
On-Chip Neural Chess Analyzer (ONe-ChAn)
Haihan Wu

Massachusetts Institute of Technology
Southern University of Science and Technology

Cambridge, MA
haihanwu@mit.edu

Muhammad Abdullah
Massachusetts Institute of Technology

Cambridge, MA
abd880@mit.edu

Abstract—We present a design for a Hardware based Chess
Engine with uses a TPU.

Index Terms—Digital Design, Chess Engine, Tensor Processing
Unit, hardware accelerator, negamax algorithm, FPGA

I. INTRODUCTION

The system consists of two parts, a Tree Traversal module,
and a TPU. Both of these systems reside on different FPGAs
and we use an SPI interface to communicate between them.
The FPGA responsible for tree traversal also handles IO with
the user by using switches to take input moves, buttons to
run undo and perform move, and the seven-segment display
is used to show a row of the chess board under consideration.
In the end, we plan to show the best move on the LED lights.

The user can scroll up and down using buttons to see
different chess rows and make the move.

II. TREE TRAVERSAL

A. Stack and Board

The current game is represented by a 64 element 8-bit array.
Each entry is a one-hot encoding of the piece and color at that
position.The algorithm always assumes that it is the player
white, but there are ways to get results from the perspective
of black by making a series of moves with an odd length.

The module interacts with the player using switches. The
player inputs a move and sends it to the board controller and
starts the tree traversal module. The module goes through the
entire algorithm and outputs the calculated next move using
the led lights.

B. Step-Step-Spray Algorithm

This algorithm is used to step through a move graph, like Fig
1, perform the negamax algorithm for two player games, and
generate packets for the TPU. It has three states of importance;
step up, step down, spray. The traversal is done in the step
stage where we do a depth first search of the move-tree by
stepping up and down the graph. The stack state is shown for
the traversal of Fig 1 in the table.

The module, in the stepping stage, interfaces with the move
generator and uses the signal step to ask for a single move on
the current board. It then adds the move to the stack or jumps
up if there is no move left.

When ever the stack is full, in the example when the size is
3, we transition into the spray state. The spray state interfaces

Fig. 1: An example move search tree where each node is
a board position and the edges are all the moves from that
position

with the move generator using the signal spray. The move
generator returns all possible moves on the current board. The
traversal module then packages these moves in a packet and
sends them to the TPU.

Once the TPU returns, we take the evaluated value and save
it on the stack. So the negmax algorithm is run on the stack
as we go through it.

State Current Stack
Down ϕ
Down M1
Down M1M3
Down M1M3M5

Up M1M3
Down M1M3M6

Up M1M3
Up M1

Down M1M4
Down M1M4M7

Up M1M4
Up M1
Up ϕ

Down M2
Up ϕ

C. Move Generator

The move generator takes the current board position and
tries to find a piece of the color that is supposed to play.



Fig. 2: The possible moves for each piece type from a starting
position. The format is similar to Belle [2], an FPGA based
chess engine from the 1990s

Fig. 3: The order of traversal of the moves, the shaded areas
check for blocking in the inner ring

It interacts with the minmax algorithm using step, spray
wires which cause it to search for a move from a starting
coordinate..The starting coordinate is stored in from register,
it is incremented until a valid piece is found. Then we generate
25 values of δx, δy ∈ {−2,−1, 0, 1, 2} in the order shown in
Fig 3. We reject the moves that are not valid for that particular
piece using the map given in Fig 2. Furthermore, when we are
traversing the outer ring, we additionally check for blocking
friendly or enemy pieces in the inner ring.

Another important aspect of the system of move generation
are the starting values of the from register and δx, δy. They
allow stateful traversal of moves and are used to ensure that
successive step activations cause new moves to be generated.
The from register is initialized from the stack’s top values and
the δx, δy are stored on the stack and initialized from there.
The utilization of the entire move-genrator module is 2% of
LUTs and no BRAM

III. TINY TPU

Deep neural networks (DNNs) are utilized for many artifi-
cial intelligence applications because it performs more accu-
rate results on different AI tasks, however, the computation
complexity is high. The main DNN computation consists
of convolution, matrix multiplication, max-pooling and non-
linearity, and matrix multiplication and convolution consume
a large amount of computation.

To boost DNN computations, the tiny TPU in Fig 5 incor-
porates design concepts and methods of hardware accelerators
in Prof Sze’s survey paper [1], and simplifies the processor
design based on the needs of analyzing chess to achieve

faster evaluation of the next move. The whole TPU design
is uploaded on the Github.

A. Systolic Array and Working Principles

1) Systolic Array: The systolic array can efficiently im-
plement matrix multiplication in hardware. Google Tensor
Processing Unit(TPU) uses a systolic array architecture. A
systolic array consists of processing elements (PEs), and the
simplest processing element is divided into weight-stationary
in Fig. 6(a) and output-stationary in Fig. 6(b):

(a) Weight stationary PE (b) Output Stationary PE

Fig. 6: Two typical types of the processing elements

A systolic array composed of weight-stationary PEs needs to
store the weight matrix in each processing element in advance.
The processing element will add the partial sum transmitted
from the previous processing element to the product of the
input and weight of this element, and then transfer the accu-
mulated sum to the next processing element. Therefore, the
weight-stationary systolic array will output the result matrix
in the form of pulse data. The Google first generation of
TPU utilized this category of PE. On the contrast, the output-
stationary processing element accepts input and weight, and
continues to accumulate the product of different input and
weight, and the result is stored in the processing element.

In terms of convolution, several ways are mentioned in
Professor Sze’s survey paper about DNN accelerator designs
[1]. One way is to flatten the weight kernel and transform
the two-dimensional input matrix, and then multiply the two
transformed matrices(Fig. 7(a)). However, it’s less efficient
especially when ifmap is very large. Another method is to
use fast Fourier transform (Fig. 7(b)).

In this project, tiny-TPU uses a similar approach to fast
Fourier transform: first, the weight kernel is placed in the
weight-stationary pulse array, and then the number of rows of
the same height as the weight kernel are continuously extracted
from the input and transformed into systolic data, which is sent
to the pulse array; after that, the elements of all rows of the
output array are added, and after filtering, a row of output is
obtained. Repeating the above operation can obtain the result
of the convolution.

2) Working Principles: Instructions of TPU are stored at
instruction block ROM in the program counter, layer informa-
tion, weights and biases are stored in the main memory. The
most critical part of TPU is to achieve convolution and matrix
multiplication, and those two operation will be controlled by
special instructions.



Fig. 4: Overview Block Diagram for the Tree Traversal module

Fig. 5: Block diagram of tiny TPU



(a) Matrix transform

(b) Fast Fourier transform

Fig. 7: Two approaches mentioned in the survey paper written
by Prof. Sze [1]

The register file module has 3 groups of 64 registers: The
first group of registers stores the number of moves and data
relevant to deep learning model, such as the length, height,
and corresponding starting address of weights and bias, the
type of operation between layers, and whether non-linearity is
used. The second and the third group of registers are loaded
with weights and bias respectively.

Fig 8 illustrates the dataflow of matrix multiplication. The
input is a systolic data of 3 rows generated from input matrix
A. The weights W are pre-stored in systolic array and output
are at the bottom. All the output elements are represented by
the column vector inner products as ai·wj . The outputs are
valid inside the red rectangles. For multiplication, all of the
systolic output are valid and will be further processed into
a matrix. If we want to compute AW , one thing should be
noticed that each output element is inner product of row of A
and column of W in Fig 8(b) (If the input is not transposed,
then the outputs are ATW ). So the input matrix should be
transposed and then converted to systolic data form.

As to Convolution, if weight matrix is 3-by-3, then the

(a) Input without transpose

(b) Input with transpose

Fig. 8: Tiny TPU matrix multiplication

Fig. 9: Tiny TPU convolution



buffer sends 3 rows of the input in systolic data form
each time. On Fig. 9, one interesting thing is that the
weight matrix stored is horizontally flipped. The reason is
that the valid output of convolution is (a1w1+a2w2+a3w3),
(a2w1+a3w2+a4w3) ... (an−2w1+an−1w2+anw3), and the out-
put on each column is the inner products of the input column
and the corresponding weight column, e.g., the outputs of the
first column are dot-products of input columns and w1. To
get the correct sum of those inner products, the weight matrix
should be horizontally flipped before loading into the systolic
array. And the output of cnovolution will be further processed
in the accumulator module.

What’s more, the tiny TPU is created with basic functions
of general-purpose processor such as arithmetic, branch, jump
and load function. When the TPU receives packet from the
move generator through SPI interface, it will check the packet
first. If the received data complies with the encoding, then
the TPU stores the initial grid in distributive ram and all the
possible moves in move stack. After that, the nonzero total
move number is directly loaded in the register file module.
The first line of the program is

while(move total num==0) {}
so the DNN computation program begins, otherwise it will

halt the program counter until receives a valid packet and
change the total move number.

The tiny TPU design below will follow this principle and
realize DNN computation.

B. Computation Architecture

The more detailed computing architecture is shown in the
following figure.

Fig. 10: TPU single-cycle computation architecture

One good thing of this processor is that it can transmit
data in parallel. For example, when the second groups of the
registers updates the weights from the main memory, all 64, 8-
by-8 weight matrix can be loaded in the systolic array module
simultaneously. Compared to a general-purpose processor, this
processor greatly improves the efficiency of data transmission.

This processor use single-cycle pattern instead of pipelines,
and there are several reasons for this: For one thing, most
importantly, is that some of the instructions take more than

tens or even hundreds of clock cycles to complete, and those
instruction execution dominates the performance. The fig.
11 proves this. The 3 signal, load weight, load bias and
send systolic data are decoded from instr[31:0]. Apperantly,
those three multi-cycle instructions take most of the time

The arithmetic, branch, jump and load functions are real-
ized with this single-cycle structure. The selector signals are
decoded from instruction. src2 sel determines whether uses
the immediate. wrd sel selects write back data from ALU or
main memory. And the branch MUX uses pc sel or jump sel.
alu funct(or br funct) chooses the operation in ALU. They
are encoded in instruction in the following manner below. And
the detailed instruction set architecture is provided in Fig 13.

Fig. 12: TPU instruction encoding

C. Layer Information Encoding

There are two types of layer information in total: layer
number information and layer information. Layer number
information is a 32-bit integer storing total layer number, the
height and width of the input layer. It’s encoded in a following
manner in table I. After layer information is loaded from
the main memory, the TPU can decode it into input layer
width, input layer height and total layer number at instruction
decode layer.

[31:28] [37:24] [23:20] [19:0]
input height input width total layer num empty

TABLE I: Layer number information Encoding

32-bit layer information are relevant to layer computation
(Table II). The number of layer information integers is de-
termined by total layer number. It contains the shape of the
weight and bias kernels, and mapping starting address in the
main memory. If instruction load weight is received by the
register map module, the TPU will load weights from the base
address to the sum of base address and the product of height
and width. The special instruction load bias works in a similar
manner. Special operation such as flatten, rectified leaky unity
useage is also recorded in the layer information.

D. Instruction and Main Memory Generation

All the instructions are generated by the python scripts if all
the weights, biases and neural network information is known.
Instruction memory has a width of 12, which is sufficient for
deep networks with hundreds of layers. Main memory has the
same depth as instruction memory. Layer-relevant information,
weights and biases are stored in 0x000-0x0FF, 0x100-0x1FF
and 0x200-0x2FF respectively.



Fig. 11: TPU single-cycle simulation

Fig. 13: TPU Instruction Set Architecture



[31:29] [28:26] [25:18] [17:15] [14:12] [11:4] [3:1] [0]
weight height-1 weight width-1 weight start addr bias height-1 bias width-1 bias start addr {reLU sel, op sel, flatten} empty

TABLE II: Layer number information Encoding

E. Evaluation from RTL simulation

To evaluate the performance based on the current utilized
DNN, a valid packet consisting of a initial grid and five moves
is sent to the TPU through the SPI interface. And it takes
19 µs to finish all the computation. The results is acceptable
compared with the one generated by the python script. The
output of the TPU is 0x57(87), which is very closed to the
83.3 computed by python.

IV. REALIZATION

A. Grid visualization with 7-segment displayer

The grid is visualized on the 8-bit 7-segment displayer.
One number shows one chess piece. BTNU and BTND are
used to scroll through different rows. The following figure
shows the 1st, 2nd and 3rd rows initial grid with the button.

B. Progress

The TPU and the move generator both pass the RTL
simulation, however, there area some communication error
between these two section which still need more time to figure
out. Although we are not able to should how this detects the
optimal move, the algorithm and TPU can function separately,
especially the TPU is capable to compute different types of
the neural network with a relatively high accuracy.

In the future, the author will focus on the compiler, which
can generate the instruction in machine language with a
program. Secondly, the TPU is not capable of dealing with
convolution with multiple channel, so the 3-D convolution will
be further investigated and implemented.

As for the move generator, we are able to generate correct
moves in hardware and display them to leds. The tree traversal

module works in simulation but there seem to be some timing
issues which hinder it to be combined with the move generator.

REFERENCES

[1] V. Sze, Y. -H. Chen, T. -J. Yang and J. S. Emer, ”Efficient Process-
ing of Deep Neural Networks: A Tutorial and Survey,” in Proceed-
ings of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017, doi:
10.1109/JPROC.2017.2761740.

[2] https://en.wikipedia.org/wiki/Belle (chess machine)
[3] https://github.mit.edu/abd880/one-chan/tree/master/mov-gen
[4] https://github.mit.edu/abd880/one-chan/tree/master/whh tpu v1


