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Abstract—We present a design for our Walkie-Talkie on FPGA 
(WTF). A WTF is implemented using the following key 
components: an FPGA, microphone, audio output device (i.e., 
headphones, earbuds, or a speaker), laser (or wire), and 
phototransistor, among others. Our device encrypts all 
transmissions using AES, the industry standard encryption 
method for encrypted radios, including those used by the U.S. 
government. 

I. SYSTEM OVERVIEW 
A WTF’s laser is used to transmit audio, while the 

phototransistor is used to receive audio. A WTF is capable of 
both sending and receiving audio, given the necessary hardware. 
No additional hardware is necessary for audio input, as each 
FPGA comes with a microphone of sufficient quality. Like 
audio input, audio output is quite simple–each FPGA has a 
headphone jack. A speaker is hooked up to this headphone jack. 

The laser and phototransistor are on an external circuit 
connected to the FPGA. This circuit uses comparators as 
necessary to ensure a clean digital signal. This laser and 
phototransistor circuit can also be replaced by a simple wire 
connecting the two FPGAs. 

 FIR and decimation modules are used to perform low pass 
filtering on the microphone audio. The FIR is a 30-tap filter, and 
the decimation module decimates the audio samples by a factor 
of 4. Having four stages of FIR and decimation allows us to 
achieve a clean audio signal devoid of high frequency content. 

 The whole system connects as follows: audio is received 
through the microphone, processed, filtered, and encrypted by 
the FPGA, which then transmits the data through the laser. The 
receiving FPGA’s phototransistor receives the data, which is 
processed, decrypted, then sent to the audio output port. 

II. SIGNAL PROCESSING 

A. Low-Pass Filter and Decimation 
The incoming audio information is a 3 Msps stream at one 

bit depth. Since human speech has frequency content ranging up 
to approximately 6000 Hz, we process information up to that 
frequency. The main motivation for this is to reduce resource 
usage, cost of computation, and aliasing. To do this, we need to 
put the audio data through a low pass filter and down sample. 
There are various approaches to achieve this—as a starting 
point, we decided to put this audio information through a 
multistage FIR low pass filter and decimation. For reliable low 
pass filtering and down sampling, we perform four rounds of 

FIR filtering and decimation. The FIR module (fir.sv) processes 
a history of a weighted sum of the 30 most recent data points and 
carefully picked coefficients, which can be tuned for higher 
filtering fidelity. The output is then passed into decimate.sv, 
where it will be down sampled by a factor of 4. The resulting 
signal is a data stream of 12k samples per second at 8-bit depth, 
which will be used in the encryption module. The FIR filter is 
implemented through a finite state machine, consisting of 3 
states (IDLE, SUM_ADD, and DONE). The module begins in 
the IDLE state. It waits for a single cycle indicator that a sample 
of valid data is ready for processing. Upon receiving this signal, 
the module proceeds to the SUM_ADD stage. In this stage, a 
series multiply and addition is performed on the signal with its 
corresponding coefficients over 30 clock cycles, a trivial number 
of cycles compared to the number of clock cycles in 12 KHz 
(~8000 cycles). Once the calculation is finished, the module 
proceeds to the DONE state. In this stage, the module produces 
a single cycle valid out signal and outputs the valid data. The 
module then transitions back to the IDLE state and repeats. The 
FIR outputs will later be used by the decimation module for 
down sampling. 

 

 
Figure 1: Basic structure of FIR filter [1] 

 
We use the test bench (fir_tb.sv) for testing/evaluating the 

efficacy of the low pass filter and decimation. The test bench 
generates sinusoidal signal(s) and feeds it through the low pass 
filter and decimator. We developed a system for generating a 
reliable sine wave `slow_sine`. The generated sine wave is then 
converted to a PDM signal, which will be used as the input to 
the four stages of low pass filtering and decimation. An example 
of the simulation is shown in figure 3 below. 

 

 



   
 

   
 

  
      Figure 2: New test bench result for lowpass filtering. 
 

Upon observing the test bench after trying different types of 
inputs, we can visually confirm that the LPF is working as 
expected. We further verify this fact by running this system on 
the FPGA. We were able to hear decent audio quality from the 
output of our multistage filters. 

Some common issues that occurred while implementing the 
filtering and decimation module are bit growth and the high 
level of amplification to the output. The FIR module involves 
many rounds multiplication and addition. Because of this, the 
intermediate calculations may be subject to bit growth. We 
addressed this issue by using a larger buffer to store the 
intermediate result. In addition, we noticed that the output of 
each FIR and decimation adds additional gain to the signal. We 
addressed this issue by scaling down the output signal before 
feeding it into the next stage.  
 

B. Delta-Sigma Modulator 
At this stage of the pipeline, high-frequency noise is 

removed from the signal through the low-pass filter. However, 
there is still some residual quantization noise resulting from the 
digitization process upstream. The WTF employs a first-order 
delta-sigma modulator to reduce the effects of such noise. 

The delta-sigma modulator samples the signal at a high 
sampling rate, much higher than the 12,000 Hz dictated by the 
Nyquist-Shannon sampling theorem, which ensures a more 
accurate signal. In a traditional delta-sigma modulator, the 
signal goes through a process called noise shaping, which 
corrects any quantization errors from the signal and shifts 
quantization noise to a higher frequency range outside of the 
targeted range. The quantization noise, in practice, will be 
removed downstream during the demodulation process where 
the digital signal is converted back to analog. 
 

 
Figure 3: First-order delta-sigma modulator diagram 

 

III. ENCRYPTION 
The WTFs use the Advanced Encryption Standard, or AES, 

to encrypt communications. AES is widely used. iMessage uses 
it to encrypt text messages, and the military uses it in encrypted 
radios. 

A. Advanced Encryption Standard (AES) 
There are multiple versions of AES, which differ based upon 

the size of their input keys. We chose AES-128, where the key 
is 128 bits. 

To encrypt, a series of transformations are applied to the 
provided block. There are four main transformations: substitute 
bytes, mix rows, mix columns, and add round key. 

 Byte substitution, much like the name implies, replaces each 
byte in the block with another. The replacement block is 
determined by indexing into a two-dimensional 16x16 table with 
the replacement blocks. The most significant nibble of the byte 
being replaced determines the row, while the least significant 
nibble determines the column. For example, a byte of value 
0x6F would be replaced by the byte stored in the table at row 6, 
column F. The total table size is 2048 bits (256 entries of 8 bits 
each). Given the size of the table and to allow for future 
flexibility, it is stored as a read-only table in BRAM (effectively 
BROM). Accessing BRAM introduces an additional two clock 
cycle delay. 

 The second transformation—mix rows—shifts each row 
leftwards by its row number. A row is a collection of four bytes. 
The topmost row (row 0) is shifted left by 0 bytes, the next row 
(row 1) is shifted by 1 byte, row 2 is shifted by 2 bytes, and so 
on. 

 The mix columns transformation is effectively a matrix 
multiplication, where the block is multiplied by a given matrix. 
However, addition and multiplication are carried out according 
to the rules of finite field (Galois Field) arithmetic. This is 
accomplished on the FPGA using various bit operations.  

 The final transformation, add round key, puts the provided 
key to use. Ten additional keys are generated from the initial 
128-bit key, resulting in a total of 11 keys. Each add round key 
transformation uses one of these keys, which are generated 
according to the key expansion protocol. The add round key 
transformation itself is just a bitwise XOR between the block 
and key. 

 Decryption is extremely similar to encryption, but the order 
of the transformations is changed. Additionally, the substitute 
bytes, mix rows, and mix columns transformations are the 
inverses of the encryption transformations. For example, while 
mix rows (used in encryption) shifts the rows to the left, the 
inverse mix rows operation (used in decryption) shifts the rows 
to the right. 

 AES protocol specifies that ten rounds of transformations be 
applied for both encryption and decryption, with each round 
using some combination of substitute bytes, mix rows, mix 
columns, and add round key (or the corresponding inverse 
transformation, in the case of decryption). Carrying out all of 
these transformations requires a fair amount of clock cycles, but 
this is no cause for concern.  

 Each transformation is implemented in its own module. 
These transformation modules are connected together in a 
module that carries out a round of several transformations—we 
call this the round module. Finally, the highest-level modules 
(one for encryption and one for decryption) carry out multiple 



   
 

   
 

rounds using the relevant round module, plus some additional 
Verilog implementing the rest of the AES protocol. Ultimately, 
this allows us to encrypt a block with a single call to the 
encryption module and to decrypt a block with a single call to 
the decryption module. Both the encryption and decryption 
modules take in a block and a key. In order for decryption to 
reverse the results of encryption, both the encryption and 
decryption modules must be passed the same key.  

 The figure below is a simplified representation of how the 
modules fit together. At the bottom, we have the basic 
transformations. In the middle, the encryption round module 
combines these basic transformations together to form an AES 
encryption round. At the top, the encryption module uses the 
encryption round module, plus some additional logic to carry out 
the entire encryption. The decryption hierarchy is similar. 

 
Figure 4:  A simplified representation of how the various 

modules fit together to form the encryption module. 

 The output of the signal processing module/low pass filter is 
8 bits at 12 kHz (size conversion between modules is discussed 
in the next section). The blocking module input is, 
correspondingly, of width 8 with an output of 128 bits. This 
implies that the output frequency of the blocking module is 
approximately 16 times (128 / 8) lower than the throughput of 
the filter. This means the blocking module output frequency is 
0.75kHz (12 kHz / 16). The FPGA’s clock runs at approximately 
98 MHz. With this in mind, the encryption and decryption 
module scan take up to ~130,000 clock cycles (98 MHz / 0.75 
kHz) without creating a bottleneck. The encryption and 
decryption modules are far faster than this. Each module finishes 
in under 8000 nanoseconds, or approximately 800 clock cycles. 
It’s worth mentioning that these operations could be sped up, but 
this was not necessary for our project.  

B. Blocking 
As previously mentioned, our implementation of AES has an 

input size of 128 bits; output is also 128 bits. With this in mind, 
we have two blocking modules, creation and destruction, to 
handle input and output size conversion. The block creation 
module takes the 8-bit/1 byte output from the previous module 
(which handles signal processing and filtering) and gathers 16 
of them to create a single 128-bit block.  Similarly, the block 
destruction module takes the 128-bit output of the decryption 
module and breaks it up into individual bytes. Block creation 
precedes encryption, while block destruction follows 
decryption. 

C. Timing 
Timing is, perhaps surprisingly, not too much of an issue. 

Our system effectively outputs a byte of data 12,000 times a 
second. In other words, it moves bytes at 12 kHz. All of our 
modules can easily finish within a 12 kHz clock cycle. This 
allows us to simply wire all of our modules together and retrieve 
data at a 12 kHz frequency. 

IV. TRANSMISSION AND RECEPTION 

A. Transmission 
Once the audio information has been filtered and processed, 

it will be transmitted out to other WTF devices. We have 
decided to transmit this information ideally through a laser, but 
during testing, the laser-phototransistor combination did not 
yield enough response time to accommodate our bit encoding 
scheme, which meant that we had to transition back into 
transmission through wire. To achieve a robust transmission 
and reception procedure, we needed to establish a 
communication standard between the WTF devices. We 
decided to take inspiration from the IR transmission protocol of 
lab 7, which contains a sync signal, followed by a series of 
patterns for sending a 1 or 0. We have established a finite state 
machine with well-defined transitions and parameterized 
timing and thresholds that associate to the patterns specific to 
the protocol. The following figure demonstrates our determined 
timings for the bit encoding scheme. 
 

 
Figure 5: Bit encoding scheme 

 
As seen in figure 4, before a WTF transmits, it must send a 

sync frame, which begins with a 8μs of logic low followed by 
8μs of logic high. Once that sync message has been established, 
the WTF starts sending out the pattern from the bit encoding 
scheme. This scheme was designed to be fast enough to convey 
at least 12,000 samples at 8-bit depth originally. Considering we 
need to convey 8 bits at 12khz, we need to transmit 96,000 bits 
per second. Effectively, this specification requires us to send at 
least 8 bits in 1/12KHz = 83μs. Let’s do some quick evaluation 
of this system. Suppose the transmit module needs to send out a 
value of 8’hFF, using the revised bit encoding scheme. The sync 
frame requires 12μs. For the sending procedure, sending a 
registered 1 requires 8μs. Sending a series of eight 1’s will 



   
 

   
 

accumulate 64μs. The accumulated latency would be 76μs, 
which satisfies our timing constraint. 

During development, however, the 8-bit, 12 kHz 
transmission scheme was abandoned due to high error 
susceptibility. For example, if one bit is not transmitted, the 8-
bit block will be discarded, and since AES encryption requires 
all 128-bits to be sent correctly, one dropped block will result in 
corrupted data. We ran into such error during the original 
development, which made us transition into transmitting all 128 
bits during one cycle instead, preventing corrupted blocks as 
now if one bit is dropped, the whole entire block of 128 bits is 
dropped, removing the chance of corrupted audio. The cycle will 
be dictated by the completion of the AES encryption module. 

We evaluated the performance of the transmission module 
through two means: correctness and whether timing is met or 
not. We used a custom testbench (tx_tb.sv) to do so, checking 
whether the bit pulses are correspondent to the determined bit 
encoding scheme and whether all bits are sent before the next 
cycle starts. 

B. Reception 
The reception module of the WTF is similar in structure to 

the transmission module, but in the reverse direction. The 
reception module must run through a synchronization module 
to allow for the clock rates of separate FPGAs to be equal.  

The reception module will look first for the sync frame, 
and when that frame is detected, the module will transition 
into the capturing stage, receiving any bits transmitted by the 
transmission module, decoding it based on the bit encoding 
scheme, and build on a size-128 block before passing onto 
AES decryption. 

C. Hardware 

The WTF will have a laser circuit attached to its 
transmission output. This laser, however, only operates 
effectively using 5V, which means that there must be a 
method to translate the 3.3V output from the FPGA’s PMOD 
headers to 5V. To achieve this, a non-inverting gain 
operational amplifier circuit is used to increase the signal 
voltage to the rail voltage of 5V. This would ensure the output 
of the FPGA meets the voltage requirements for the laser 
while simultaneously allowing its voltage to reach 5V. 

      To capture the laser, a phototransistor is used. The 
phototransistor, however, does not output a strong enough 
signal to pass back into the FPGA. A transimpedance 
amplifier is used to amplify the signal received to a relative 
level, which then gets passed through a comparator to translate 
it to a 3.3V-peak square wave to input back to the FPGA. 

     The laser and phototransistor determined how fast each bit 
pulse can be. The phototransistor only performed at an 
acceptable level at below 200 kHz, which was why we 
determined the timings for the bit encoding, with the fastest 
signal being 166 kHz. 

The laser circuit works in theory and in testing, 
however, under certain conditions: the phototransistor must be 
positioned at the right position to output a stable waveform, 
which proved to be difficult especially with transportation. 
Since the waveform resulting from the phototransistor is not 
stable, the comparator voltage must be adjusted as well, which 
means that the performance will not be equal across test runs. 
At the end, it was better in practice to simulate the effects of 
the laser-photodiode combination with a wire to avoid any 
disturbances resulting from the photodiode. In testing, the 
laser circuit does work, but in practice, it is better to use a 
wire. 

 

  



   
 

   
 

V. _ 
  

Figure 6: System block diagram 
 

Figure 7: Laser hardware 
 

V. SYSTEM DIAGRAMS 



   
 

   
 

VI. AUTHOR CONTRIBUTIONS 

Keawe Mann handled all of AES, along with block 
creation. He, like the rest of the group, also worked on 
testing, the preliminary report, the presentation, the final 
report, and the project video. 

Khoa Huynh was responsible for designing the FIR 
and Decimation module, including tuning parameters 
related to the modules. He also worked alongside Khang 
to design the bit encoding scheme for the transmission 
and reception module. Likewise, he also worked on the 
testing, preliminary report, the presentation, the final 
report, and the project video. 

Khang Le was responsible for developing the 
transmission and reception modules, both hardware and 

software-wise, which includes the laser capturing 
circuitry. As part of the group, he worked on testing and 
integrating the modules and drafting the project 
deliverables (preliminary report, presentation, final report, 
and final video). 
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