Glow Trails on FPGA

Kiran Vuksanaj

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge MA, United States
kiranv@mit.edu

Abstract—We present a design to utilize an FPGA for live
digital effects video processing, for use while performing or
practicing with flow arts props. The video effect applied by
the system creates trails behind bright lights, so the previous
locations props have moved through, and the patterns they have
created, become visible on camera recording, mimicking what is
seen when watching glow and fire prop performances in person.
We present a novel IIR-based algorithm to create this effect with
a small memory footprint and high data throughput to process
image data in real time. We implement this algorithm, control of
a high-framerate camera sensor, and an HDMI output of the live
results of the algorithm. We evaluate the success of our algorithm
at displaying glow trails and doing so in real time.

Index Terms—Digital Systems, Field-Programmable Gate Ar-
rays, Digital Video Effects, Real-time Computation, Flow and
Fire Arts

I. INTRODUCTION

When watching live performances using glow and fire props,
audience members are able to see an ephemeral effect of
a “trail” behind a fast-moving, bright object. The art of
performing with these props takes advantage of this effect
to create the shapes and patterns in the air that define many
styles of flow arts performance. However, since the exposure
of a camera works differently than the human eye, only the
momentary position of the prop’s bright head is visible when
captured on video; video footage fails to capture the glow trail
behind it. It’s common to use post-processing video effects
tools like After Effects to simulate this effect, but the process is
slow when running on standard computers. The unique ability
of Field-Programmable Gate Arrays to process data with high
throughput presents the possibility of applying digital video
effects to a video input with no delay perceivable by a human.

Utilizing an FPGA for high-throughput video data process-
ing and a new algorithm for generating the glow trails video
effect, we propose Glow Trails on FPGA, a system designed to
enable a flow arts performer to see the desired video effects
on camera in real-time. We prioritize the experience of the
user by aiming for high quality video, with a framerate that
can properly capture fast-moving objects. We aimed to have
as high quality of an image as possible, and low enough
latency that a performer wouldn’t practically notice the delay
in video output while performing in front of the camera.
In order to enable these design goals while working within
the constraints of the components available to us, we aim
to minimize extraneous memory usage and maximize the

Eugeniya Artemova
Department of Mathematics
Massachusetts Institute of Technology
Cambridge MA, United States
giniya@mit.edu

throughput of the algorithm, and utilize the necessary memory
components to store necessary data.

In this paper, we implement the Glow Trails on FPGA
system. Section II outlines the specific technical challenges
that come with this implementation, and tasks we set out
to complete in order to achieve our implementation. Section
IIT outlines the components used and the modules they are
part of that are necessary to generate the output we desire.
Sections IV through VI outline the design goals, choices,
and implementations of each of our major modules, including
the novel algorithm based on an Infinite Impulse Response
(ITR) matrix to store past frame data as compactly as possible.
Finally, in sections VII and VIII we evaluate the success of
these goals, explore the use cases of our system, and reflect
on potential future work to expand the project.

II. GOALS

In order to create the implementation of our video interac-
tion interface, our two most significant hurdles we needed to
design for were limiting memory usage as much as possible,
and ensuring an algorithm design where all components can
work with high throughput. In order to process camera data
that comes in at a constant, rapid rate, the algorithms must be
able to work at a fast clock cycle and be able to always accept
new data. In order to store data for a full frame, algorithms
must be designed to require as few bits of data per pixel as
possible-no excess copies of pixel data can be stored if a
full frame of 240p, 16-bit color data is being stored; camera
input must immediately be modified into output data, rather
than storing the camera input for later comparison. In order
to accomplish our intended beahvior and design for these
constraints, we aimed to complete the following tasks:

e Design an IIR-based algorithm module, which requires
only an IIR history value and new camera value to
determine the effect-enhanced output pixel value with the
desired effect.

o Implement an interface with which the necessary reads
and writes from BRAM memory for the IIR algorithm
and video output can be performed.

o Implement modules to read from this BRAM memory as
needed for an HDMI signal to display the current state
of the IIR matrix.

¢ Design microcontroller code manage the settings of the
OV5640 camera sensor, which has the capacity for high

Camera data

Camera
Processing

AV A\ /4

\V4
Parallel

BRAM Port ———>

IIR Filter

= Video Signal
Generation
' NY

| BRAM >t HDMI output —"> Video

Fig. 1. Top Level Diagram with Red Camera Clock Domain, Puple IIR Clock Domain and Blue HDMI Clock Domain

framerate output and many options of settings for frame-
size output.

o Design FPGA modules to read the data input from the
OV5640 and cross clock domains to the domain utilized
by the IIR algorithm, and determine the coordinate of
pixel data in the frame as it is passed in.

o Implement the Memory Interface generator to access
onboard DDR3 memory, and replace BRAM storage with
this larger storage solution. Write modules to ensure
necessary data is always drawn from DDR3 memory
and available in BRAM when it is necessary for any
algorithms. Switch to using 720p output from the camera,
utilizing the additional space available in DDR3 memory.

Our final implementation accomplishes all of these tasks
except for the final task of DDR3 memory incorporation. We
successfully figured out how to get 720p or 240p data out of
the camera, but without DDR3 memory we can’t store a frame
of 720p data. As a result, we successfully display glow trail
output over HDMI, using the OV5640 camera, but we do so
at 240p image quality. Since we’re using the OV5640 camera,
the sensor does a better job than the OV7670 camera does at
capturing true-color images, and captures input at 120fps.

III. PHYSICAL COMPONENTS

The project is made up of a number of physical components,
consisting of:

o A Spartan 7 FPGA, contained within the Urbana Board.
The image processing occurs here, exploiting the speed
and parallel-processing capabilities of an FPGA. This
board also has a BRAM with 2,700 block, each with a
kilobit of space for a total of 2,700 kilobits of memory.

e An OV5640 camera. This camera has 720p resolution
with shutter control, providing us with a high-quality
image and proper shutter control to capture the entirety
of the path of a fast-moving bright object.

e An Arduino XIAO SAMD2I microcontroller. This mi-
crocontroller is responsible for programming the OV5640

settings via I2C protocol, but handles none of the image
data.

¢ An adapter PCB, made by Joe Steinmeyer. Originally
made for the OV7670 camera, this PCB has outputs
that allow us to power the camera and microcontroller,
connect the microcontroller to the camera control pins,
and connec the camera data pins to the FPGA.

o An HDMI monitor. Connected to the FPGA board, this
displays the final video with the glow trails effect applied.

Through these components, 4 modules are implemented
which handle different components of the system tasks and
share results with one another; the camera handler, the glow
trails algorithm, the memory interface, and the HDMI output.
The camera handler module comprises of the camera, the
SAMD21 microcontroller and the FPGA. The microcontroller
drives the camera, setting specific parameters. The data from
the camera comes back to the FPGA where it is processed,
clock domains are crossed. The glow trails algorithm uses the
current and previous camera data to create the glow trail effect.
The memory interface handles interactions with the BRAM,
making sure that the read requests from the IIR filter and the
BRAM, as well as the write requests from the IIR filter do
not occur at the same time. The HDMI output module uses
values from the BRAM and a video signal generation module
to generate an image that can be outputted to a display.

IV. INFINITE IMPULSE RESPONSE (IIR) TRAIL
GENERATION (KIRAN)

To generate the glow trails video effect we use a novel
algorithm utilizing an IIR filter. This filter adds the decayed
brightness of historic pixel data to current pixel data, in
order to create a decaying trail following a bright spot. This
algorithm minimizes the necessary memory to generate such
an effect; rather than having to store any number of camera
input frames, only the output frame is stored, and the same
frame buffer used for displaying output is used to calculate
the next decayed frame.

Fig. 2. Results of the IIR filter glow trail algorithm. On the left, a frame from
a video of a glow performance shows the present position of the poi head, but
doesn’t capture the trail a viewer would see. On the right, the IIR algorithm
modifies the frame with the influence of the bright pixels of the most recent
frames, revealing the trail behind the poi head. Generated in Python code
written to verify the IIR algorithm.

A. Algorithm

The IIR filter takes in historical pixel H = G;_; and current
camera pixel C and outputs an updated pixel G;. Both of
these are stored as 5-bit red, 6-bit green and 5-bit blue. The
luminance of the historical pixel is calculated, using a fomula
for conversion from RGB to YCrCb.

The algorithm has two adjustable parameters, the luminance
threshold ¢ and the decay factor d. If the historic pixel data is
brighter than ¢ and the camera pixel, the new pixel is equal to
the historic pixel, with a brightness decayed by d. Otherwise,
the pixel is replaced with the new camera data. We can adjust
t based on the brightness of the room and d to change the
length of the trails.

Let the luminance for a pixel X to be calculated by, Xy =
0.299X R + 0.587X ¢ + 0.115X 5. Then,

{dHR,ng,dHB} if Hy >t, Hy > Cy

G(H,C) =
i) {C’ else.

The decay calculation is done by multiplying an 8-bit color
value by a 24-bit number to get a 32-bit number. Then, we
take the most significant 8 bits. This lets us approximate
multiplying by a float fairly well while having much shorter
computation times.

This algorithm is applied to each pixel coordinate inde-
pendently, producing a full image influenced by the brightest
pieces of the most recent frames and the new camera input.
Since it only requires the data of a single pixel position,
a pipelined system can continuously process pixels without
relying on unavailable data, allowing for high throughput.
The algorithm minimizes memory footprint and maximizes
throughput, enabling the high image quality and real-time
processing features desired from our implementation.

B. Python Implementation

In order to demonstrate the feasibility of the IIR glow trails
algorithm, we implemented the algorithm in Python before
writing it for the FPGA. A sample of the results from this
simulation are shown in Figure 2; the algorithm was shown
to create the intended visual result intended. We found that
in the python code a threshold value ¢ of approximately
85% brightness and a decay value of 98% produced desirable
results. When implementing the algorithm on FPGA, we
discovered that these default values were not as good, and

having an adjustable cutoff range was better given the variable
lighting.

C. Board Implementation

We can see the IIR filter in Figure 1. The IIR filter interfaces
with the camera output of an OV5640 camera to get new
pixel data and the BRAM to get the historical pixel data and
write the updated pixel data. It also interfaces with the parallel
BRAM port module to handle the timing of the read and write
requests to the BRAM.

V. CAMERA INTERFACE (KIRAN)

In order to improve the video quality that we can achieve
for end user experience for the Glow Trails system, we chose
to incorporate an OV5640 sensor. As opposed to the OV7670
sensor used in labs for 6.205, the OV5640 has capacity to
take much higher quality images and have more complete
control over sensor options like shutter speed. It has the
ability to transmit video data at 720p (HD) video quality at
60fps, and transmit 240p (QVGA) video quality at 120fps.
Experimentally, we have also found the realism of the camera
output to be much higher quality from the OV5640 camera as
opposed to the OV7670, regardless of which setting we use.

In order to power on and configure the camera, an sequence
of I2C messages must be sent to the camera. These messages
set configuration registers within the camera, controlling frame
size output, white balance, shutter cycle, PLL clock manip-
ulation for the data output, and many other components of
how the sensor functions. We implement this sequence of
register writes using a microcontroller, the Seeeduino XIAO
SAMD21, which connects to the camera’s SCL and SCK pins
to communicate. The code on the microcontroller is written
in C, implementing only basic 12C register write commands.
It is based on the structure of Joe Steinmeyer’s C code [1] to
control the OV7670 camera in a similar fashion. There exist
modules in CircuitPython [2] and C [3] to control the OV5640,
but they require a microcontroller with larger flash storage and
more pinouts to operate. However, their code is open source,
and are the most successful source we found for determining
what must be set on the camera for it to successfully run. The
register datasheet for the OV5640 is helpful in places, but is
far from complete and skips over defining key registers which
are necessary for the camera to even turn on, let alone provide
meaningful data. By examining what the CircuitPython source
code would write over 12C, we determined what registers to set
using the Seeeduino XIAO; we generated two sets of register
settings, one to receive 240p120fps video output and one to
receive 720p60fps video output.

The camera operates off of a 24MHz internal crystal clock,
but uses a PLL to change the clock speed it outputs data
at, depending on how much data it is transmitting; this can
get to be as high as 96MHz. Valid data is transmitted with
a clock wire and 10 parallel data wires; 2 wires are used
for the horizontal and vertical sync, and 8 wires are used
to send a bit in parallel. Data wires are held stable for
the entire high portion of the data clock cycle, and may

(G 3
i2c_clk 5
o1 SAMD21
i2c_ .
data (B (G 3V
_
G 3V SCLSDA))
pixel clk o
0OV5640 € > Spartan
HS by e > PMODE Board
Camera vsync >
internal
clock D# PMODA

pixel_data[7:0]

Fig. 3. Diagram of power and data connections to the SAMD21 XIAO
Microcontroller and OV5640 camera. These connections are wired in the PCB
adapter, built by Joe Steinmeyer.

change during the low portion of the clock cycle. In order
to reliably poll the clock for rising edges, we must have a
clock period shorter or equal in length to a half-cycle of the
data clock, so we reliably see both a low edge and a high
edge of the clock. Thus, we read our data on a 192MHz
clock, as generated by the FPGA. This is, by extension, the
clock cycle on which we operate the IIR algorithm. We first
buffer the input to our IIR clock (the purple clock domain
in Fig 1) for reliable reading of data. Two sequential bytes
of pixel data make one pixel, transmitted in RGB565 format.
Using the hsync and vsync signals, we determine when valid
pixel data is entering, when a new row begins, and when a
new frame begins. Thus we determine the full 16-bit pixel
value, and its coordinate, for use as the new camera input
in the IIR algorithm. The clock domain crossing is inspired
by the ‘camera.sv‘ and ‘recover.sv‘ code from Lab 05, but is
rewritten to work more reliably with different framerates and
clock speeds, into our ‘camera_bare.sv‘ and ‘camera_coord.sv*
modules. Through our work to handle camera input from the
0OV5640, we achieved our goal of better visual output for the
Glow Trails system.

VI. MEMORY HANDLER (EUGENIYA)

We used the BRAM units within the Spartan 7 FPGA to
store the frame buffer for our IIR filter. The on-chip BRAM
units are able to handle one full copy of a 240p frame,
with 240%320 pixels, each holding 16 bits of color data.
Block RAM has the capacity for exactly two ports, each
with read/write capacity and each operating on different clock
cycles. Through this, we are able to cross clock domains
between the IIR clock and the HDMI output pixel clock.
However, the IIR clock’s port needs to be able to both read a
pixel’s data to provide the IIR algorithm with a history value,
and write a pixel’s data as updated by the IIR. Thus, we created
a module with a state machine to manage both the read and
the write.

This module, and its corresponding state machine, rely on
the assumption that memory access is never needed by either
the write job or the read job on two adjacent clock cycles.

We can assume this because we chose a fast enough clock
cycle that camera input data will always have one clock cycle
reading as low in between valid data, so rising edges can be
detected. Thus, if a valid read request and write request happen
at the same time, there is a guaranteed cycle with no requests
immediately following—so both requests can be fulfilled before
any new requests enter.

We built a simple state machine module to enable all
requests to successfully complete; in the IDLE state, request
addresses are passed through whenever a valid signal is read
for a write or read request. If a valid signal happens at the same
time, the read request is sent first; this guarantees a constant
response time for read requests. The module then stores the
valid data of the write request, and enters the WRITE PENDING
state. In this state, the write data is immediately sent, ignoring
valid signals, which by are assumption will never come while
in this state. Through this, all requests are sent to the BRAM
over one port with no throughput decreases. This (very simple)
state machine can be seen in Figure 4.

Read and write come
in at the same time

(Write is processed)

Fig. 4. Memory Handling Finite State Machine

Originally, we were meant to implement the storage of our
frame buffer in DDR3 memory, as this would have allowed us
to store the 720p video output from the camera, and achieve
better image quality. We hoped to build FIFOs which hold the
relevant data for each of our three read/write tasks, maintaining
data availability in the FIFOs for high-throughput usage in
every other module. We were not able to make this version of
memory storage work before our deadline.

VII. EVALUATION

Our primary method for evaluating our success were the
latency of our image output, our total memory unit usage,
and the visual quality of the output that we generate. In this
section, we evaluate our degree of success on each of these
fronts, and then explore potential further use cases of the Glow
Trails system we built with limited further design.

The latency of the IIR algorithm is consistently exactly 9
clock cycles from pixel data entering the FPGA; two clock
cycles sync the input to our clock domain and determine the
coordinate of data received, one clock cycle to send a read
request through our BRAM port handler, two clock cycles
read the relevant history data from block RAM, two cycles
are used to calculate the IIR algorithm output, and 2 clock
cycles write the output data to memory. At 192MHz, this is a
latency of 47ns. This is imperceptible to the human eye, and
it is even imperceptible to the cycle on which HDMI output

is read, so there is practically no delay in the video output of
our algorithm.

Operating on a 192MHz clock, but in specifically the
BRAM interaction needing two clock cycles to complete
successfully (our assumption of valid data only every other
cycle), our IIR algorithm and writing to memory can accept
new data on a 96MHz cadence and process in a constant
number of clock cycles. Thus, the throughput of the algorithm
is 96MHz. This exceeds the throughput of data coming in
parallel from the OV5640 camera at either QVGA or HD
quality, so it is successfully able to process all 120fps of
QVGA data it works with. This framerate is higher than the
720p60fps output to HDMI, so our IIR algorithm writes data
in excess of what is needed by the HDMI output.

By achieving this higher framerate and working with this
data consistently for the IIR, combined with a high quality
camera and a well-timed shutter cycle, the visual output of the
glow trails look very satisfactorily continuous and produce an
image result we’re happy with.

By storing the 240p IIR frame buffer in Block RAM, we
use (240%320*%16)=1228.8KBit of BRAM memory on just our
frame buffer, out of a total of 2700KBit available. Since we
were unable to utilize DDR3 memory, we used much more
Block RAM than we hoped and were unable to store a 720p
frame buffer, but no excess memory was needed in order to
operate the algorithm beyond the base requirements to display
HDMI video from a frame buffer.

Our project handles the use case we cared about in our
project specification. Specifically, given a person spinning a
glow prop, it creates a trail showing where the prop previously
was. Unfortunately, it does not use the 720p camera output
which means that it is not as high an image quality as we
were hoping. We have reached our minimum goal (glow trails
with BRAM and the OV7670 camera), and progressed beyond
it towards our ideal goal, since we integrated the OV5640
camera. However, we didn’t reach our ideal goal, which was to
use both the OV5640 camera and the DDR3 memory in order
to be able to have 720p images. We also definitely didn’t get
to our stretch goal, which was to add an SD card where we
could save recordings of the images captured by the camera.

We had some ideas for additional use cases for our project.
As with the glow trails, these use cases would be nicer with
the 720p camera output, but will work with the 240p camera
output as well. Use cases include:

o Capturing the output with HDMI capture to be able to
create a not real time recording of the glow trails. HDMI
captures already exist, so this should be fairly easy to
achieve with no modifications to the FPGA code.

o We could find the ‘glow trail’ of old CRT TVs. On old
CRT TVs you can see imperfections in the image from
the screen loading/reloading the pixels. Using the glow
trail, you would be able to get rid of this, as dark pixels
would be overwritten by the lingering trail.

o This could be used as an art piece, similar to the ones in
the stata display! This would probably require changing
the threshold at which it draws glow trails (since most

people do not walk around with glow props). However,
the threshold is currently variable, so setting it lower
such that it creates a glow trail wherever there is moving
human skin, or generally lighter colors, or pretty much
everything it sees should be easy and would create a fun
art display. (Especially since the background is stationary,
so setting a lower threshold would not cause any glow
trails to appear there.)

VIII. REFLECTION

There were a couple of things we weren’t able to achieve,
that we were interested in further pursuing:

e We want to be able to access the DDR3 to be able to
use a 720p camera output for a higher quality image. For
this, we want to use MIG, which we tried to do during
the project, but weren’t able to achieve.

o We want to use an SD card to be able to store a copy of
the output so that you can record yourself and then play
it back at a later time rather than as you spin.

¢« We want to use data on an SD card as an input video
(such as a performance recording) to be able to add the
trails to pre-recorded videos.

e The camera doesn’t perform that well under low-light
conditions, and doesn’t capture the color of the prop that
well. Using a better camera, or potentially changing the
settings might make the image color nicer.

In hindsight there were a number of things we learnt through-
out the process:

o Camera datasheets are hard to read. Using pre-written
modules, at least to understand things like registers, is
tremendously helpful. We thought that switching from the
OV7670 camera to the OV5640 camera would not be too
hard, but we ended up working on the camera throughout
all six weeks of the project. The datasheets for the two
cameras looked very different and both were quite hard
to decipher. It turned out that looking at existing camera
interfaces, like espcamera, was tremendously helpful.
While the SAMD21 microcontroller we were using could
not run the espcamera module, looking at the source
code for it let us understand what different registers were
doing and allowed us to program the SAMD?21. If you
can use a pre-existing solution use it. Datasheets are
dense and not designed to be easy to find the relevant
information, but more so to contain all the possible
information somewhere.

o Make sure you budget enough time for all parts of the
project, even if you get stuck on a specific part. One of
the things we couldn’t get working was MIG. Largely this
was because it took us much longer than we expected to
get the camera working. We did not leave enough time
to work with MIG and be able to get the IP and all the
helper function for it working. Budgeting our time a little
better (especially since both of us had other final projects)
might have increased the chance that we would have been
able to get MIG working.

e Don’t use code you don’t understand, especially if you

can write it yourself easily. We ran into a lot of issues
with our RGB to YCrCb/YCrCb to RGB code. At the
time we were storing all our data as YCrCb and were
struggling to understand why we were getting a grayscale
output. We believe this was because we had taken code
from the internet which was causing problems. Writing
code ourselves, or only taking code we can sanity check,
would have saved us a lot of time, especially since this
was fairly simple code. Instead we spent a while staring
at a somewhat convoluted set of code which used some
Vivado features we didn’t understand and trying to debug
1t.

Manta simulations are great for testing hardware-
dependant code, in our case the camera. We didn’t have
the option to test a lot of our code off-hardware since we
were trying to debug the camera and the output it was
giving itself. Probing with the scope and testing with the
manta logic analyzer proved to be invaluable in this case.
Using testbenches is good. We probably didn’t do this
enough, and probably should have done more of this.
There were times where we were testing things on the
FPGA and trying to debug. This seemed especially odd
when we were using the FPGA’s seven segment display +
LEDs to show debugging output which would have been
easy to see on a testbench.

Lighting conditions dramatically change what threshold
one might want to use for determining which pixels are
‘bright enough’. Specifically, we used the python code to
find a good threshold, but found it didn’t work as well
on the FPGA, and we wanted a much lower threshold,
due to the brighter conditions. Additionally, we found
that lower thresholds weren’t much of a problem because
if the algorithm was trying to display a glow trail on a
object that didn’t move, you could not actually tell and
everything still looked normal.

IX. THANKS

And for their lovely help in creating our project video:

[2]

[3

=

[4]

Rory Knight, our videographer

Jonathan Anziani, our guest performer with a really cool
LED Staff (the Flowtoys Vision staff)

Topaz and Q-Tip, cameo cats

REFERENCES

Steinmeyer, J (2023) OV7670 Camera Board [source code].
https://fpga.mit.edu/6205/F23/documentation/ov7670

Adafruit (2023) Adafruit CircuitPython OV5640 [source code].
https://github.com/adafruit/Adafruit_CircuitPython_OV5640

Espressif (2021) ESP32 Camera [source code]. https://github.com/
espressif/esp32-camera/

Omnivision (2011) Datasheet Product Specification: OV5640 [Online]
https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/OV5640_
datasheet.pdf

Many thanks to the people who helped us along the way
with our debugging and providing reference code that was
invaluable to our development and exploration in this project:

o Our instructor, Joe Steinmmeyer, for his base microcon-
troller code, lab code, help in understanding the OV5640
camera, very helpful lectures, and a very enjoyable class.
Thanks :)

e Our TA, Joseph Feld, for his invaluable help when we
were debugging unknowable problems and his help in
focusing and guiding our project as we began our design
process and as we got lost in the code.

o Fellow student Andrew Weinfeld, whose MIG base code
helped us explore the usage of DDR3 memory, even
though we didn’t end up getting it working for ourselves
in time.

o The developers of CircuitPython modules that took us
into the realm of succeeding with getting meaningful data
out of the OV5640 cameras.

