

Walkie Talkie FPGA
Keawe Mann

Department of EECS
Massachusetts Institute of Technology

Cambridge, MA, U.S.
keawem@mit.edu

Khang Le
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, U.S.

khangle@mit.edu

Khoa Huynh
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, U.S.
khoah_24@mit.edu

Abstract—We present a design for our Walkie-Talkie on FPGA
(WTF). A WTF is implemented using the following key
components: an FPGA, microphone, audio output device (i.e.,
headphones, earbuds, or a speaker), laser (or wire), and
phototransistor, among others. Our device encrypts all
transmissions using AES, the industry standard encryption
method for encrypted radios, including those used by the U.S.
government.

I. SYSTEM OVERVIEW
A WTF’s laser is used to transmit audio, while the

phototransistor is used to receive audio. A WTF is capable of
both sending and receiving audio, given the necessary hardware.
No additional hardware is necessary for audio input, as each
FPGA comes with a microphone of sufficient quality. Like
audio input, audio output is quite simple–each FPGA has a
headphone jack. A speaker is hooked up to this headphone jack.

The laser and phototransistor are on an external circuit
connected to the FPGA. This circuit uses comparators as
necessary to ensure a clean digital signal. This laser and
phototransistor circuit can also be replaced by a simple wire
connecting the two FPGAs.

 FIR and decimation modules are used to perform low pass
filtering on the microphone audio. The FIR is a 30-tap filter, and
the decimation module decimates the audio samples by a factor
of 4. Having four stages of FIR and decimation allows us to
achieve a clean audio signal devoid of high frequency content.

 The whole system connects as follows: audio is received
through the microphone, processed, filtered, and encrypted by
the FPGA, which then transmits the data through the laser. The
receiving FPGA’s phototransistor receives the data, which is
processed, decrypted, then sent to the audio output port.

II. SIGNAL PROCESSING

A. Low-Pass Filter and Decimation
The incoming audio information is a 3 Msps stream at one

bit depth. Since human speech has frequency content ranging up
to approximately 6000 Hz, we process information up to that
frequency. The main motivation for this is to reduce resource
usage, cost of computation, and aliasing. To do this, we need to
put the audio data through a low pass filter and down sample.
There are various approaches to achieve this—as a starting
point, we decided to put this audio information through a
multistage FIR low pass filter and decimation. For reliable low
pass filtering and down sampling, we perform four rounds of

FIR filtering and decimation. The FIR module (fir.sv) processes
a history of a weighted sum of the 30 most recent data points and
carefully picked coefficients, which can be tuned for higher
filtering fidelity. The output is then passed into decimate.sv,
where it will be down sampled by a factor of 4. The resulting
signal is a data stream of 12k samples per second at 8-bit depth,
which will be used in the encryption module. The FIR filter is
implemented through a finite state machine, consisting of 3
states (IDLE, SUM_ADD, and DONE). The module begins in
the IDLE state. It waits for a single cycle indicator that a sample
of valid data is ready for processing. Upon receiving this signal,
the module proceeds to the SUM_ADD stage. In this stage, a
series multiply and addition is performed on the signal with its
corresponding coefficients over 30 clock cycles, a trivial number
of cycles compared to the number of clock cycles in 12 KHz
(~8000 cycles). Once the calculation is finished, the module
proceeds to the DONE state. In this stage, the module produces
a single cycle valid out signal and outputs the valid data. The
module then transitions back to the IDLE state and repeats. The
FIR outputs will later be used by the decimation module for
down sampling.

Figure 1: Basic structure of FIR filter [1]

We use the test bench (fir_tb.sv) for testing/evaluating the

efficacy of the low pass filter and decimation. The test bench
generates sinusoidal signal(s) and feeds it through the low pass
filter and decimator. We developed a system for generating a
reliable sine wave `slow_sine`. The generated sine wave is then
converted to a PDM signal, which will be used as the input to
the four stages of low pass filtering and decimation. An example
of the simulation is shown in figure 3 below.

 Figure 2: New test bench result for lowpass filtering.

Upon observing the test bench after trying different types of
inputs, we can visually confirm that the LPF is working as
expected. We further verify this fact by running this system on
the FPGA. We were able to hear decent audio quality from the
output of our multistage filters.

Some common issues that occurred while implementing the
filtering and decimation module are bit growth and the high
level of amplification to the output. The FIR module involves
many rounds multiplication and addition. Because of this, the
intermediate calculations may be subject to bit growth. We
addressed this issue by using a larger buffer to store the
intermediate result. In addition, we noticed that the output of
each FIR and decimation adds additional gain to the signal. We
addressed this issue by scaling down the output signal before
feeding it into the next stage.

B. Delta-Sigma Modulator
At this stage of the pipeline, high-frequency noise is

removed from the signal through the low-pass filter. However,
there is still some residual quantization noise resulting from the
digitization process upstream. The WTF employs a first-order
delta-sigma modulator to reduce the effects of such noise.

The delta-sigma modulator samples the signal at a high
sampling rate, much higher than the 12,000 Hz dictated by the
Nyquist-Shannon sampling theorem, which ensures a more
accurate signal. In a traditional delta-sigma modulator, the
signal goes through a process called noise shaping, which
corrects any quantization errors from the signal and shifts
quantization noise to a higher frequency range outside of the
targeted range. The quantization noise, in practice, will be
removed downstream during the demodulation process where
the digital signal is converted back to analog.

Figure 3: First-order delta-sigma modulator diagram

III. ENCRYPTION
The WTFs use the Advanced Encryption Standard, or AES,

to encrypt communications. AES is widely used. iMessage uses
it to encrypt text messages, and the military uses it in encrypted
radios.

A. Advanced Encryption Standard (AES)
There are multiple versions of AES, which differ based upon

the size of their input keys. We chose AES-128, where the key
is 128 bits.

To encrypt, a series of transformations are applied to the
provided block. There are four main transformations: substitute
bytes, mix rows, mix columns, and add round key.

 Byte substitution, much like the name implies, replaces each
byte in the block with another. The replacement block is
determined by indexing into a two-dimensional 16x16 table with
the replacement blocks. The most significant nibble of the byte
being replaced determines the row, while the least significant
nibble determines the column. For example, a byte of value
0x6F would be replaced by the byte stored in the table at row 6,
column F. The total table size is 2048 bits (256 entries of 8 bits
each). Given the size of the table and to allow for future
flexibility, it is stored as a read-only table in BRAM (effectively
BROM). Accessing BRAM introduces an additional two clock
cycle delay.

 The second transformation—mix rows—shifts each row
leftwards by its row number. A row is a collection of four bytes.
The topmost row (row 0) is shifted left by 0 bytes, the next row
(row 1) is shifted by 1 byte, row 2 is shifted by 2 bytes, and so
on.

 The mix columns transformation is effectively a matrix
multiplication, where the block is multiplied by a given matrix.
However, addition and multiplication are carried out according
to the rules of finite field (Galois Field) arithmetic. This is
accomplished on the FPGA using various bit operations.

 The final transformation, add round key, puts the provided
key to use. Ten additional keys are generated from the initial
128-bit key, resulting in a total of 11 keys. Each add round key
transformation uses one of these keys, which are generated
according to the key expansion protocol. The add round key
transformation itself is just a bitwise XOR between the block
and key.

 Decryption is extremely similar to encryption, but the order
of the transformations is changed. Additionally, the substitute
bytes, mix rows, and mix columns transformations are the
inverses of the encryption transformations. For example, while
mix rows (used in encryption) shifts the rows to the left, the
inverse mix rows operation (used in decryption) shifts the rows
to the right.

 AES protocol specifies that ten rounds of transformations be
applied for both encryption and decryption, with each round
using some combination of substitute bytes, mix rows, mix
columns, and add round key (or the corresponding inverse
transformation, in the case of decryption). Carrying out all of
these transformations requires a fair amount of clock cycles, but
this is no cause for concern.

 Each transformation is implemented in its own module.
These transformation modules are connected together in a
module that carries out a round of several transformations—we
call this the round module. Finally, the highest-level modules
(one for encryption and one for decryption) carry out multiple

rounds using the relevant round module, plus some additional
Verilog implementing the rest of the AES protocol. Ultimately,
this allows us to encrypt a block with a single call to the
encryption module and to decrypt a block with a single call to
the decryption module. Both the encryption and decryption
modules take in a block and a key. In order for decryption to
reverse the results of encryption, both the encryption and
decryption modules must be passed the same key.

 The figure below is a simplified representation of how the
modules fit together. At the bottom, we have the basic
transformations. In the middle, the encryption round module
combines these basic transformations together to form an AES
encryption round. At the top, the encryption module uses the
encryption round module, plus some additional logic to carry out
the entire encryption. The decryption hierarchy is similar.

Figure 4: A simplified representation of how the various

modules fit together to form the encryption module.

 The output of the signal processing module/low pass filter is
8 bits at 12 kHz (size conversion between modules is discussed
in the next section). The blocking module input is,
correspondingly, of width 8 with an output of 128 bits. This
implies that the output frequency of the blocking module is
approximately 16 times (128 / 8) lower than the throughput of
the filter. This means the blocking module output frequency is
0.75kHz (12 kHz / 16). The FPGA’s clock runs at approximately
98 MHz. With this in mind, the encryption and decryption
module scan take up to ~130,000 clock cycles (98 MHz / 0.75
kHz) without creating a bottleneck. The encryption and
decryption modules are far faster than this. Each module finishes
in under 8000 nanoseconds, or approximately 800 clock cycles.
It’s worth mentioning that these operations could be sped up, but
this was not necessary for our project.

B. Blocking
As previously mentioned, our implementation of AES has an

input size of 128 bits; output is also 128 bits. With this in mind,
we have two blocking modules, creation and destruction, to
handle input and output size conversion. The block creation
module takes the 8-bit/1 byte output from the previous module
(which handles signal processing and filtering) and gathers 16
of them to create a single 128-bit block. Similarly, the block
destruction module takes the 128-bit output of the decryption
module and breaks it up into individual bytes. Block creation
precedes encryption, while block destruction follows
decryption.

C. Timing
Timing is, perhaps surprisingly, not too much of an issue.

Our system effectively outputs a byte of data 12,000 times a
second. In other words, it moves bytes at 12 kHz. All of our
modules can easily finish within a 12 kHz clock cycle. This
allows us to simply wire all of our modules together and retrieve
data at a 12 kHz frequency.

IV. TRANSMISSION AND RECEPTION

A. Transmission
Once the audio information has been filtered and processed,

it will be transmitted out to other WTF devices. We have
decided to transmit this information ideally through a laser, but
during testing, the laser-phototransistor combination did not
yield enough response time to accommodate our bit encoding
scheme, which meant that we had to transition back into
transmission through wire. To achieve a robust transmission
and reception procedure, we needed to establish a
communication standard between the WTF devices. We
decided to take inspiration from the IR transmission protocol of
lab 7, which contains a sync signal, followed by a series of
patterns for sending a 1 or 0. We have established a finite state
machine with well-defined transitions and parameterized
timing and thresholds that associate to the patterns specific to
the protocol. The following figure demonstrates our determined
timings for the bit encoding scheme.

Figure 5: Bit encoding scheme

As seen in figure 4, before a WTF transmits, it must send a

sync frame, which begins with a 8μs of logic low followed by
8μs of logic high. Once that sync message has been established,
the WTF starts sending out the pattern from the bit encoding
scheme. This scheme was designed to be fast enough to convey
at least 12,000 samples at 8-bit depth originally. Considering we
need to convey 8 bits at 12khz, we need to transmit 96,000 bits
per second. Effectively, this specification requires us to send at
least 8 bits in 1/12KHz = 83μs. Let’s do some quick evaluation
of this system. Suppose the transmit module needs to send out a
value of 8’hFF, using the revised bit encoding scheme. The sync
frame requires 12μs. For the sending procedure, sending a
registered 1 requires 8μs. Sending a series of eight 1’s will

accumulate 64μs. The accumulated latency would be 76μs,
which satisfies our timing constraint.

During development, however, the 8-bit, 12 kHz
transmission scheme was abandoned due to high error
susceptibility. For example, if one bit is not transmitted, the 8-
bit block will be discarded, and since AES encryption requires
all 128-bits to be sent correctly, one dropped block will result in
corrupted data. We ran into such error during the original
development, which made us transition into transmitting all 128
bits during one cycle instead, preventing corrupted blocks as
now if one bit is dropped, the whole entire block of 128 bits is
dropped, removing the chance of corrupted audio. The cycle will
be dictated by the completion of the AES encryption module.

We evaluated the performance of the transmission module
through two means: correctness and whether timing is met or
not. We used a custom testbench (tx_tb.sv) to do so, checking
whether the bit pulses are correspondent to the determined bit
encoding scheme and whether all bits are sent before the next
cycle starts.

B. Reception
The reception module of the WTF is similar in structure to

the transmission module, but in the reverse direction. The
reception module must run through a synchronization module
to allow for the clock rates of separate FPGAs to be equal.

The reception module will look first for the sync frame,
and when that frame is detected, the module will transition
into the capturing stage, receiving any bits transmitted by the
transmission module, decoding it based on the bit encoding
scheme, and build on a size-128 block before passing onto
AES decryption.

C. Hardware

The WTF will have a laser circuit attached to its
transmission output. This laser, however, only operates
effectively using 5V, which means that there must be a
method to translate the 3.3V output from the FPGA’s PMOD
headers to 5V. To achieve this, a non-inverting gain
operational amplifier circuit is used to increase the signal
voltage to the rail voltage of 5V. This would ensure the output
of the FPGA meets the voltage requirements for the laser
while simultaneously allowing its voltage to reach 5V.

 To capture the laser, a phototransistor is used. The
phototransistor, however, does not output a strong enough
signal to pass back into the FPGA. A transimpedance
amplifier is used to amplify the signal received to a relative
level, which then gets passed through a comparator to translate
it to a 3.3V-peak square wave to input back to the FPGA.

 The laser and phototransistor determined how fast each bit
pulse can be. The phototransistor only performed at an
acceptable level at below 200 kHz, which was why we
determined the timings for the bit encoding, with the fastest
signal being 166 kHz.

The laser circuit works in theory and in testing,
however, under certain conditions: the phototransistor must be
positioned at the right position to output a stable waveform,
which proved to be difficult especially with transportation.
Since the waveform resulting from the phototransistor is not
stable, the comparator voltage must be adjusted as well, which
means that the performance will not be equal across test runs.
At the end, it was better in practice to simulate the effects of
the laser-photodiode combination with a wire to avoid any
disturbances resulting from the photodiode. In testing, the
laser circuit does work, but in practice, it is better to use a
wire.

V. _

Figure 6: System block diagram

Figure 7: Laser hardware

V. SYSTEM DIAGRAMS

VI. AUTHOR CONTRIBUTIONS

Keawe Mann handled all of AES, along with block
creation. He, like the rest of the group, also worked on
testing, the preliminary report, the presentation, the final
report, and the project video.

Khoa Huynh was responsible for designing the FIR
and Decimation module, including tuning parameters
related to the modules. He also worked alongside Khang
to design the bit encoding scheme for the transmission
and reception module. Likewise, he also worked on the
testing, preliminary report, the presentation, the final
report, and the project video.

Khang Le was responsible for developing the
transmission and reception modules, both hardware and

software-wise, which includes the laser capturing
circuitry. As part of the group, he worked on testing and
integrating the modules and drafting the project
deliverables (preliminary report, presentation, final report,
and final video).

REFERENCES

[1] W. Knitter, “DSP for FPGA: Simple FIR Filter in Verilog”. Hackster.io,
March 2021.

[2] “An Introduction to Delta Sigma Converters”. Beis.de, August 2007.
[3] Source code: https://github.com/KhoaHuynh02/WTF-repo

