
High Frequency Trading on FPGA
Kaustubh Dighe

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
kdighe@mit.edu

Abstract—In the high frequency trading (HFT) space, there
has been an increasing drive to use FPGAs in the recent years.
Reducing the latency of computation is paramount. When we
have exhausted almost all avenues of optimization in a program
written in a programming language like C, we look for other
external avenues. When an ultra optimized C program runs on
a regular computer, it still has to deal with the CPU being a
general hardware that will first process instructions and then
send them to GPU if needed. There will still be an operating
system that will keep scheduling other processes along with our
program and do context switching between the processes and
the kernel. Also, communicating over the network takes up lot
of time with general-purpose network cards which deal with lot
of other packets coming to the system as well. It will also have to
deal with complex memory heirarchy that slows processes down
if they are not appropriately engineered to extract the best out of
the caches. To solve all this, making use of an FPGA to run the
same trading logic eliminates the operating system and also the
hardware is specialized enough to be faster. More parallelization
can be made into such FPGA as well. I propose and end-to-
end trading system that communicates with ethernet and uses
eigenvalue decomposition of the correlation of returns among a
portfolio of stocks to make trading decisions.

Index Terms—FPGA, HFT, Eigenvalues, Stocks

I. OUTLINE AND MATH

I am building a trading system where the FPGA gets new
prices of all the stocks it is keeping track of periodically.
Once it gets this data, the FPGA should, on the basis of prior
information it has stored of those stocks, generate orders to
place in order to earn profits. To do this, following is the
outline of the steps to be taken.

• Step 1: The FPGA gets an array of new prices of all
stocks. This is intended to happen over ethernet because
we need network to get this data from a distant stock
exchange.

• According to Portfolio Theory (Scott Rome, 2016), the
eigenvalues and eigenvectors of the covariance of the
stock returns are measures of risk and corresponding
portfolios. Hence, we will evaluate the eigenvectors and
pick one of them as our portfolio.

• Step 2: Find returns using

rt =
pt − pt−1

pt−1

when we get this new price data.
• Step 3: Have an incremental module which keeps updat-

ing covariance matrix for the returns as we keep getting
new samples of returns. This matrix will in a way store

everything we need to know about all the stocks’ behavior
till now.

• Step 4: Do the eigendecomposition of this covariance
matrix

• Step 5: Find the second-highest eigenvalue (as the high-
est one corresponds to the highest risk one and most
correlated with the market, so it will give high returns
when market is growing but susceptible to the volatility
of market) and pick the eigenvector corresponding to it.
Scale it so that the sum of it’s elements is one. This gives
us the target portfolio.

• Step 6: Based on the current (and just previous) prices
of stocks and target portfolio, place orders and evaluate
cumulative returns.

II. BLOCK DIAGRAM

Fig. 1. Block Diagram

III. COMPONENTS

A. Make Packets and Data

A Python script obtains data from API given by Rapid API
to access the Yahoo financial data set of historical stock prices.
This consists of initial and final prices of a given stock at
intervals of 15 minutes. I also found data more easily from
Python’s pandas data reader library and I went ahead with
that.



B. Ethernet

This module receives the packets sent by the computer over
ethernet protocol. It corrects bit ordering, checks if there is
any error using cyclic redundancy checking (CRC) and also
determines if the packet was intended for the FPGA or not
by looking at the MAC address. This module accumulates the
entire data in the packet and sends it forward.

C. Deciphering Packet

This module deciphers what the packet says. Our packet
protocol is very simple. Each packet contains 32 bits and each
16-bit portion of it is 16-bit updated stock price of the two
stocks we are dealing with. This can be easily extended to have
packets of 16N bits where N is the number of stocks. Pooling
information like this makes the ethernet header overhead small
in comparison to actual data and also takes into account the
fact that multiple stocks may change at the same time. This
module passes this information in arrays to next module.

D. Returns

For every stock at every packet arrival (we will refer to it
as a timestep now onwards), we find the relative returns per
share of that stock. This is evaluated as follows for timestep
t :

rt =
pt − pt−1

pt−1

Here, pt is the price of that stock at timestep t. This step is
done in the top level module itself. Once we get this array of
returns, we evaluate the covariance matrix of the returns array.

E. Exponential Moving Covariance

Regular covariance and mean is found by taking all samples
of a data together and weighing them equally. The subscript
t refers to the values after t timesteps i.e t samples (denotes
by x ∈ RNSTOCKS ) in this case.

µt =
1

t

t∑
k=0

xk ∈ RNSTOCKS

Covt =
1

t− 1

t∑
k=0

(xk − µt)(xk − µt)
T ∈ RNSTOCKS×NSTOCKS

This approach has several problems:
• We should give more importance to recent trends of

covariance in the market. If we weigh all samples equally,
after a point, new data samples will stop having any
impact at all due to limited precision we have. Even
ignoring precision issues and assuming infinite precision,
the relative impact of new data samples would tend
to zero. A moving average and covariance weighs all
samples till now but the weight of recent samples is
higher.

• We do not have all samples at once. We are getting
new samples one by one. While we can certainly update
covariance and mean as follows in this situation

µt =
(t− 1)µt−1 + xt

t

Covt
ij =

t− 2

t− 1
Covt−1

ij +
1

t
(xi

t − µi
t−1)(x

j
t − µj

t−1)

But there is unnecessary storage of state to keep track of
t.

• Moreover, the above method involves having division. On
FPGAs synthesizing division is extremely hard as either
the divider takes up most of the area on the FPGA (it gets
synthesized as a lot of complex look up tables) or if we
make a sequential module, it eats up a lot of cycles. These
cycles are either variable or equal to the number of bits of
the divisor and dividend depending on implementation.

To solve all these issues, we have used exponentially moving
average and covariance which is very easy to compute in
programs and state machines as follows :

µt = (1− λ)µt−1 + λxt

Covt
ij = (1− λ)Covt−1

ij + λ(xi
t − µi

t−1)(x
j
t − µj

t−1)

The parameter λ can be tuned as per requirement. We have
kept it to be equal to 0.25 so that recent ones do not get
weighed so highly that covariance loses meaning altogether.
This is easy to compute because only additions and multipli-
cations are involved and same register can be re-written to at
each clock cycle in the state machine.

F. Eigenvalue decomposition

The next step is to evaluate the eigenvalues and correspond-
ing eigenvectors of this covariance matrix. The diagonalization
of the matrix is done by Jacobi rotation as this algorithm is
easily parallelized on the FPGA and also makes a good state
machine for checking convergence.

Algorithm 1 Jacobi rotation algorithm on matrix A
Require: A is symmetric (but that’s fine because we are using

it only for covariance matrices which are symmetric)
D ← A
Q← I ▷ Identity matrix
while Sum of off diagonal elements of D ¿ Threshold do

i, j ← pivot(D) ▷ Max off diagonal element
▷ Jacobi rotation start

θ ← 1

2
arctan

2Dij

Djj −Dii
s← sin θ
c← cos θ

▷ Update D
Dii ← c2Dii − 2scDij + s2Djj

Djj ← s2Dii + 2scDij + c2Djj

Dii ← (c2 − s2)Dij + sc(Dii −Djj)
Dik = Dki ← cDik − sDjk∀k ̸= i, j
Djk = Dkj ← cDjk + sDik∀k ̸= i, j

▷ Update Q
Qki ← cQki − sQkj∀k ̸= i, j
Qkj ← sQki + cQkj∀k ̸= i, j

end whileAt this point, D and Q are such that A = QDQT ,
D is a diagonal matrix with eigenvalues and columns of Q
are corresponding eigenvectors.



In this algorithm, there is a use of arctan, sin and cos
trigonometric and inverse trigonometric functions. This is
handled in hardware by using CORDIC algorithm. This is
an algorithm where instead of a single rotation (trigonomet-
ric functions are used in rotations and hence the math is
interlinked) of arbitrary angles, repeated rotations of angles
whose tangent functions are powers of two are used. In this
way, repeatedly doing simple additions and shift operations,
complex functions like trigonometric and others like logarithm
and square root can be found. We have used Xilinx CORDIC
IP for these modules.

G. Portfolio

A portfolio is the weight of all stocks we hold in terms
of their money value. For example, if we have 3 shares of
PQRS worth 30 and 2 shares of ABCD worth 5, the portfolio
is 90% PQRS and 10% ABCD. Once we have eigenvalues
and eigenvectors of the covariance matrix of returns, random
matrix theories say that the eigenvalues are a measure of risk
but also reward. Hence we can choose the second-highest
eigenvalue and pick the eigenvector correspond to it. This
eigenvector when scaled so that it has a sum 1, is the portfolio
we want to have at that time step.

H. Cumulative Returns

Cumulative returns are found as follows

• For each stock i,

CRi
T =

T∏
t=1

(1 + rit)− 1

• Money at time T

MT = M0

NSTOCKS∑
i=1

(1 + CRi
T ) ∗ wi

T

IV. DESIGN AND RESULTS

A. Dividers

I have striven to minimize the use of dividers due to their
large footprint either on area or on time, both of which we do
not want. But still, evaluating returns and scaling eigenvector
to get portfolio required division. I used one from the web
with appropriate license and modified it for signed fixed point
numbers.

B. Fixed Point Numbers

Most math involved is not integers but involved real num-
bers. I have used fixed point math as opposed to floating point
math as the range of values we want to deal with is not very
wide but we do not want to focus too much on getting simple
arithmetic correct.

Fig. 2. System Diagram

Fig. 3. FSM of eigendecompose



C. Latency

The main goal of going on an FPGA was latency. I have
used a 100MHz clock and while the convergence of eigenvalue
decomposition module has a variable cycle count because of
we do not know when we converge but we can still count the
number of cycles as follows :

• 1 cycle to get the data to returns dividers
• Each divider takes exactly 24 cycles to compute result

because the algorithm for fixed point division takes
number of cycles = total number of bits in number +
fixed point width. So returns will be computed after 24
cycles.

• Covariance matrix gets updated in 1 clock cycle.
• Eigendecompose FSM is shown in figure 3. 2 cycles

to go to state 2. The converge and pivot modules are
combinational. I have used the CORDIC IPs in parallel
configurations and for that the latency is N cycles for N
bit input. I have 16 bit inputs so 16 cycles on state 3 and
state 3 and then 1 cycle to return to state 1. This part
of 34 cycles gets repeated unknown number of times but
guaranteed to converge well.

• Portfolio module takes up a divider of 24 cycles and 1
cycle before it to find the 2nd highest eigenvalue.

• 1 clock cycle to find cumulative returns.
To sum it all, 53 + 34 * number of iterations of Jacobi cycles
is the latency.

D. Goals accomplished

I have been able to get all modules described working
separately. However, integration of the CORDIC module cre-
ated problems. Here is a breakdown of commitment, goal and
stretch:

• Commitment:
– DONE: Decipher packets
– DONE: Eigendecomposition of matrix
– DONE: Find returns, covariance matrix and evaluate

eigenvalues of that matrix
– DONE: Trading logic

• Goal: PARTIALLY DONE: Integration with ethernet re-
ceive module to receive stock data from the computer.

• Stretch:
– NOT DONE: Make ethernet transmit module to send

orders back
– NOT DONE: Make order books
– NOT DONE: Have a Bayesian validator to keep

checking the strategy

E. Future Modifications

• Having order books to tweak the price logic. Right now
the prices are just taken from the market, but if we are
trading large volumes we have the power to set prices
and negotiate too.

• Ethernet transmit and integration with ethernet.
The code can be found at

https://github.com/KaustubhDighe/Vyapaar

V. CHALLENGES AND INSIGHTS

• It is very annoying to deal with Verilog’s quirks of
multi-dimensional arrays being passed along modules.
Unpacked arrays can get indexed in any manner but they
disappear when they are signed and passed along various
modules. Packed arrays connect well across modules but
then they can only be indexed on the first dimension. I
worked around this by having most of my matrices to be
in row-major order to reduce extra dimensions.

• Testing each module separately is very helpful because
bugs arise in such places

• As suggested by Fischer, having a reference implementa-
tion in a programming language helps flesh out all details
of the math and also gives us reference values to check for
at each step of the algorithms. I found this very helpful as
I was getting stuck on writing the eigendecomposition on
FPGA by just reading research papers. I then made most
parts of the trading logic including eigendecomposition in
C++ and integrated some parts as well. The way I made
functions in C++ also gave me hints on what the different
modules can be in Verilog design and what their inputs
and outputs are.

VI. REFERENCES

• https://srome.github.io/Eigenvesting-I-Linear-Algebra-
Can-Help-You-Choose-Your-Stock-Portfolio/

• https://srome.github.io/Eigenvesting-III-Random-Matrix-
Filtering-In-Finance/

• https://www.investopedia.com/articles/07/ewma.asp
• https://en.wikipedia.org/wiki/Jacobi eigenvalue algorithm
• https://en.wikipedia.org/wiki/Covariance matrix
• https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf


