data
rates.

Communication from PCD to PICC is done with on-off
keying of the 13.56MHz carrier signal. Bits are encoded using
a modified Miller encoding:

• a 1 is represented by the signal being off between halfway
and 3/4 of the way through the bit, and otherwise on

• a 0 is represented by the signal being steadily on (for a
zero preceded by a one) or by the signal being off for
the first 1/4 of the bit and otherwise on (for a zero that
begins a message, or for a zero preceded by a zero)

A few bits of a typical communication are shown in Figure 1.

Fig. 1. Communication from PCD to PICC: typical RF envelope.

Communication from PICC to PCD is done by modulating
the load characteristics of the PICC. The PCD sends out a con-
tinuous 13.56MHz carrier, and it detects the small variations
in load from the PICC. Bits are encoded using a Manchester
encoding: a 0 is represented by modulating the load in the
second half of the bit, alternately 8 cycles at low impedance
and 8 cycles at high impedance; and a 1 is represented by the
same load modulation in the first half of the bit. A few bits
of a typical communication are shown in Figure 3.



Fig. 2. Communication from PCD to PICC: envelope of measured waveform.
(External PCD, sending to our system acting as PICC.)

Fig. 3. Communication from PICC to PCD: typical RF envelope.

IV. SUMMARY OF RFID SPECIFICATION: LOGIC FLOW

The logical flow of 13.56MHz RFID communications is
defined by ISO specifications 14443-3 [2] and 14443-4 [3].
14443-3 details the initial handshake between PCD and PICC,
and the anticollision protocol to be followed should multiple
PICCs be in range of a PCD; and 14443-4 details the method
for subsequent exchange of information after the initial hand-
shake. For the purposes of this project, we focus primarily
on 14443-3, as the initial handshake involves the transfer of
the PICC’s UID, often the sole piece of information used for
access control. Subsequent data is usually encrypted and used
for transit card balances, among other things.

The handshake begins with an initial request from the PCD
and an acknowledgment from the PICC that indicates the size
of its UID. The PCD then begins the process of requesting the
UID, which may take multiple steps even in the case of no
collisions among multiple PICCs depending on the size of the
UID. Once a complete UID is obtained, the PCD sends a final
select signal, which is acknowledged by the PICC. Further
data transfer will be initiated if both parties implement the
same protocol (either 14443-4 or a proprietary one).

All transmissions are put into frames with specified lengths.
Frames are organized in the following ways:

• PCD to PICC

1) Frame starts with a start bit of 0
2) Can include either 7 data bits and no parity bit (a

”short frame”), or 1 to 9 data bytes, each of which
has a parity bit (a ”standard frame”)

3) Frame ends with an end bit of 0

• PICC to PCD

1) Frame starts with a start bit of 1
2) Includes 1 to 5 data bytes, each of which has a parity

bit
3) No end bit – transmission just ceases after the last

parity bit

MIT’s access control system only checks the UID of a PICC
and doesn’t check any further data, so we only implemented
14443-3 and not 14443-4.

Fig. 4. Communication from PICC to PCD: envelope of measured waveform.
(Transmitted by our system.)

V. EMULATION OVERVIEW (NATHAN)

In order to implement PCD and PICC functionality, the
system is split into two main components: one for the PCD,
and one for the PICC. A high-level block diagram abstracting
out these components is presented in figure 5. These two
components share the analog front-end. Control of the analog
front-end’s mode is implemented using a number of control
signals. The output from the ADC is decoded and sent to the
PCD and PICC emulation components by the ADC decoder
unit.

VI. PCD & PICC EMULATION (NATHAN)

The organization of both main emulation components is
quite similar. They each have a control unit implementing a
FSM handling their respective side of the handshake protocol,
and input and output units. The basic structure of a transaction
between the PCD and PICC are indicated in figures 6 and 7,
but the actual state machines are significantly more involved,
since they have to meet timing specifications and handle errors.
Each of REQA, ATQA, etc. is a specific command. The
longest command sent from the PCD to the PICC in the initial
handshake is 9 bytes, so the size of the connection between
the PCD control unit and the PCD output unit is 72 bits. In
order to receive such a command, the size of the connection
between the PICC input unit and the PICC control unit is 72
bits. The PICC sends at most 5 bytes of data at time, so the
size of the connection between the PICC control unit and the
PICC output unit is 40 bits. Likewise, the connection between
the PCD controller unit and PICC input unit is also 40 bits.
These signals are accompanied by single-cycle valid signals,
so that the corresponding units know when to start processing
the data.

As the PICC only sends 5 bytes of data at a time, for UIDs
of 7 or 10 bytes, multiple rounds of communication have to
take place, which are called cascades. We have implemented
the protocol to start for 4 byte UIDs, and cascading function-
ality could be a future extension. In order to ensure that errors
accumulated in transmission are not incorrectly assumed to be
part of a valid message, multiple forms of error detection are
used in the protocol. The 5th byte of a PICC transmission is
the XOR of the bytes before it, allowing for a single error
in each bit to be detected. The PCD command repeating the
UID to the PICC appends two bytes of CRC, and so does
the command from the PICC to the PCD confirming that this
UID is indeed correct. The CRC used is a common variant of
CRC 16, which was implemented in hardware using a LFSR.



Fig. 5. Simplified block diagram.

Fig. 6. Base PCD state machine.

VII. ENCODING OUTPUT SIGNALS (NATHAN)

As mentioned in section III, the PICC and PCD transmit
data using distinctly different encodings. However, the imple-
mentation of both the PCD and PICC output modules involves
a very similar state machine (Figure 8), with transitions based
on the next bit to transmit, including the odd parity bits. These
bits are added in-flight after each byte instead of through
pre-processing, since the it only involves a single bit of
history. Rather than producing a modulated signal that gets
fed directly into the analog frontend, each output module
produces a signal that indicates when to modulate the carrier
or subcarrier, improving modularity and allowing for a more
unified interface. The two modules differ in the modulation

Fig. 7. Base PICC state machine.

pattern produced in each of these states, corresponding to their
distinct protocols.

VIII. DECODING INPUT SIGNALS (MATTHEW)

The FPGA’s only input from the analog front-end is a raw
stream of 10-bit samples from the ADC that indicate the
current amplitude of the RF envelope. We need to decode
this raw input to parse out the incoming bit stream coming in
through the RF channel.

A. PCD In

1) Detecting Modulation: The input to the PCD is a se-
quence of bits, modulated with a subcarrier (whose period is
16 cycles of the 13.56MHz carrier) either in the first or second



Fig. 8. Basic state machine for picc out and pcd out modules.

Fig. 9. Block diagram of the analog front-end.

half of the bit (Figure 3). We need to detect the subcarrier’s
presence or absence.

To do so, we implemented a correlator that compares the
input with the subcarrier frequency to see when the subcarrier
is present. The correlator takes the envelope samples from the
last 32 cycles, take the average of that 32-cycle segment, and
threshold each of those 32 samples by whether it’s above or
below the average (casting it to 1 or -1). Then, we take the dot-
product of that segment with a square wave at the subcarrier
frequency (the square wave also taking a value of 1 or -1
at each point), then we output the absolute value of that dot
product. The correlator output will range from 0 (for an input
that’s completely uncorrelated with the subcarrier) to 32 (for
an input that exactly matches the subcarrier and is in-phase or
180◦ out of phase).

We determine that the input is currently modulated if, for
at least 20 of the last 32 correlator outputs, the output is at
least 10.

2) Parsing Bitstream: We can detect transitions from one
bit to the next by the spacing of the modulated portions. If the
same bit is repeated (1 to 1, or 0 to 0), the time difference in

the onset of modulation from one bit to the next will be 128
cycles. On a transition from 1 to 0, that will be 192 cycles. And
on a transition from 0 to 1, the modulation from the first bit
continues into the next. We detect the time difference between
the start of one modulation and the start of the next, and also
detect double-length periods of modulation, to compose the
input bitstream.

3) Parity Check and Output: Once we haven’t detected
modulation for significantly longer than the bit spacing, we
check the input to validate it has a valid length, and if so, we
also validate its parity bits. If everything checks out, the PCD
input module processes the input by removing the start bit and
parity bits, then passes it along to the PCD controller.

B. PICC In

1) Detecting Modulation: The input to the PICC is a
sequence of bits where the carrier is halted for a 32-cycle
portion of the bit, or for the first 0 in a sequence of 0s,
the carrier continues for the entire bit (Figure 1). To detect
when the carrier is halted, we implemented a thresholder. The
thresholder has a running average of the ADC value from
the last 128 cycles, and as each bit comes in, the thresholder



returns a 0 if the new bit is less than the running average by
20 LSBs or more, or a 1 otherwise.

We determine that the input is currently modulated if, for
at least 20 of the last 32 thresholder outputs, the ADC value
is below the threshold.

2) Parsing Bitstream: Similarly to the PCD input, we detect
transitions from one bit to the next by the spacing from the
onset of one modulated section to the onset of the next. If the
same bit is repeated (1 to 1, or 0 to 0), the time difference in the
onset of modulation from one bit to the next will be 128 cycles.
On a transition from 1 to 0 to 0, or from 0 to 1, that will be
192 cycles; and on a transition from 1 to 0 to 1, it will be 256
cycles. We detect the time difference between the start of one
modulation and the start of the next (checking whether they
match the theoretical values to within a reasonable tolerance)
to compose the input bitstream.

3) Parity Check and Output: Once we haven’t detected
modulation for significantly longer than the bit spacing, we
check the input to validate it has a valid length. If the length
matches a short frame, then we strip off the start and end bits
and pass the data to the PICC controller. If the length matches
a standard frame, we validate its parity bits, then strip the start,
parity, and end bits, and pass it along to the PICC controller.

IX. CLOCKING (NATHAN)

As we need to manipulate signals at a rate of 13.56 MHz,
we have chosen our main clock signal to be 135.6 MHz, 10x
this rate. Fortunately, Vivado’s Clock Wizard can produce this
frequency quite precisely. This gives us 10 cycles to perform
any necessary calculations per change in the output state.
In order to generate the 13.56 MHz signal, we flip its state
every 5 clock cycles, using additional bits to signal rising and
falling edges. Additionally, PICC load modulation requires a
subcarrier signal at fc/16, or 0.8475 MHz; we generate this
by flipping its state every 8th cycle of the 13.56MHz signal.

X. ANALOG FRONT END (MATTHEW)

This project requires a significant analog front-end portion
to process the 13.56MHz signals. Whereas previous similar
projects, operating at 125kHz, could directly sample at the
operational frequency, 13.56MHz is too fast for a reasonably-
priced ADC to directly sample with sufficient samples per
cycle. We can directly produce a 13.56MHz output signal, but
not read an incoming 13.56MHz signal. Therefore, we required
a more complex analog front-end which could pre-process the
13.56MHz signal, to reduce the sample-rate requirement of
the ADC and the digital processing.

We designed a printed circuit board to implement the analog
front-end. It is a 4-layer PCB, with ground planes on the
inner layers and signals and power routed on the outer layers.
Figure 14 is a photo of the final PCB, which includes some
modifications off the circuit board that we had to make to
correct various design defects.

Fig. 10. Photo of Analog Front-End

A. Functional Blocks

Figure 9 is a block diagram of the analog front-end. The
diagram shows the following blocks:

• The LO Amplifier / Filter is a block that takes a
13.56MHz square wave on the signal in pin, filters out
the harmonics to get a sine wave, and buffers the output.

• The Envelope Detector block takes a modulated
13.56MHz signal coming in, rectifies it, and averages
the rectified version, to produce a lower-frequency signal
from which the modulation can be recovered.

• The Variable Gain Amplifier block is an amplifier whose
gain is set by the gain in pins, to provide an avenue for
the FPGA to request a higher gain on the ADC’s input
if needed.

• The ADC is a 10-bit analog-to-digital converter capable
of up to 20Msps. It samples on a 13.56MHz clock which
comes from the FPGA, and has a pipeline with a latency
of 3 cycles.

• The Load Modulation block switches between two dif-
ferent loads, and is used in PICC mode.

• The Antenna is an inductive loop antenna.
• The Matching Network block is an impedance-matching

network which cancels the reactive component of the
antenna’s impedance, and has a dissipative component to
reduce its quality factor to around 2 (to prevent excessive
ringing, which would make it difficult to parse an input
signal which is being turned on and off quickly)

• The Multiplexer (MUX) block switches the antenna
between various other blocks, depending on what is
appropriate to connect in which mode.

B. Modes

When acting as a PCD in transmit mode, the FPGA directly
generates the desired 13.56MHz output signal, modulated with
on-off keying as a square wave on the signal in pin. It’s filtered
to remove harmonics, and the multiplexer is configured to pass
it through to the antenna.



When acting as a PCD in receive mode, the FPGA generates
a constant 13.56MHz square wave on the signal in pin, and
the multiplexer connects both the envelope detector and the
filtered 13.56MHz signal to the antenna.

When acting as a PICC in transmit mode, the FPGA uses
the signal in pin to control the load modulation output, which
the multiplexer connects to the antenna.

When acting as a PICC in receive mode, the multiplexer
connects the antenna directly to the envelope detector.

C. Errata and Modifications

There were some issues with the functionality of the PCB,
some of which we were able to fix and some of which we
weren’t. This is a comprehensive list of the issues we ran into
with our PCB and the modifications we made, intended to help
any future group hoping to do a similar project.

1) PCD Output Amplitude: The signal path from signal in
through the LO amplifier/filter has significant attenuation. At
the design phase, we had mis-estimated the amplitude that
would be required at the coil to power an external PICC, so
we did not prioritize passing a strong carrier to the output. The
buffer output is several volts peak-to-peak, but the other side
of the series resistor shows an amplitude of just a few hundred
millivolts, so we expected that resistor saw a low impedance to
ground somewhere afterwards, and couldn’t figure out where
that was. We tried changing this 820Ω series resistor to 220Ω,
but this did not increase the output amplitude enough to make
a difference. (We couldn’t short this resistor entirely, since we
need some way to sense the changes in current caused by the
PCD’s load modulation.) A future revision could increase this
amplitude by adding some gain to the LO buffer, which might
also require a higher supply voltage than the +5V and ±3.3V
supplies we used.

2) Load Modulation Input: The PCB was designed to have
the one signal in pin used both to control load modulation in
the PICC output mode, and to supply a 13.56MHz modulated
signal in PCD input and output modes. However, when in PCD
mode, it appeared that the load modulation input was loading
down the 13.56MHz signal and attenuating it. Because of this,
we cut the trace connecting signal in to load modulation, and
instead added a wire to route an unused pin to the input of load
modulation. Ultimately, we did not measure that this change
had any effect on the output amplitude.

3) Bypass Capacitor Values: While soldering the PCB,
we were unable to immediately source a sufficient quantity
of 100nF bypass capacitors, so we substituted all 100nF
capacitors on the board with 220nF. We expect that this should
have had minimal effect on the board’s function.

4) Envelope Detector Input AC Coupling: The connection
from the MUX to the envelope detector should be AC coupled,
centered at ground. We cut the trace that connected them
directly, and added a 100nF coupling capacitor, and a 1kΩ
resistor to pull the envelope detector’s DC input to ground.

5) Envelope Detector Low Pass Filter: The low-pass filter
on the envelope detector’s output that we put on the PCB did
not adequately filter out the 13.56MHz component coming into

its input. When we cut the traces at the low pass filter’s input
and output, and wired in another filter made of components
with identical values, the filter worked. We don’t know why the
filter did not originally work. One suspicion we have is that the
inductors we used had a self-resonant frequency below or near
13.56MHz, so we were seeing them either in a capacitative
regime or their inductance was substantially lowered. Another
possibility is that we soldered the wrong value of inductor on
the PCB.

6) Variable Gain Amplifier Input Tuning: When we con-
figured it with no gain or a low gain ratio, we saw significant
overshoot (several times as strong as the signal of interest) in
the variable gain amplifier’s output, which would have made
it hard to parse the output. Adding a 22pF compensation
capacitor in parallel with the 10kΩ feedback resistor reduced
this overshoot.

7) Input Power Switch: We neglected to include an on-off
switch on the PCB, so we added it at the input on the 9V
battery connector leads.

D. Final Functionality

The analog front-end is capable of supporting the FPGA
acting as a PICC. Unfortunately, it’s unable to support PCD
mode, because of the inadequate output carrier amplitude.

XI. TESTING AND DEMONSTRATION (MATTHEW)

We tested our PICC emulation with several PCDs.

Fig. 11. Our PICC transmits 32’h12345678, and reader confirms that it
receives 32’d030541896 (which equals 32’h12345678)

Additionally, even though the analog front-end didn’t sup-
port PCD mode, we still were able to test the digital side
of PCD mode by wiring up two FPGAs to each other and
sending the internal modulation signal (i.e. the signal that
would have been modulating the 13.56MHz carrier in the full
system) directly to the other one’s ADC input, to bypass the
analog front-end; the PCD was able to read the UID that we’d
configured the PICC to send. It’s not as good of a test as it
would be to test the PCD with a real PICC, but it’s the best
we could do given the state of the analog front-end.



Fig. 12. Our PICC transmits 32’h00BC614E, and reader confirms that it
receives 32’d0012345678 (which equals 32’h00BC614E)

Fig. 13. Our PICC, emulating Matthew’s MIT ID, successfully opens the
door of a lab that Matthew has access to.

Fig. 14. FPGA acting as PCD reads UID 32’h12345678 from FPGA acting
as PICC

XII. TIMING & RESOURCE EVALUATION (NATHAN)

Due to the nature of this protocol, clock-cycle latency is
not a major concern of our system. The smallest transaction
sent consists of a start bit plus 7 data bits, which lasts for
1024 carrier periods at a data rate of fc/128. Since the carrier
frequency is one-tenth of our main clock, any message will
take at least 10,240 cycles to completely send. Additionally,
the specification mandates waiting time of at least 1172
carrier periods (11,720 cycles) from the end of a received
transmission to the start of the next output transmission. As
such, these lengthy waiting periods dwarf any amount of
time spent waiting for calculations to complete. The timing
constraints enforced by the specification (on message length
and waiting time) mean that a successful transaction can only
take place approximately once every 300,000 clock cycles,
about 2 ms.

To improve this throughput, the waiting times can be short-
ened, or the data can be transmitted faster. As significantly
shorter wait times are not within spec, it is unclear how much
they can be altered to maintain functionality. However, as
mentioned above, ISO 14443 supports a collection of data rates
faster than fc/128. Implementing these in a future iteration
would substantially increase the throughput, but there is a
minimum 7000 carrier period delay (0.5 ms) between two
requests from the PCD for any data rate. Again, this could
be altered, but it would be outside the specification.

The slack for our final design fluctuates around zero (+0.036
ns on the most recent build). We had to pipeline a few of the
calculations in the input modules to maintain positive slack,
but we did not necessarily need to run the system at 135.6
MHz, either. Extra cycles are always useful, but they were not
generally necessary. However, it would have been difficult to
change the clock late in the design process.

Our design uses 10.14% of the board’s slice look-up tables,
and a very similar 9.77% of the board’s slice registers. No
DSPs or BRAM tiles were used. Both of these statistics
indicate that there is plenty of room for future iterations to
add new functionality on top of working logic for PICC/PCD
authentication.

XIII. SOURCE FILES

All of our Verilog code, as well as the Altium files for
the analog front-end PCB, are in our Github repository: https:
//github.mit.edu/coxm/6205-final-project

REFERENCES

[1] Identification cards — Contactless integrated circuit cards — Proximity
cards — Part 2: Radio frequency power and signal interface, ISO 14443-
2, International Organization for Standardization, 2020.

[2] Identification cards — Contactless integrated circuit cards — Proximity
cards — Part 3: Initialization and anticollision, ISO 14443-3, Interna-
tional Organization for Standardization, 2018.

[3] Identification cards — Contactless integrated circuit cards — Proximity
cards — Part 4: Transmission protocol, ISO 14443-4, International
Organization for Standardization, 2018.

https://github.mit.edu/coxm/6205-final-project
https://github.mit.edu/coxm/6205-final-project

	Introduction
	Terminology
	Summary of RFID Specification: RF Interface
	Summary of RFID Specification: Logic Flow
	Emulation Overview (Nathan)
	PCD & PICC Emulation (Nathan)
	Encoding Output Signals (Nathan)
	Decoding Input Signals (Matthew)
	PCD In
	Detecting Modulation
	Parsing Bitstream
	Parity Check and Output

	PICC In
	Detecting Modulation
	Parsing Bitstream
	Parity Check and Output


	Clocking (Nathan)
	Analog Front End (Matthew)
	Functional Blocks
	Modes
	Errata and Modifications
	PCD Output Amplitude
	Load Modulation Input
	Bypass Capacitor Values
	Envelope Detector Input AC Coupling
	Envelope Detector Low Pass Filter
	Variable Gain Amplifier Input Tuning
	Input Power Switch

	Final Functionality

	Testing and Demonstration (Matthew)
	Timing & Resource Evaluation (Nathan)
	Source Files
	References

