
Mirror Me
6.205 Final Project - Final Report

Janette (Jan) Park
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
janp@mit.edu

Thienan Nguyen
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
thienann@mit.edu

Abstract—We propose a robotic arm system, implemented on
a NEXYS 4 DDR FPGA, to mimic the movement of a human
arm in front of two orthogonal cameras. The system is run at
a high system speed of 65 MHz, allowing the image processing
and angle calculations to be done quickly for minimum response
delay between the arm and the robot arm. The design consists of
the camera data, image processing, angle calculation of each arm
joint, and the mechanical driver of the robotic arm. We discuss
the design of the system, the performance, testing and debugging
methods, and any potential problems or improvements.

Index Terms—Field Programmable Gate Arrays, Robotic Arm,
Blob Detection, CORDIC

I. INTRODUCTION

The Mirror Me system consists of two orthogonal cameras
facing the user’s arm, and an addressable mechanical arm, both
displayed in Fig. 1. The person’s arm has its finger, knuckle,
wrist joints and forearm each covered in pink patches. As the
person moves their arm, the robot arm moves to mimic the
person’s movement by copying the angle formed at each joint.

Fig. 1. The left image displays the robotic arm and its power source. The
right image shows the human arm with its pink patches.

In order to achieve the goal, our system has two main
components: an image processing component and a computa-
tional component. The image processing involves dual camera
operation and joint detection. The computational component,
directly following the image processing, calculates the angles
at each joint and generates a signal to drive the mechanical

arm. Fig. 2 shows a block diagram of the high level compo-
nents, Fig. 3 shows a block diagram of the top level flow of
information, and the remainder of the paper will elaborate on
each component, our design choices, and the trade-offs.

Our design’s code base can be viewed here:
https://github.com/janpark49/6205 mirror me.

Fig. 2. High Level Components of the Mirror Me Design

II. GENERAL OVERVIEW

The robot has three joints to move; its shoulder, elbow, and
wrist joints. The robot’s wrist joint angle is defined by the
angle formed by the human’s finger, knuckle, and wrist. The
robot’s elbow joint angle is defined by the angle formed by
the human’s knuckle, wrist, and forearm. The robot’s shoulder
joint angle is defined by the angle formed by the human’s
wrist, forearm, and the horizontal axis. Thus, the system must
find the locations of each of the four human joints in each
camera frame, associate these coordinates to the correct joint,
extrapolate the two 2D coordinates into a 3D coordinate for
each joint, then calculate the angles between the joints listed
above.

A. Interesting Challenges

Both the image processing and angle calculation compo-
nents of the system are interesting problems to solve. Re-
garding image processing, since all the joints are covered in
the same pink patch, the joints are indistinguishable to the
camera. Thus, the image processing algorithm needs to not
only find the locations of each spatial conglomeration of pink,
but it also needs to associate each blob to the right joint. This
would require a calibration at the beginning to initialize each
blob location to the correct joint, then utilizing previous blob

Fig. 3. Block Diagram for Top Level

locations to associate the next frame’s blob locations to the
right joints.

Another challenge with image processing is that in the
cameras’ view, two blobs can look like one blob when adjacent
or one behind another, as shown in Fig. 4, or a blob can
disappear from the camera reading due to lighting. The system
would need to account for these situations as accurately as
possible. Another consideration to be taken is the possibility of
pink noise in the camera frame that might affect blob detection.

On the more mathematical side, angle calculation on an
FPGA is equally non-trivial. Typically, the simplest approach
to 2D angle calculations are trigonometric functions. Unfor-
tunately, trig and inverse trig functions can be quite difficult
and costly to implement on an FPGA. Arcsine and arccosine
functions do not natively exist in Verilog and must be imple-
mented with its own module. This would require extensive
uses of lookup tables to relate angles to their trig equivalent,
ultimately costing a large amount of area. In addition to large
area, utilizing inverse trig function requires division, which
may add to large overall delays as the division would be quite
large. A different approach to calculating angles would be
required, one that is neither too large in size or too slow.

Aside from trigonometric functions, another challenge with
angle calculation is extending calculations into 3D space. It
is simpler to find an angle in 2D space than an angle in 3D
space, so it is necessary to map the point in 3D space back
into the 2D Cartesian space to calculation the angle between
two vectors. To achieve this, dot products and cross products
are necessary, which are slow and heavy in calculations. This

Fig. 4. When the hand is bent and oriented as shown, both cameras read
the finger and knuckle joints as the same conglomeration of pink pixels, as
we only see three blobs for each VGA display. The left camera should have
distinct coordinates for the two joints because it sees them adjacently, while
the right camera should have similar coordinates for the two joints because
one is behind the other.

produces issues with delay and timing violations, and it is
necessary to optimize the method to function.

Fig. 5. Full Physical System Setup

B. Project Checklist

COMMITMENT - One robot arm joint responding to three
different colored patches defining one angle. This is a much
simpler problem to solve, as it eliminates the blob detection
challenges listed above since the color of the patch defines
which blob it’s associated to.

GOAL - One robot arm joint responding to three pink
colored patches defining one angle. Most of the blob detection
challenges still remain, but are less likely to cause issues since
there’s only three blobs that could overlap with one another.

STRETCH GOAL - Three robot arm joints responding to
five pink colored patches defining three angles. A working
project would show the robot arm responding to a human
arm with five patches.

UPDATE ON STRETCH GOAL - We realized that the
camera does not zoom out enough to fit five human joints in a
frame, and that the robot arm’s shoulder joint makes an angle
with respect to the horizontal surface. Thus, we modified our
stretch goal to still drive three robot arm joints, but responding
to four pink colored patches, with the fifth necessary coordi-
nate corresponding to a point on the horizontal surface that
the bottom-most pink patch is on.

III. PHYSICAL HARDWARE AND SETUP

The full system setup is shown in Fig. 5. The physical
hardware includes:

• NEXYS 4 DDR FPGA
The FPGA runs on 65 MHz for all modules.

• Human arm
The human arm is in a well-lit room with dark-colored
surroundings. The finger, knuckle, wrist joints, and mid
forearm are covered in pink patches. The first three joints’
patches pink fabric are sewed onto a dark glove, around
1-1.5 inches thick. The mid forearm patch is a 1.5 inch

thick pink fabric that must be wrapped around a long
sleeved shirt and fastened by a paper clip. The long sleeve
shirt must cover any skin between the forearm patch and
the glove to eliminate noise from skin color. The human
arm setup is shown in Fig. 2

• Two cameras
The two cameras connect to JA, JB (Camera 1), and
JC, JD (Camera 2) on the NEXYS4 DDR FPGA and
are positioned to both face the human arm at orthogonal
angles.
The camera and NEXYS 4 DDR FPGA sit on a cardboard
setup with two slots for the cameras 22 inches away from
the intersection of where the cameras point to, as shown
in Fig. 6.

Fig. 6. Camera System Setup

• Robotic arm
Each joint on the mechanical arm has a Servos motor
which is driven with 5 Volts and 2 Amps from an
external power supply and addressed with a 50 Hz PWM
signal from the FPGA pins xa p[2:0], as shown in Fig 7.
The PWM signal indicates the joint’s angle, with a pulse
of 1 ms for 0 degrees and 2 ms for 180 degrees (pulse
length increases linearly). The operating voltage range
for the motor is between 4.8 V and 6 V. No external
circuitry is required.

IV. IMAGE PROCESSING

The data from the two cameras are individually processed to
find the locations of the four pink patches. Each camera has
an instance of the Image Processing module, which outputs
an (h, v) coordinate pair for each joint blob. The system
first calibrates, on a button click, the initial locations of the
joints when the arm is vertically extended, then finds the next
locations for each joint given the previous locations. Thus,
the image processing system follows the flow of information
in the block diagram in Fig. 8.

Fig. 7. Robot Setup

Throughout this section, we define hcount and vcount to
be 11 bit and 10 bit inputs indicating the current h and v
coordinates from VGA Gen in Top Level, respectively.

A. Initial Camera Data

The cameras send their pixel data into the NEXYS 4
DDR FPGA, and the pixel information are appropriately
rotated, mirrored, scaled, and stored into a BRAM for further
processing, using submodules from labs 3-4. Each camera
frame reads left to right, then top to bottom, with dimensions
240x320. The pixels then undergo a masking filter after
converting the pixel data into YCrCb, which represents each
pixel as logic High if the original pixel reaches a threshold
of chrominance red, and a logic Low otherwise, called mask.

B. Calibrate Blobs

The button btnu indicates a cue for calibration in the
next full video frame. The human arm must be vertically
positioned in front of the two cameras when calibrating, with
no two blobs connecting, as shown in Fig. 9. The submodule
iterates over the mask value at each coordinate, reading left to
right then top to bottom with hcount and vcount inputs. The
submodule then identifies a rectangular box that encloses each
blob by roughly finding the beginning and end coordinates
of a conglomeration of masked pixels. It then outputs the
coordinates of the centers of the four boxes for a single clock
cycle at the end of the video frame.

On a lower level, the algorithm works as follows, with
everything in sequential logic:

Important variables:
• data in - Single bit input; High if the pixel at hcount,

vcount is pink, low otherwise.
• data cache - 3 bit storage of the most recent 3 data in,

resets to 3’b0 when hcount = 0.
• is colored - Single bit indicating whether that row of

pixels has had masked pixels yet. Resets to Low 1’b0 at
hcount = 0, or the beginning of each row.

• box num - Four bit one-hot encoding indicating which
blob the module is currently looking for.

• box made - Single bit indicating whether a box has been
made yet for the current box num blob.

• (tlh X, tlv X) - Top left coordinates of the X’th blob.
• (brh X, brv X) - Bottom right coordinates of the X’th

blob.
Pseudocode and Explanation:

If reset or calibrate:
(tlh_X, tlv_X) = (11’d240, 10’d320)
(brh_X, brv_X) = (0, 0)
box_num = first blob
is_colored, data_cache, box_made = 0

The module keeps track of the top left and the bottom right
(h, v) coordinates for each of the four blobs, starting with the
top blob. When the user resets or calibrates the system, all
values are initialized, and we tart looking at the first blob.

If (calibrate called and
hcount = 11’1024 and vcount = 10’d768):
Start calibrating the next clock cycle

If there’s a calibration cue, the module waits until the next
frame to start the actual calibration.

If calibrating:
Pipeline hcount and vcount
If hcount = 1, reset data_cache.
Otherwise, update data_cache

Once actually calibrating, the data cache updates, or resets if
in a new row. Hcount and vcount are also pipelined once to
account for the sequential data cache update.

If calibrating:
If data_cache = 3’b111 and ˜is_colored:

If box_num = blob X:
If hcount < tlh_X:

tlh_X = hcount
If ˜box_made:

box_made = 1
tlv_X = vcount

brv_X = vcount

If there have been 3 pink pixels in a row horizontally, it’s likely
that this pixel is a part of a blob rather than noise. If it’s the
first pink pixel of the row (is colored) and its h coordinate

Fig. 8. Block Diagram for Image Processing

is not yet enclosed in the blob’s current box, then we update
the top left h coordinate. If this is the first pixel in this box,
we also know the top left v coordinate is vcount. Since we
go top to bottom, we know vcount updates the bottom right v
coordinate too.

If calibrating:
If data_cache = 3’b000:

If is_colored for blob X:
is_colored = 0
If hcount > brh_X:

brh_X = hcount

If there are 3 non-pink pixels in a row horizontally, it is likely
we’re not in a blob. If we are just getting out of a blob and
know that hcount updates the bottom right h coordinate.

If data_cache = 3’b000:
If box_made for blob X:

If vcount - brv_X > 5:
box_made = 0;
If brv_1 - tlv_1 <= 5

reset tl and br coords
for X to initial vals

Otherwise:

Update to box_num

This part checks whether we should move on to the next
blob or discard the current blob if it exists. We only consider
moving on or discarding a blob if we’ve had 5 rows of no pink
pixels. If so, we check whether the height of the current blob
is too small to be considered a valid blob. If it’s too small, it’s
likely noise, and we can reset the blob’s enclosing coordinates
to recalculate with the following pixels. Otherwise, we can
move on to finding the next blob.

If hcount = 1024 and vcount = 768:
Output valid = 1
Output h_X = avg tlh_X and brh_X
Output v_X = avg tlv_X and brv_X
No longer calibrating

If output valid == 1:
Output valid = 0
Reset all values

Once we’ve seen an entire camera frame, we output the
coordinates of the center of each blob box we created for one
clock cycle.

Fig. 9. Calibration Setup

C. Separate Pixels

At each subsequent camera frame, the masked pixels are
separated between the four blobs based on the previous
frame’s coordinates. This submodule takes the inputs a single
bit indicating whether that pixel is pink or not and the
previous (h, v) coordinates of each of the four blobs. For each
pink pixel, the submodule calculates the distance squared
between the pixel’s coordinates and each of the previous
CoM coordinates. The pixel should be associated with the
joint that has the shortest calculated distance squared. The
submodule outputs a one-hot encoding indicating which blob
the pixel is a part of, with 4’b0001 being blob 1 (fingers),
4’b1000 being blob 4 (forearm), and 4’b0000 if the pixel is
not masked or not a part of any blob. This submodule has
zero latency (fully combinational logic).

This algorithm to reassign pixels to their closest previous
blob can allow outlier noise pixels to skew subsequent CoM
calculations. A version was tested where the pixels were only
assigned to its blob if both the h and v distances between
the pixel and blob CoM are less than a threshold, but this
skewed our CoM calculations by eliminating pixels that are
part of large blobs, making some large blobs have a CoM at
its edge. Raising the threshold to safely include all pixels in
large blobs ended up not showing a significant enough effect
on eliminating outliers, so the final system does not perform
this check.

D. Center of Mass
The image processing module has four instances of the

Center of Mass submodule, one for each blob. If the blob’s
corresponding bit from the Separate Pixels output is high,
it contributes to the blob’s next center of mass coordinate
calculation. The submodule sums all the h and v coordinates
of its blob’s pixels, then divides it by the number of pixels
at the end of a camera frame. The division occurs with a
Divisor submodule, which has a variable latency depending
on the size of division and outputs a valid CoM coordinate
until the next CoM calculation starts.

E. Updating Coordinates in Image Processing Module
The Image Processing module has registers for the current

joint coordinates and the previous joint coordinates. After a
calibration, the resulting calibration coordinates are stored in
both the current and previous joint coordinates for the next
frame’s coordinate calculations. After calibration is completed,
the module sequentially updates its previous CoM coordinates
with its current coordinates.

When the human arm bends in a way such that a blob no
longer shows any masked pixels in the camera (due to lighting
or being covered), the system should still preserve it’s location
for when the blob reappears in a future frame. In other words,
if there are no coordinates being passed into a Center of Mass
instance for a frame, then the blob’s coordinates should not
update. Examples of these situations are shown earlier in Fig.
4.

Blobs that fade out are also more susceptible to being
skewed by noise, since nearby outliers hold greater weight
in the CoM calculations. In these situations, the newly calcu-
lated coordinates would be a large distance from the current
coordinates. Thus, the module combinationally calculates the
h and v distances between a new CoM and current CoM, and
only updates the current CoM if the h and v distances are
small enough, or less than 40.

The Image Processing module outputs five coordinates;
four being the CoM coordinates of the four blobs, and the
fifth being (0, v of 4th blob). This allows the bottom joint of
the robot arm to be calculated as the angle between the 4th
blob and the horizontal plane.

F. Re-Calibration in Image Processing Module
A problem posed by this algorithm is that when the hand

bends such that one blob is directly behind another blob in
one camera’s view, that camera cannot differentiate between
the two blobs when the re-emerge as two separate blobs. This
can cause the coordinates of two blobs to swap. After testing
different scenarios, we saw that the forearm blob does not
have this issue given the physiology of a human arm and the
frame that the cameras can capture. Thus, the system needs
to re-calibrate the CoM coordinates for the first three blobs
when the coordinates get swapped between blobs.

Note that the two cameras share the same vertical v axis,
so we know that two coordinates have been swapped if the
vertical ordering of blobs in one camera is different than
the vertical ordering of blobs in the other camera. Also
note that given our algorithm, even if two CoM coordinates
are swapped, the two coordinates are still coordinates of an
existing blob, just not the correct blob assignment, so all
we need to do is swap the coordinate values. This requires
comparing the two camera’s Image Processing outputs in the
Top Level, then passing in a bit back into Image Processing
to indicate whether to re-calibrate, and information on how to
re-calibrate.

We orient and move our human arm in the physical
system so that Camera 2 will never have one blob hiding
behind another blob; Camera 2 sees more of the side of
the hand and less of the palm, as we see in Fig. 4. Then,
Camera 2 should never have the problem listed above, so
its vertical CoM ordering should always be correct, and we
can re-calibrate Camera 1’s blobs based on Camera 2’s blobs
coordinates. The vertical ordering of camera 2 is the most
accurate representation of the actual blobs’ vertical ordering
when the arm is in a vertical position, or if blob1 is above
blob2, above blob3, above blob4. Thus, in Top Level, we
do a combinational loop checking if both Image Processing
values are valid, and if Camera 2’s blobs’ vertical coordinates
are ordered blob1, blob2, blob3 top to bottom. If so, we
check the order of Camera 1’s blobs’ vertical coordinates.
If the order is incorrect, we send a High 1’b1 into Camera
1’s Image Processing instance for re-calibration, as well as a
number indicating which blobs’ CoM’s need to be switched
(Camera 2’s re-calibration is hardwired to Low). Then, in
Camera 1’s Image Processing module, if recal is High, all the
necessary current and previous coordinates are appropriately
swapped for the next clock cycle.

Fig. 10. VGA Display of Both Cameras and Their Blob CoMs

G. Testing and Debugging

The system displays both of the cameras’ masked frame and
crosshairs at each blob’s coordinates on a monitor via VGA
connections, as seen in Fig. X. Camera 2 is displayed on the
left, and Camera 1 is displayed on the right (750 pixels to the
right). To do this, we use a BRAM to store the mask values
of Camera 1, then read them out 750 hcount pixels later.

H. Trade Offs with Other Algorithms

I originally considered a different approach for separating
pixels into the four different blobs. Instead of assigning each
pixel to its nearest blob, I considered detecting the locations
of conglomerations of blobs in each frame, similar to the
Calibrate Blobs module, then assigning each blob’s center
to the closest previous coordinates. However, this approach
cannot distinguish between the two situations shown earlier in
Fig. 4. Two blobs that are adjacent would result in the same
output as two blobs where one is hiding behind the other, and it
poses a challenging problem of obtaining accurate coordinates
from a merged blob that represents two joints. The algorithm
we decided on is more accurate for these situations because
it associates each pink pixel to a proper joint, so two merged
blobs can still be split accurately rather speculating how to
split a conglomeration of pixels.

V. ANGLE CALCULATION

From our image processing system, we are able to identify
the center of mass points on a given frame, however, we cannot
directly interface the mechanical arm with the coordinate
points. In order to translate the center of mass coordinate
points from the cameras into angles that are programmed
onto the robotic arm, we developed the joint angle calculation
(JANC) module. The JANC module mainly does the bulk
of the calculations but utilizes instances of two submodules
to assist in calculations: the root module and the CORDIC
module. The high level explanation of how the JANC module
calculates the area is given in the following section with later
section elaborating further.

|A| ∗ |B| ∗ cos(θ) = A ·B (1)

|A| ∗ |B| ∗ sin(θ) = |A×B| (2)

sin(θ)/ cos(θ) = tan(θ) = |A×B|/(A ·B) (3)

θ = arctan(|A×B|/(A ·B)) (4)

The general idea given in eq. (4), which relates theta to
two vectors. Knowing that the dot product is equivalent to the
product of both vectors and the cosine of the angle between
them (1), and that cross product is the product with the
sine of the angle between the vectors (2), a formula can be
derived for the tangent of the angle between the vectors (3)
and subsequently the angle itself. This is particular useful as
representing the angle as an arctangent of a cross product

Fig. 11. Block Diagram for Angle Calculation and Mechanical Response

and a dot product simplifies the calculations the FPGA must
preform. Dot products are a sum of products, which can
efficiently calculated on the FPGA. The magnitude of the cross
product is similar to the dot product but requires the use of
the root module, which will be discussed later, to take the
square root. Arctangent is a particular special case as it can
be estimated using the CORDIC algorithm and the CORDIC
module, reducing the size of the lookup table significantly.

A. JANC Setup

The JANC module has a one bit validin input and five 3D
vector inputs each with a bitwidth of 11. Before the outputs
from the image processing system can be used in the JANC
module, it must be slightly altered since the system requires
two cameras. Firstly, the valid bits from each camera must be
passed through an AND gate, ensuring that the module only
starts when both frames are processed and ready. Each instance
of the image processing system will output vertical counts and
horizontal counts, which represents the (x, y) coordinates of
the center of mass points. Each camera produces its own set of
five center of mass coordinates, which are concatenated with
the other camera’s outputs to extrapolate the point from 2D
to 3D space. Since the cameras are orthogonal to each other,
they share the same height value allowing for concatenation
between the center of mass coordinates.

(x, y) + (z, y) −→ (x, V − y,H − z) (5)

The full translation is given in eq. (5) where (x, y) represents
a coordinate pair on camera A and (z, y) represents the same
coordinate pair on camera B. The values V and H are the

vertical and horizontal dimensions of the frame respectively.
Both of the cameras have origins at the top left of the frame
so to translate to 3D space where each axis originate from
the same point, y must map to V - y while z must map to H
- z. In our design, the dimensions of our frame is 240x320,
translating to H = 240 pixels and V = 320 pixels.

B. JANC: IDLE

Once valid 3D center of mass coordinate points are received,
the Joint Angle Calculation module is able to proceed with
its calculation. JANC uses a finite state machine to con-
trol its operation, with four main states of operation being:
IDLE, VECTORPRODUCTS, ROOTCALC, and CORDIC.
The module begins on and resets to IDLE, where it waits for a
high of the validin input wire, signaling a set of new coordinate
points. For the remainder of this paper, we will refer to these
set of coordinate points as vectors on our 3D representation
of space, with each incoming vector originating from our set
origin. Upon receiving this signal, the module will reset from
any previous calculations, store the difference of each pair of
vectors, which we will refer to as joint vectors, into registers,
and progress the state to VECTORPRODUCTS.

If validin:
Repeat for all coordinate pairs:
vector21 = COM_point1 - COM_point2

state = VECTORPRODUCTS

Recall that in our coordinate system, every vector is relative
to a set origin, so we must make each vector relative to their
respective joint by translating the vectors such that two vectors

Fig. 12. 2D Translation Example

Fig. 13. JANC FSM Diagram

will originate from the third vector, forming the angle we are
looking for. A 2D example is shown in Fig. 12, where the
angle of interest, joint angle at B, is the angle between vector
AB and vector CB. Similarly, our system will take a set of 3D
vectors and translate it.

C. JANC: VECTORPRODUCTS

The VECTORPRODUCTS states serves as an intermediary
state to calculate dot products and cross products of the two
vectors. During this state, the dot product and cross product
for all of the angles are calculated in parallel with a maximum
of three multiplication operations in series. The dot product is
calculated completely while the cross products are calculated
for each direction. The state transitions to ROOTCALC.

dot = vec[0]² + vec[1] ˆ2 = vec[2] ˆ2
cross[k] = vec[i] * vec[j] - vec[j] * vec[i]

Fig. 14. Three Cycle CORDIC Example

state = ROOTCALC
vectors abbreviated to vec

D. JANC: ROOTCALC

In the ROOTCALC state, the cross product from the pre-
vious state is taken. The magnitude of the cross product is
needed for the CORDIC module so this state calculates the
y value that will be passed into the CORDIC module. This
is done over a number of cycles first by taking the sum of
products of each unit vector in the cross product.

crossmagnitudesquared =
cross[k]² + cross[i]² + cross[j]²

After getting the squared magnitude of the cross product, it
is sent to the ROOT module along with a validin signal. The
ROOT module is discussed in further detail in the following
section. The ROOT module acts as a minor finite state ma-
chine, which the JANC module must wait for all three square
roots to be calculated to continue. Once all cross products
magnitudes have been calculated, the module transitions to
the CORDIC state.

E. JANC: CORDIC

In this state, the dot product is passed in as the x value,
the magnitude of the cross product is passed in as the y value
and a validin signal is pulsed to indicate a new calculation
request. Refering back to eq. (4), CORDIC replaces the need
for an arctan and estimates the angle. Similar to the square
root calculations, the JANC module must wait until all angle
calculations are done, at which it will output the angles and
pulse a valid out signal before resetting and return back to
IDLE. A notable detail is that due to the CORDIC algorithm

only being able to calculate angles between 0 degrees and 90
degrees, if there is an obtuse angle, which is identitfied by
have a negative dot product and x value, the JANC module
must pass in the absolute value of x. This is to calculate the
supplementary angle so that it can be subtracted from 180
degrees to get the true joint angle. Further details about the
CORDIC module and CORDIC algorithm is elaborated in later
in this paper.

VI. ROOT MODULE

To calculate the square root of a number, we developed our
own simplified integer square root calculator. The module uses
binary search to estimate the square root of a given number.
For an n-bit number, where n ¡= 32, the module will return
the square root in n/2 cycles. The module utilizes a finite state
machine with the states: IDLE, SIMPLIFY, and CALC.

Fig. 15. root module FSM Diagram

A. root: IDLE

The IDLE section is the start of a new calculation. Upon a
validin pulse, the initial value is set to the radical, the state is
set to SIMPLIFY, and the topbit set to 31. The topbit is used
in the SIMPLIFY state to reduce the number of cycles taken
for larger n values.

If (validin):
initval = radical
state = SIMPLIFY
top = 5’b31

B. root: SIMPLIFY

As the name implies, this state aims to simplify the problem
for larger bit widths. The topbit variable is slow decremented
to find the most significant bit in the rad value. Once the
MSB is located, the guess value is set to half the bitwidth
of the value. This is done due since multiplication commonly
doubles the bitwidth of a value, so by starting the guess at n/2
bits, the number of guesses is reduced by approximately n/2,
which simplifies the problem for larger n values. Along with
guess, square is set to the square of guess, stat is set to CALC,

and the variable ”next” is bit shift to the right by topbit bits.
The main use for simplifying the guessing is so that the size
of the registers used for guessing is kept small. For example,
if rad is a 32-bit integer, without simplification guess would
start at half the value of rad which is a 31 bit integer, thus the
square register would need to be at least 62-bit wide. However
with the simplification, the guess would start at 16 bits and so
square can be kept at 32-bits.

If n = topbit:n = radical bandwidth
guess = radical >>> topbit/2
square = guess * guess
next = radical >>> topbit/2 + 1

Else:
topbit = topbit - 1

C. root: CALC

Every cycle, during calculation state, the root module checks
if guess is correct by comparing square with the saved rad
value. If the square equals the rad value, then the guess is
correct, the output register root is set to the square value,
validout is pulsed for one cycle, and the state returns to IDLE.
If the guess is not correct, the next guess is calculated by
adding next if guess was too lower or subtracting next if guess
was too high. In the case that the next value is 0, the search
is exhausted and the one less than the current guess value is
returned. It is one less since we are aiming to underestimate.

If square = rad:
return guess
pulse validout
state = IDLE

Else if next = 0:
return guess - 1
pulse validout
state = IDLE

Else if (square > rad)
guess = guess - next
square = guess * guess

Else if (square < rad)
guess = guess + next
square = guess * guess

next >>> 1

VII. CORDIC ALGORITHM

The coordinate rotation digital computer, or CORDIC, al-
gorithm is an efficient way to estimate the joint angle without
having to calculate inverse trigonometric functions. The algo-
rithm takes advantage of rotations to implement binary search
to approximate the angle between a vector in 2D space and
the horizontal axis of the plane it lies on. The vector is rotated
around the origin, with each angle rotation being saved, the
sum of all angle rotations when the vector aligns with the
horizontal axis will give a reasonable approximation to the
value of the angle.

We implemented a simplified CORDIC module to estimate
the joint angles of the human arm at a given frame. For our

module, we set the max number of cycles per estimate to be
10 cycles, thus results should always come within that time
frame. The range of angles the module can calculate is from
0 degrees to 90 degrees with a worst observed accuracy of ±2
degrees. This limitation is due to how CORDIC operates as the
y value is used to determine when the calculation is finished.
Our module is a two state FSM that accepts an x and y value
with a valid in signal and outputs the angle between them with
a valid out signal. Additionally for simplification, we represent
angles as a 13-bit value that is 10 times the actual angle. i.e.
45 degress is represented as 450, 69.9 degrees is represented
as 699. We only care up to one place after the decimal value
since we are just estimating. This representation avoids the
use of decimal bits and allows for much better accuracy than
if we had excluded the decimal bits.

x = x ∗ cos(θ)− y ∗ sin(θ)
y = y ∗ cos(θ) + x ∗ sin(θ)

(6)

x = x− y ∗ tan(θ)
y = y + x ∗ tan(θ)

(7)

x = x− (y >> i)

y = y + (x >> i)
(8)

For our implementation we begin with the initial rotation
matrix for a point around the origin, given by eq. (6). This is
the general rotation matrix for a vector in 2D space around the
origin. We can simplify eq. (6) further into eq. (7) since we
only care about the angle, giving us an equation with tangent.
However, by using certain theta values (i.e. taking theta where
tan(theta) = 1, 1/2, 1/4, 1/8 etc), the tangent can be simplified
bit shifts as shown in eq. (8) where i is current loop iteration.
Although this introduces error, bit shift takes up less space
than utilizing a lookup table which was an initial concern when
implementing the module.

A. CORDIC: IDLE

During its IDLE state, the module is ready to accept new
values. On a valid input signal indicating new x and y
coordinates, the CORDIC module resets all previous values
and begins a new estimation. The values of x and y are saved
into a register, the angle is set to zero, the counter is reset and
the state is set to CALC.

If validin:
angle = 0
xreg = x
yreg = y
counter = 0
state = CALC

B. CORDIC: CALC

On each cycle, the module will first check whether the yreg
value of rotated vector is 0 or if the cycle count is at 10. If it
is the former, the vector is aligned with the horizontal axis and
the output angle is set the angle sum. If it is the latter, even

though yreg is not 0, the angle adjustments are too small after
10 cycles to make a difference so this will limit the number
of cycles that the CORDIC module is spend to calculate an
angle. The module also checks whether the x value is 0, which
normally only occurs at the very beginning of the algorithm,
or at cycle 0. If the xreg value is 0, the vector is perpendicular
to the horitzontal axis and the angle is set to 90 degrees. In
both cases, the angles are set to their respective values, a valid
out signal is pulsed and the state is set back to IDLE.

If xreg = 0:
angle = 90 degree
state = IDLE
validout = 1

Else if yreg = 0 or counter = 10:
angle = sumangle
state = IDLE
validout = 1

Fig. 16. CORDIC FSM Diagram

If the y value is not 0, the vector is rotated: clockwise if
the yreg value is positive and counterclockwise if the yreg
value is negative. Each time this occurs, the angle adjustment
is approximately halved, starting from an initial value of 45
degrees. As mentioned previous, the actual angle adjustments
are chosen such that when rotating the vector, the xreg and
yreg adjustments values can be calculated with only bit-shifts.
These angle adjustments are: [45, 26.5, 14, 7.1, 3.5, 1.8, 0.9,
0.4, 0.2, 0.1]. The angle adjustment are added to the sum
angle if yreg ¿ 0 and subtracted from the sum angle if yreg
¡ 0, and the value depends on the current loop iteration, with
earlier loops having more weight on the angle sum. With each
iteration, the values of the xreg and yreg are also updated to
reflect the rotation.

If yreg < 0:
sumangle = sumangle - adjustments[i]
xreg = xreg - (yreg >> i)
yreg = yreg + (xreg >> i)

Else:
sumangle = sumangle + adjustments[i]
xreg = xreg + (yreg >> i)
yreg = yreg - (xreg >> i)

VIII. MECHANICAL RESPONSE

The mechanical response requires some outside circuitry
and setup for the mechanical arm to operate but is fairly
straightforward in execution. The angles from the previous
Joint Angle Calculation module are translated into PWM
signals in the Signal Generator module, and output to an
outside amplifier circuit which will act as the signal input for
the mechanical arm.

A. Signal Generator

The Signal Generator module receives the three angles,
angleA, angleB, angleC, as an input and generates a PWM
signal as an output out of the ports xa p[2:0], with a duty
cycle that corresponds to the angles. Note that the angles are
passed in to the tenths, as in 180 degrees is passed as 1800
rather than 180. This module should also run on the system
65 MHz, but after researching the servos motors, the PWM
output must be at 50 Hz with duty cycle linearly increasing
with angle such that 0 degrees is a 5% duty cycle and 180
degrees is a 10% duty cycle. Note that the PWM’s rising edge
signifies the beginning of a 50 Hz clock cycle.

Important variables:
• counter - counts how many 65 MHz clock cycles have

passed since the current 50 Hz clock cycle has started.
• MAX - the number of 65 MHz clock cycles in a 50 Hz

clock cycle. Calculates to 65 · 106 ÷ 50 = 1300000.
• targetA - number of 65 MHz clock cycles in the high

pulse of the PWM to drive the motor’s angle to an-
gleA. We know two coordinates for (angle, target) are
(0,MAX · 5%) = (0, 65000) and (1800,MAX · 10%) =
(1800, 130000). Thus,

targetA = 65000 + angleA · 130000− 65000

1800− 0

= 65000 + angleA · 36.

Pseudocode (all sequential logic):

If (counter == MAX - 1):
counter <= 0
targetA <= 65000 +

(avg of most recent 4 angleAs)*36;
Same for target B, C

Once we’ve output an entire 50 Hz clock cycle, we start a
new clock cycle with the next angle and update targetA, B,
C accordingly. We take the running average of 4 most recent
angle inputs.

Otherwise:
Output pwmA <= 1 if counter < targetA

0 otherwise
Increment counter
Same for pwm B, C

Our PWM signals should output 1 if we’re still in the high
pulse and 0 otherwise.

If valid angle input:

angA_pipe <= angA
angB_pipe <= 1800 - angB
angC_pipe <= 1800 - angC
Pipeline each angle 3 more times

Based on the geometry of the robot arm and the direction
each motor rotates, we want angA (wrist angle) to be as is,
angB (elbow angle) to be the supplementary angle (since 0
degrees is a straight robot elbow joint), and angC to be the
supplementary angle.

In the actual code, we offset targetA and targetC by 60000
instead of 65000, and targetB by 50000. This is because after
some trial and error, we saw that these offsets produce more
accurate responses, likely because of the external forces acting
on the robot arm that prevent it from its ideal response, to be
discussed in Challenges and Potential Improvements later.

IX. DESIGN EVALUATION

A. Memory

The Image Processing components utilize three BRAMS:
• Camera 1’s pixel data memory - RAM width of 16 bits

and RAM depth of 320*240.
• Camera 2’s pixel data memory - RAM width of 16 bits

and RAM depth of 320*240.
• Camera 1’s VGA output memory - RAM width of 1 bit

and RAM depth of 320*240.
The Angle Calculation and Signal Generator modules don’t
utilize any BRAMs.

We can eliminate the third BRAM if we didn’t need to
display both cameras on the VGA monitor at the same time.
Initially, we didn’t use the third BRAM because we used
a switch to toggle which camera’s information to display.
However, only showing one camera’s data at a time made
it difficult to test and debug the full system, so we found it
necessary to display both and utilize this BRAM.

B. Latency

Regarding the Image Processing components, the following
outlines the latency of the sequential submodules:

• mirror - 2
• BRAMs - 2
• rgb to ycrcb - 3
• center of mass - variable latency

The latency within the Image Processing module requires
pipelining hcount and vcount 7 clock cycles for Calibrate
Blobs, Separate Pixels, and Center of Mass, and the Center
of Mass outputs at variable latencies. However, since the
outputs of Image Processing are only updated once every
camera frame, which is at fastest 1024∗768 = 786, 432 clock
cycles because of the VGA system, the latency within Image
Processing are not a problem in providing pipelined data to
the rest of the system.

With regards to the Angle Calculation, the max, worst case
latency of the submodules are:

• JANC - 6
• root - 32

• CORDIC - 11
The latency of the angle calculation is very large, totaling in
at 49 cycles. However, it is still significantly less than the
rate at which frames are updated. The angle calculation is fast
enough that the main module will be finished and ready for
the next frame long before the next frame arrives.

C. Resource Utilization

The following are some key resource utilization of the entire
system:

• Slice Logic: 9.88%
• LUT: 6.42%
• Block RAM: 71.11%

Initially we were concerned about the resource utilization of
our project, and had designed with this constraint in mind. We
had expected the image processing to use a significant amount
of SRAM, and ultimately it utilized around 71.11% of the
total BRAM. Thus, we avoided trying to use BRAM in the
angle calculation. Similarly, we expect the angle calculation
to require significant amount of slice logic and lookup tables,
which ultimately took up 9.88% and 6.42% respectively. This
ended up being much lower than we had expected, though still
quite significant. Overall, we had used a minimal amount of
resources on the FPGA, as we never needed to optimize for
timing due to being bottlenecked by the camera framerate.

D. Timing Constraints

Timing constraints become a main concern mainly within
the modules that include heavy calculations, specifically our
main concern was calculating dot products and cross products
in the JANC module. Initially our approach was to calculate
all products in a single clock cycle which had violated setup
slack timing. So we had to break our product calculations into
multiple cycles to meet the timing constraints. In our final
build, we managed to achieve a WNS of 2.339 ns and a WHS
of 0.001 ns. We managed to meet timing constraint.

E. Goal Evaluation

We met our stretch goal of driving 3 robot joints with our
human arm. Because of the challenges listed below, though,
the mechanical response is not as smooth or accurate as we
expected.

Our system can be used in cases where high speed blob
detection or angle calculation is needed. In particular, it would
be useful in 3D image mapping and projection, as our system
can be applied to edge detection to map edges, possibly useful
in AR technology.

X. CHALLENGES, INSIGHTS, AND POTENTIAL
IMPROVEMENTS

1) Camera: The cameras we interfaced with were not the
best quality; they were very zoomed in and susceptible to
noise. To safely fit our hand and forearm in the camera frames,
we needed the cameras to be at least 20 inches away from the
hand, which poses the problem of noise susceptibility when
using such long wires between the camera and the FPGA

board. Fortunately, having the cameras 22 inches away from
the hand still gave accurate enough readings through the long
wires, but it would be nice to improve this project with less
noise-prone cameras.

2) Robotic Arm: Note that with the VGA system, each
camera frame can be displayed in 1024∗768 = 786, 432 clock
cycles of 65 MHz. However, the robot arm runs on PWM of
50 Hz, which is 1, 300, 000 clock cycles of 65 MHz, which
is nearly twice as slow as the camera frames. This makes the
robot arm the bottle neck of the entire system, making the
entire system slow despite the impressively fast computations
in the rest of the system.

Another problem with the robot arm is that gravitational
forces from the motors and metals can act against the motor’s
movement, thus giving the robot arm a hard time opening all
the way upwards when given a large robot elbow angle. This
makes the response inaccurately reflect the angles calculated
in the rest of the system. To solve this problem and the speed
issue above, perhaps the only solution is to build a better and
faster robot arm.

Another problem is that there is a delay between when the
motors receive the next angles’ pulse and the motor actually
reaching that angle physically, which causes some backlog in
the response. In addition to our running average of angles in
our signal generator to smooth the change in angles per pulse,
we could also potentially consider a feedback loop to make it
more accurate.

3) Image Processing: The Image Processing module’s cal-
culations of coordinates are entirely estimations. The Calibra-
tion results are the centers of each blob’s roughly estimated
enclosing rectangles, and each subsequent coordinates can be
skewed towards pink noise or not even accurately represent at
all because a blob is hidden behind another blob. In addition,
the human hand must be oriented a certain way (palm not
facing camera 2) for the current algorithm, as mentioned
earlier. Perhaps there are better algorithms to approach these
problems and minimize estimation. If I were to continue this
project, I would love to find a way to improve my algorithm
so that the human hand can be oriented in any way and
provide more accurate locations of each blob, perhaps through
considering other characteristics at each pixel (such as lighting
or other colors).

4) Angle Calculation: The angle calculation modules cur-
rently scales very terribly with increasing input bit width.
When I initially designed the module, I had a focus on
reducing the error as much as I can. This led to me making
the registers used in the modules a set bit width as to save
on area. While this does work for our system, it does not
do well when the inputs have a different bit width than the
chosen value. I would have to change every register bit width
to accommodate. If I were to do this again, knowing that the
resource utilization is not that much overall, I would use more
parameterized modules to vary the bit width for my registers.
Not only would that have made my modules more scalable if
I choose to use them again in the future, it would have saved
me a lot of time and headaches.

XI. CONTRIBUTIONS

The overall project contribution was completed as follows:

A. Janette (Jan) Park

• Image Processing module, including VGA displays
• Building the physical setup, including sewing pink

patches to the glove, building the cardboard camera setup,
and building the wire extensions for the cameras

• Within the final report: everything related to Image Pro-
cessing module; Project Checklist, Physical Hardware
and Setup, Mechanical Response, Memory, Challenges,
Insights, and Potential Improvements 1-3

• Top Level and Image Processing block diagrams

B. Thienan Nguyen

• Angle Calculation module
• Setting up and testing the functionality of the robot arm
• Within the final report: Everything related to Angle Cal-

culation; Timing Constraints, Resource Utilization, Chal-
lenges, Insights, and Potential Improvements 4; General
formatting

• Angle Calculation block diagram, Finite State Machine
Diagrams

C. Together

• Fixing the robot when a motor broke and screws fell out.
• Signal Generator module; Thienan wrote the general

algorithm, and Jan researched the Servos motors and
calculated the correct numbers for the module.

• Within the final report: Abstract, Introduction, Interesting
Challenges, Latency, Goal Evaluation

XII. REFERENCES

We utilized submodules from labs 3-4
in class for the camera and VGA display.
https://www.servo-faqs/how-do-i-control-a-servo
https://www.eit.lth.se/fileadmin/eit/courses/eitf35/2017/CORDIC For Dummies.pdf

