
FPGAbility: Spatially-Aware Writing
Annie Liu

Department of Electrical Engineering and Computer Science
Cambridge, MA
annieliu@mit.edu

Kristoff Misquitta
Department of Aeronautics and Astronautics

Cambridge, MA
kmisqui@mit.edu

Abstract—We propose FPGAbility, a 3D rendition of Notability.
The user shines a laser at a camera mounted to servos and
wired to the Nexys 4 DDR FPGA. This light serves as a stylus
that will record strokes at its location, which will be displayed
on a monitor. The speed of the laser determines the size of the
strokes on the monitor. This is in addition to features like writing
with multiple lasers simultaneously, erasing, and simple creation
of geometric primitives like lines, circles, and curves. Further,
when the camera moves out of the frame from where the original
writing was, the writing will move out of frame as well. When the
camera is back in the frame of the original writing, the writing
will re-appear, giving the illusion of panning in space.

Index Terms—Field programmable gate array, video process-
ing, digital systems

I. PROBLEM STATEMENT (KRISTOFF)

Notability is among the highest-rated digital note-taking
software for iPad. Features like drawing, erasing, construction,
and infinite scrolling creates a writing experience that repli-
cates – and often enhances – that offered by pencil and paper.
Nonetheless, being restricted to a tablet screen, Notability
is inherently two-dimensional, limiting its adoption in novel,
three-dimensional contexts like augmented or virtual reality.

As a proof-of-concept of the ability to write in 3D space,
we integrated a set of drawing and graphics transformation
modules onto an existing video processing architecture on
the Nexys 4 DDR FPGA. As opposed to pencil-on-paper
(or stylus-on-tablet), we use a laser-on-canvas method for
detecting strokes, which are then stored and transformed
freely as the camera pivots with two degrees of freedom on
a servo-controlled mount. In addition to basic writing and
erasing functionality, we aimed to enhance Notability’s core
capabilities with additions such as rapid creation of geometric
primitives (lines, circles, curbes) and making stroke widths
dynamic with laser speed for organic script. As an additional
challenge, we designed our architecture to be as scalable as
possible, currently supporting the simultaneous use of two
lasers for writing (red and green) as well as a third for erasing
(blue) in any mode.

II. SYSTEM ARCHITECTURE

A. Overview (Kristoff)

The key storage element in our design is the field buffer:
a shallow but large BRAM spanning the camera’s entire field
of view and storing all detected laser strokes of a given color.
It operates with the existing frame buffer, a small but deep
BRAM spanning only the current field of view and storing all

Fig. 1. High-level diagram of FPGAbility. Multiple instantiations of modules
annotated in blue but not drawn. Modules outlined in red are examined in
depth later in the report.

the color information the camera receives. Note the differing
nature of these memory elements: the field buffer serves as
long-term storage, maintaining a record of strokes until reset
or erasure, while the frame buffer is continuously refreshed
with new camera frames.



Fig. 2. Arrangement of field, the total potential view of the camera, and
frame, the camera’s current view. Yaw and pitch servos are used to navigate
the static field.

As the servos rotate, changing the camera’s orientation, the
addresses accessed in the field buffer change accordingly (Fig.
2). This enables extended writing limited only by the memory
cap on the FPGA.

The four core functionalities of our design – namely servo
control, free drawing, geometric primitive creation, and field
positioning – all compete to interface with the field buffer
to produce strokes and shapes that freely transform in space.
We imposed hierarchy among these features by extensive
use of the major-minor FSM paradigm. Specifically, top-level
modules like write_controller and shapes delegate
work to a suite of continuously running submodules. Point
coordinates and valid output signals are then multiplexed
before conveyance to the field buffer for long-term storage.

B. A Note on Simultaneity (Kristoff)

In keeping with the spirit of FPGA design, the strength
of our architecture derives from its ability to perform mul-
tiple tasks in parallel. For example, servo_controller
is instantiated twice, as both a yaw controller and
a pitch controller manipulating two axes independently
(Fig. 3). write_controller, likewise, is instanti-
ated as a red_write_controller, green_ write_
controller, and blue_ write_ controller sup-
porting, at once, blue erasing and any writing mode for the
red and green lasers (Fig. 3). In code, the field buffer, too, is
comprised of two BRAMs, one for storing red strokes and the
other for storing green.

Examining data flow through one of these many parallel
branches is sufficient for understand FPGAbility’s architecture,
so this report omits duplications in its block diagrams.

Fig. 3. Closer view of servo_controller. Note that this architecture
is instantiated twice: once for the yaw servo and once for the pitch servo.

C. Servo Controller (Kristoff)

The two SG90 servos are oriented to provide freedom in
the yaw and pitch axes. Aside from their individual joystick
mappings (yaw servo responds to right/left joystick inputs,
pitch servo responds to up/down inputs), the control of each
is identical. Specifically, each accepts a 50 Hz input signal (20
ms period), and the first 1-2 ms can be modulated to encode
the desired angle. The required pulse-width modulated signals
are supplied by parameterized yaw_servo_controller
and pitch_servo_controller. The modules described
below are submodules of these two.
Counter establishes the base 50 Hz repetition by re-

peatedly counting ∼1.3 million positive clock edges, and
then resetting to 0. This method (as opposed to techniques
like Clock Wizard) was selected due to the extremely low
frequencies involved and its sufficient accuracy for servo
control. In parallel, based on the duration for which any given
direction of the joystick is held, js_to_pw sets the number
of counts for which the signal routed to the servo should
remain high, ranging from about 65,000 (1 ms high, or turn
to 0º) to 130,000 (2 ms high, or turn to 180º). The output of
counter and the js_to_pw count limit is compared within
comparator, which outputs high to the servo so long as the
current count is below the threshold.

D. Field Positioning (Kristoff)

Not only must the camera detect and store strokes in a given
frame, but it must also translate strokes and “remember” their
original positions when the camera is panned. This concept
was implemented as an additional shallow but large (2 bits,
900x974) “field buffer” BRAM, distinct from the existing deep
but small (16 bits, 320x240) “frame buffer.”



The location in the field buffer to which a pixel is written
depends on the position of the servos. Concretely, with each
servo initialized to 90º on reset, the center of the field buffer
is modified and read. However, rotating both to 0º (“looking
up and left”) superimposes the frame on the top left corner of
the field buffer.

The bridge linking servo positions to field offsets is
pixel_ offset, which uses the same joystick inputs and a
number of mathematically derived relations (pixels per degree,
servo speed) to convert a joystick hold duration to the number
of pixels by which to translate. Again, this occurs simulta-
neously for the yaw and pitch servos, the former dictating
yaw_offset and the latter dictating pitch_offset, prior
to flattening for interfacing with the BRAM.
field_position writes the output of the masked cam-

era field of view into the field buffer as described above (Fig.
1). For a simple canvas, like a plain wall or whiteboard, this
will exclusively be the shine of the laser.

As field_position writes into the field buffer,
field_ reader retrieves information from the same dual-
port BRAM for delivery to vga_mux. The same linear
transformation from hcount and vcount to a linear index using
the servo offsets is applied.

E. Write Controller

1) Unified Architecture (Kristoff): Writing may occur in
any of four modes: free drawing, line generation, ellipse
generation, and curve generation. The modules for each mode
are carefully designed to fit – with the same inputs and outputs
– into a top-level module called write_controller (Fig.
4). As this pipeline is shared across all forms of writing, it is
illustrative to examine the flow of a pixel through it now.
tool_select, the old threshold, uses red chromi-

nance, blue chrominance, and green masks to identify,
with as little overlap as possible, the signatures of red,
blue, and green lasers on a per-pixel basis. It feeds the
classification of each pixel in synchrony with hcount and
vcount into center_of_mass. Depending on whether it
is within the red, green, or blue write_controller,
center_of_mass will compute the center of the corre-
sponding points. This center of mass is then fed into one of the
four writing modes to form the basis of each of their strokes.
The output of each of the writing modes is a sequential stream
of points to be addressed into the field buffer. Which of the
four modes is sending its points to the write_controller
output is determined by the states of two switches on the
FPGA.

2) Free Drawing and Dynamic Stroke Widths (Kristoff):
In the original conception of free drawing, points outputted
by center_of_mass were written immediately to the field
buffer, resulting in thin, illegible strokes and numerous errant
pixels (from the environment and not the laser’s shine) in the
frame. To resolve the latter issue, center_of_mass was
modified to additionally detect whether the laser is on via
checking whether the number of masked pixels is greater than

a threshold. A high number of pixels indicates the presence
of a concentrated, bright object; in other words, the laser.

To resolve the visibility issue, both width_select and
thicken_point were added. width_select reads in
two centers of mass and, based on the Manhattan distance
between them, outputs a number representing the extent to
which the second one should be padded when displayed.
Larger distances correlate roughly with faster laser motion
and, as in real life, fatter strokes. This number is converted
to actual padding using thicken_point , which assigns
rectangular bounds on hcount and vcount within which points
should be drawn as the frame is scanned. Behavior at the edges
is handled by casework to avoid overflow.

3) Geometric Primitives (Annie): A set of geometric primi-
tives is a useful starting point for designs and text; for example,
circles for Venn diagrams or lines to simulate ruled paper.
Thus, in addition to free-drawing, FPGAbility implements a
mode in which users can draw straight lines, curves, circles,
depending on the values of switches 0 and 1 (for red) or
switches 2 and 3 (for green).

Lines were implemented using Bresenham’s straight line
algorithm. The algorithm requires the two end points of a line
as inputs. The design decision we made was to select the first
point (p1x, p1y) as the position where the user first shone their
laser and the second point (p2x, p2y) as the position where
the user last shone their laser.

The line_gen module is what selects the two points.
These two points are then fed into the plot_lines module,
which implements Bresenham’s line algorithm. When two
points are inputted into the module and valid_pixel_in is
high for one clock cycle, the necessary variables are initialized.
The algorithm starts at point (p1x, p2y) and attempts to reach
(p2x, p2y) through a series of error calculations. In every
clock cycle thereafter, until the current (x, y) has overshot
(p2x, p2y), valid_pixel_out is high, and px and py are
set to the x and y values of the current point. Depending
on the color of the laser, the outputs of plot_lines—px,
and py—are fed into either the red or green BRAM, same as
described in the previous section.

Similar to the line_gen module, the circle_gen mod-
ule is what selects the two points. The center of the circle
(xm, ym) to be drawn is the first point (p1x, p1y) selected,
whereas the radius is the Manhattan distance from the first
point (p1x, p1y) to the second point (p2x, p2y). Both the
coordinates of the center of the circle and the radius are
fed into the plot_circle module, which implements a
standard circle generation algorithm. Similar to the format
of the plot_lines module, when two points are inputted
into the module and valid_pixel_in is high for one
clock cycle, the necessary variables are initialized. In ev-
ery clock cycle thereafter, until the algorithm completes,
valid_pixel_out is high, and px and py are set to the
x and y values of a point that lies on the circle. The outputs
of plot_lines—px, and py—are fed into either the red



Fig. 4. Deeper view of write_controller. Note that line_gen,
circle_gen, curve_gen, plot_line, plot_circle, and
plot_curve are all distinct modules, but they have identical inputs and
outputs so are compressed to the same blocks for readability.

or green BRAM, depending on the color of the laser, same as
described in the previous section. Our architecture is structured
in such a way that the circle is still drawn even if the points
do not fit in the current frame. The out-of-frame parts of the
circle can be seen by using the joystick to move the circle into
frame.

Like both the line_gen and circle_gen modules,
the curve_gen module selects two points, (p1x, p1y) and
(p3x, p3y), that serve as the end points of the curve that
is to be drawn. Bezier’s curve algorithm, implemented in
curve_gen, however, accepts three points. The third (mid-
dle) point (p2x, p2y) is set as p2x = p1x and p2y = p3y.
These three control points form a right-angle corner: the
line formed by connecting (p1x, p1y) and (p2x, p2y) and
the line formed by connecting (p2x, p2y) and (p3x, p3y) are
perpendicular to each other and tangent to the curve drawn

Fig. 5. The setup used for writing. Note the two LEDs lit up at the bottom
corner to indicate detection of a blue laser, as well as the blue crosshair erasing
the red stroke in the frame. The outputs from the green circle generator, red
line generator, and red free draw are shown.

using Bezier’s algorithm.
The shapes module selects between these geometric

shapes depending on the switch value, simplifying the code in
top_level by tying them together. An instance of shapes
itself is placed in write_controller; depending on the
switch values, the user can either free draw or create geometric
shapes.

III. CALCULATIONS (KRISTOFF)

Extensive calculations were performed to estimate memory
usage and optimize servo control. The ones most critical to
the design are detailed here.

A. Field Buffer Size

Yaw freedom: 38º in each direction
Pitch freedom: 30º in each direction
Camera frame size: 240px × 320px



Pixels per degree 1: 9.5 px/deg

BRAM x size: 240px + 2× (9.5 px
deg × 38◦) = 962px

BRAM y size: 320px + 2× (9.5 px
deg × 30◦) = 890px

BRAM Total Size: 2× 962× 890 = 1, 712, 360 bits

Frame Buffer Size: 16× 240× 320 = 1, 228, 800 bits
FPGA BRAM Capacity: 4, 860, 000 bits > 2, 941, 160 bits

B. Servo Limits

Time per positive edge: 1
65×106 = 15.38ns

Counts per servo period: 20ms
15.38ns = 1, 300, 390 counts

Counts for 0: 1ms
15.38ns = 65, 020 counts

Counts for 180º: 2ms
15.38ns = 130, 039 counts

IV. VALIDATION (ANNIE)

A. BRAM, DSPs, and LUTs

According to the reports produced by Verilog, 102 out of
135 BRAMs were used for a total utilization of 75.56%, and
59 out of 240 DSPs were used for a total utilization of 24.58%.
A total of 6299 LUTs are used for a total of 9.94% utilization,
with 9.93% as logic and 0.03% as memory.

B. Timing Constraints and Critical Path

For many stages in design, our critical path did not
meet timing constraints. The critical path began at the
pitch_pixel_offset module, which produces the cor-
rect pitch offset given input from the joystick, continuing onto
the tool_select module, which selects which controller to
use based on which color the camera picked up. This is fed into
the red_controller module, then crosshair_m, which
produces a red crosshair wherever the user is pointing the red
laser. It then makes its way to red_field, which marks the
end of the critical path. To meet timing constraints, we added
a register after the tool_select module and another after
the red_controller module, bringing our worst negative
slack to 0.274 ns and a total negative slack of 0.00 ns.

C. Servo Validation

The FPGA’s digital output was connected to an oscilloscope
to verify that the servo specifications were implemented accu-
rately. The signal demonstrated the expected 1-2ms modula-
tion without exceeding limits.

D. Geometric Curves Validation

To validate the geometric primitive modules, we trans-
lated the algorithms into Python and wrote test benches for
line_gen, circle_gen, and curve_gen. The output of
the Python program and the test benches match for the same
inputs, serving as a useful sanity check in a familiar language.

1Calculated by marking the limits of the camera view on a paper at a given
distance away, then using simple trigonometry and the known frame size.

E. Scaling in the Real World

Sharply increasing clock frequency would shorten timing
allotments for our calculations. Given the small margins in our
worst negative slack, this would very likely require optimizing
the calculations we perform as VGA scans over the image, or
where those calculations are performed (focusing more on the
end of the frame or surrounding blank space). One area for
focus here is the geometric primitives modules: (line_gen,
circle_gen, curve_gen), which involve long chains of
logic squeezed into the video timing. There are opportunities
to segment those calculations over more cycles or refreshing
the screen with updates more slowly.

It’s also worth noting that we are limited by the camera’s
maximum ∼25 MHz clock (currently it’s running at 16.25
MHz).

There are many ways FPGAbility can scale. The reports
produced by Verilog state that 75.56% of the total BRAM
storage is utilized; with 24.44% additional space left, we could
add another BRAM to incorporate another user, slightly sizing
down the others in the process. This additional space could
also be used to expand the size of the servo’s field of range
or the size of the output that appears on the screen. In the
spirit of Notability, we could also have an option for the user
to save their current drawings to be reopened at a later time.
The number of drawings we can save is proportional to the
amount of space we have.

All of these features–or a conglomeration of them–would
be possible with more space. We could also make do with
less space, but up to a limit, since we need at least 102 blocks
to store the two field buffers and the one frame buffer. In the
case that space is a limiting factor, we would remove one of
the field buffers and allow for only one user to draw.

V. REFLECTIONS (KRISTOFF)

A. Goals

We laid out the following goals for FPGAbility:
• Commitment: integrate joystick, servo, and laser for

writing that can move in and out of frame.
• The Goal: more complete writing experience. Erasing,

stroke colors, and dynamic stroke widths.
• Stretch Goal: handle multiple simultaneous users (two

lasers in field of view, each with different colors to
capture different functionalities)

We implemented all the features delineated in our commit-
ment, goal, and stretch goals, even achieving the integration
of three lasers, rather than our initial target of two. Inspired
by this success, we reached a few steps further to create an
entirely new set of modes for our application: geometric prim-
itives creation, including lines and circles. We were thrilled
to make an application closely paralleling nearly every major
feature of Notability on the FPGA fabric.

We designed our code around the idea of scalability, so it’s
foreseeable that on a more powerful FPGA, and with more
careful memory optimization, an additional set of lasers could
be integrated with little effort (instantiation of another write



controller). The concept of multiple users writing in space,
united by an underlying set of transformation modules, is a
powerful one that holds promise is a meta-oriented world.

B. What to Improve

The OV7670 camera is highly sensitive to ambient light
and shadow, skewing the center of mass calculations. It’s
recommended that the setup is operated in a dark environment
or with potential sources of glare shielded.

Drawing curves seems to only work for small curves, but
attempting to draw a larger curve produces no results. The
test bench for the plot_curves module matches the output
produced by the Python program for the inputs we tested.
Given additional time, this is something we would look more
closely into.

In some servo orientations, there is also a horizontal strip
where shining a laser shows the expected crosshair on the
screen, but the drawings do not appear. This problem seems
to affect both the free draw and geometric shapes. We believe
this might be due to an overflow of pixel values, the use of
signed registers, or because the field buffer has trouble reading
from or writing to specific addresses.

C. Contributions

Kristoff focused on control of the servo. He also imple-
mented the base writing/erasing functionality, dynamic stroke
widths, and simultaneous lasers. Annie integrated the joystick,
tied servo and field buffer with field positioning, and developed
the geometric primitives code, including lines, curves, and
circles. Debugging modules and major architectural decisions
were made jointly.

FPGAbility’s repository is accessible at:
https://github.mit.edu/annieliu/6.205-final.

ACKNOWLEDGMENTS

We’d like to thank Prof. Joe Steinmeyer for his guidance
on this project, as well as Fischer Moseley and Jay Lang for
their mentorship and contributing the video processing code.


