
SkyLocator
1st Masarah Ahmadhussein

EECS Dept.
Massachusetts Institute of Technology

Cambridge, MA
masarah@mit.edu

2nd Vanessa Gonzalez
EECS Dept.

Massachusetts Institute of Technology
Cambridge, MA

vgonzale@mit.edu

3rd Lejla Skelic
EECS Dept.

Massachusetts Institute of Technology
Cambridge, MA

lejla@mit.edu

Abstract—We present the design for SkyLocator, a VR headset
system that simulates gazing at the stars during the night in
an environment without light pollution. The display updates
in real time based on the user’s head orientation. The system
is implemented using a Nexys 4 DDR FPGA board, SD card,
an external computer, and an Inertial Measurement Unit. We
implement the system and discuss its performance as well as
possible improvements.

Index Terms—Digital Systems, Field Programmable Gate Ar-
rays, Virtual Reality, ESP32, Inertial Measurement Unit, SD
Card, Astronomical Projections, Universal Asynchronous Re-
ceiver/Transmitter

I. DEFINITIONS

• User horizon: a hemisphere of stars visible to the user
• User frame: the field of view of the user (i.e. what is

displayed on the screen)
• Vernal Equinox: The equinox on the Earth when the

subsolar point appears to leave the Southern Hemisphere
and cross the celestial equator, heading northward as seen
from Earth. [5]

• Celestial Coordinate: It is a star coordinate system
where the origin is defined to be the vernal equinox.
The system plane circle is defined to be the equator,
and the vertical axis points to the north direction. It has
two coordinates, declination (DEC) and right ascension
(RA). These values’ precision is in minutes in our system.
DEC is expressed in (0, 360) degrees and (0, 60) minutes.
Similarly, RA is expressed in (0, 180) degrees and (0, 59)
minutes. By definition, RA is expressed using values (-90,
90) degrees; however, we decided to shift this value by
90 degrees to avoid the difficulties of storing and working
with signed numbers.

• Observer Coordinate: It is a star coordinate of which
the circle plane is defined by the user horizon, and the
vertical axis is defined by the absolute point above the
observer vertically, which is referred to as the zenith. It
has two coordinates, altitude, and azimuth. The origin is
the observer horizon for altitude and the north heading
for azimuth.

• Altitude/Azimuth: The horizontal coordinate system is a
celestial coordinate system that uses the observer’s local
horizon as the fundamental plane to define two angles:
altitude and azimuth. [6]

• Star color: In astronomy, stellar classification [2] is the
classification of stars based on their spectral characteris-

tics. Most stars are classified under the Morgan–Keenan
(MK) system using the letters O, B, A, F, G, K, and M,
a sequence from the hottest (O type) to the coolest (M
type).

II. HIGH-LEVEL SYSTEM DESCRIPTION

The system, depicted in Fig. 1, roughly consists of 3 parts:
[User] The user component collects the time and location

information from the user. This information is passed to the
ESP32 and used by the code on the server to calculate vernal
equinox altitude and azimuth. The coordinates are adapted to
the star coordinate system we are using and returned to the
FPGA.

[Memory] The memory consists of SD card-stored star data
that is accessed by the system in the beginning to create local
memories that will be used primarily by the display modules.

[Graphics] For each pixel in the frame, local memory is
matched at a location to determine whether or not there should
be a star displayed at that location and what color it should
be.

[IMU] The ESP32 is connected to the IMU which gives us
the angles (yaw, pitch, roll) at which the user is looking so
we can properly adapt the display. This information is sent to
the FPGA periodically through a UART connection.

III. USER

[Welcome Screen]The seven-segment display is used as
the input screen. At the begining of each input state, there
is a letter on the most significant digit to indicate the type
input the user should enter. The user inputs their location and
time using the buttons. The user utilizes the left and right
buttons to toggle between the digits, and up and down digits
to increment or decrement the number or change the sign of
longitude or latitidue. The Interface limit the user ability to
enter undefined input by checking the relavent maximum and
minimum for each digit. For example, the The program will
accept an accuracy of four digits to accept hour/angle:minute.
Once an input is done and verified to be valid, the user flips
the first four switches wiith the correct pattern to transition
to the following input. Once all inputs have been entered, the
user can turn to switch 0 ON to exit the home page and start
the loading page.

[Loading Screen]During the loading page, the user input
will be sent to an external computer through UART. The



vernal equinox coordinates, which is the reference angle for
the star database, are computed through astropy library [2].
An approximation method has been investigated in python to
find the coordinates of the vernal equinox that was possible to
implement in the FPGA with the help of CORDIC trigonom-
etry modules. However, the approximation function for the
Greenwich sidereal time and earth rotation angle functions
failed to output a sufficient level of accuracy due to possible
outdated astronomical assumptions(check theta.py). astropy is
a sophisticated astronomy python library that can be used to
compute the coordinate of the vernal equinox more accurately.

The digits of the user input, in total 21 digits, are transmitted
to the FPGA as 8 bits chunks from LSb. Each packet will
contain a start bit, 8 bits of information, and a stop bit. The
ESP32 expects a specific order of the digits sent and it parses
accordingly.

data long 180◦59’ lat 360◦59’ time 24 h 59 m parity
bits 15 15 11 1

After computing the coordinates, the server will send the
result to ESP32 which will send the info to the FPGA in 20
digits, where each digit is sent as a byte packet. Data will be
sent and received in 9600 baud.

data altitude 360◦99’ azimuth 360◦99’ buffer parity
bits 15 15 1 1

[Star Screen] The user can choose between using the IMU
to indicate the head direction or using the buttons to move
the user’s perspective through frame_buffer. This feature
allows for the program to be used independently of the headset
and ease the debugging of visuals.

The FPGA will take the latest value stored in the IMU
register from the ESP32 messages. Three angles need to be
determined to describe the user’s head tilt, pitch, roll, and yaw.
Pitch and roll angles are relative to the horizon, which can be
determined using acceleration data. Yaw angle is relative to the
north direction. Since the IMU gives the vector of the north
direction, trigonometry was involved in the ESP32 to find the
compass direction of the north. The measurement units are
mapped to the desired range; the acceleration is mapped to an
angle.

In every frame, the last stored angle from the ESP32 or the
stored user’s angle based on button input is used to output the
frame bounds. The frame is defined to have a 60’ height and
100’ width.

In implementing the frame_bound, a major focus was to
make it parameterize so the system could easily work through
different screens. Defining the parameter at the beginning
of the program which could change based on the screen
dimension, the desired zooming ratio, and the desired speed
of moving through the map using the switches.

The frame_bound takes the user angle and defined it as
the middle point in the horizon. It adds an offset based on the
screen size and ratio around that point to create the frame’s

upper, lower, right and left bounds. It mods the input to make
all the bounds valid in the start_memory. Also, it limits the
user’s up and down movement based on the normal declination
limits and combines the vernal equinox to it.

IV. MEMORY

The two memories of the system are the external star data
database on the SD card and the internal/local star memory
that are populated with stars in the user horizon.

The database and the memory modules have been created
and integrated into top_level state machine. The memory
structure was conveniently adapted for usage and scalability.

A. SD card

The data on the SD card was stored in a special format
manually. The data contains the 300 brightest stars in the
universe. [4] Each star’s data occupies 5 bytes in the memory.
The data stored in those 5 bytes (40 bits) as follows:

6 bits 9 bits 6 bits 8 bits 6 bits 3 bits 2 bits
zeros RA RA DEC DEC spect- bright-
buffer degrees minutes degrees minutes rum ness

Each star contains 34 bits of data, so we pad the data with 6
bits of zeros to align it on the byte boundary for easier reading
from the SD card, post-processing, and locally storing the data.

We decided to include information on the color of the star
for display. We used the Morgan–Keenan (MK) system with
the letters O, B, A, F, G, K, and M There are subclasses and
further details that could be included; however, we decided to
focus on the most dominant color. We encoded the spectral
information as follows:

MK Color Encoding
O Blue-violet 0
B Blue-white 1
A White 2
F Yellow-white 3
G Yellow 4
K Orange 5
M Red-orange 6

Finally, we decided to encode the star brightness [3]. Ideally,
our project would include varying star radii that would be
based on the stars’ brightness. Within our 300 stars, the
brightness was in the interval [-1.46, 3.54]. These values are
on a reverse logarithmic scale, and thus we decided to settle
on the following encoding:

Brightness interval Encoding
(-inf, 0] 0 (brightest)
(0, 1.4] 1

(1.4, 2.4] 2
(2.4, +inf] 3 (least bright)

A module has been implemented that reads the data in 5-
byte chunks as bytes are being read from the SD card. Each
of these chunks is then stored in the local memory.



B. Local memories

Local memory consists of two parts: star memory and
one-hot memory. These two memories will be useful for
the graphics part of the system. Before the start of the VR
simulation, we populate the two memories with the stars from
the universe. The memories are implemented to be scalable.
Currently, they store only 300 stars; however, they can store
up to 64,800 stars. We decided to go with a lower number of
stars given the small dimensions and low resolution of our VR
headset display.

Both memories are indexed by DEC (range 0-360) and RA
(range 0-180). One-hot memory at [DEC][RA] contains 1 if
there exists a visible star at that (DEC, RA) coordinate visible
to the user; otherwise, it contains a 0. This design choice
was made with several possible user frame implementations
in mind. The user frame could have either been calculated as
the function of the frame_bounds, hcount, and vcount
(Fig. 1) or the one-hot memory could have been used to store
the information about the stars that do and do not belong to
the user horizon (at the user’s location) until the user resets
their location. Star memory at [DEC][RA] contains the 34 bits
of data of a star that is at the coordinate (DEC, RA).

Since we have 300 stars, most of the local memories will be
empty. However, this system can easily be scaled up to many
stars; it can accommodate 64,800 stars.

After user’s time and location inputs, the one-hot memory
will be populated with zeros. Then, the stars will arrive in 5
byte chunks. Each of these chunks contains 34 bits of star
data. Based on the star data (star’s DEC and RA location), we
populate the star memory as well as the one-hot memory.

V. UART COMMUNICATION

To establish communication between the ESP32 and the
FPGA, the SPI communication protocol has been investigated
since it is preferable to ease parsing and provide flexibility
with the message length. However, no functional libraries were
found. Thus, UART has been implemented due to its simplicity
of having RX (receiving line) and TX (transmission line).

[FPGA side] Two pins in the Pmod header have been
defined as RX and TX to provide a communication port with
the ESP32. This has been implemented by creating a UART
module that can send a byte and/or receive a byte during
communication. For both functions, a finite state machine has
been defined. For receiving, the IDLE state will wait for the
RX line to drop down which indicates the start bit. After, it
will enter receiving state where it will parse the 8 bits and
verify the stop bit before signaling the arrival of a new packet
to read. For sending, it will wait in IDLE until it sees a valid
input signal then it starts sending from LSb the data register
content. An order of information has been specified in advance
between the FPGA and ESP32 to create the state machine.

[ESP32 side] Due to the difficult calibration of the ac-
celerometer and the magnetometer of the IMU, an ESP32
was necessary for measuring the angles of rotation that were
needed to update the user’s screen. Furthermore, the ESP32
was used to calculate the user horizon from the input provided

by the user and sent from the FPGA. For this purpose, a
POST request was sent to the server. The server returns the
vernal equinox altitude and azimuth in the system altitude and
azimuth coordinate bounds. Then, the ESP32 begins sending
the IMU-measured angles to the FPGA. These angles are used
to update the screen.

VI. GRAPHICS

The graphics of this system converts data for each star from
the memory into a viewable format where users can see where
each star would be positioned in the night sky if they were
to look up at the location that they gave in to the user input.
This display consists of three major components: reference
lines that can be used to determine if stars are drawn in the
correct position, a single and split-screen display of stars, and
a moving frame that allows users to adjust the stars that they
can see at their location by using IMU angular input or by
pressing the btnr, btnl, btnu, and btnd buttons on the FPGA.
The reference lines that are drawn to the screen will always
remain stationary, but the stars that are drawn to the screen
move with a shifting frame_bound.

The graphics of this system were also scaled to have a
resolution of 500 x 760 pixels, as this dimension would allow
us to fit two copies of our display (one for each eye) on
the screen that we use for our headset. This would allow us
to leave some space between each of the displays when the
system was using a split-screen display of the stars, as the
overall resolution of our screen was 1024 x 768 pixels. We
initially intended to use a smaller screen with dimensions of
800 by 480 pixels that would better fit in our headset, but
it did not arrive in time. Due to this, we were able to use
these larger screen dimensions to display more stars at a time.
However, the screen did not work as well in the headset as
we would have hoped due to its significantly larger size.

A. Reference Lines- Right Ascension (RA) and Declination
(DEC) Angles

We display stars to the user by plotting them on a grid
with their position being dictated by the star’s RA and DEC
angles. The RA angle values will serve as the x-axis and the
DEC angle values will serve as the y-axis. In order to make
testing star position on the grid easier in the future as well
as the ensure that the user would have a visible reference for
where a star could be located in the sky, we decided that it
would be best to draw a grid on our display screen to represent
the RA and DEC angles as described above.

This was accomplished within the one of our modules,
where we were able to draw lines to the screen that created
a grid of approximately 50 by 76 degrees where a line was
drawn for each degree. In my calculations, we assumed that
each star would be represented as a 9x9 square, so each
possible coordinate in our grid was a 9 by 9-pixel square.
Each reference line was drawn through the center of each of
these coordinate squares, as this would make it easier for users
to tell a placed star’s exact RA and DEC angles. The actual



numerical value that each line represented depended on the
frame_bound.

While these lines were very helpful for the purpose of
debugging and helping a user to visually orient stars, they
could be a bit of an eyesore when we just wanted to view
a complete star display. Due to this, we decided to make it
possible for the user to toggle the display of the reference
lines using switch 12 if they did not desire to see the lines.
This toggle works both for the single-screen display and the
split-screen display.

B. Single Screen and Split Screen Star Display

The visual display of our graphics resulted in stars from
the memory being drawn onto the screen. Whether or not a
star is drawn to the screen will ultimately depend on whether
or not its RA and DEC angle values fall within the given
frame_bounds.

We also implemented a toggle for a split screen that would
allow users to decide if they would like graphics to only be
displayed on the left side of the screen or on both the left
and right sides of the screen. We need the same display to be
visible in each eye of the user if we wanted our display to
work properly for a headset, so we gave the user the option
to toggle between the two display options using switch 11.
The calculations used to determine the position of a pixel in
each of these displays are the same for both the single and
split screen displays, with the split screen display allowing
the same RA and DEC angle grid to be drawn on the right
half of the screen that was already drawn on the left for the
single screen display.

In order to determine when a star is being drawn to a specific
pixel on the display, we created a separate module. The basic
purpose of this module is to take in hcount, vcount, and
frame_bounds and return the star coordinates of the star
that would be drawn at that pixel if a star exists at that
coordinate. The module accomplishes this goal by performing
a calculation that determines which 9-pixel bucket the current
pixel fell into on the screen both horizontally and vertically.
Using frame_bounds to determine the lower and upper
boundaries of the screen, this calculation will allow us to
determine the RA and DEC angles of the given pixel within the
frame bound. This module with then return the RA and DEC
angle of the current pixel to top_level, where this informa-
tion can be used to obtain the information about the star at the
calculated RA and DEC angles from the one_hot_cache
and the star_cache. Then one of our display modules is
able to determine if the current pixel belongs to a visible star
using the value obtained from the one hot memory as well as
determine how it should be drawn, based on color information
also stored in the value from the star memory.

C. Moving Stars in Shifting Frame

As we expect users to want to look around the sky at their
given location, we determined that stars should be capable
of moving across the screen when the direction that a user
is looking in with the headset changes. This implementation

exists in a form that is independent of the IMU and in a
form that relies on the input from the IMU, with the user
being able to toggle between both options using switch 10.
When not using the IMU, the user can adjust the frame bounds
from their current position by using the btnr, btnl, btnu, and
btnd buttons on the FPGA to adjust their frame to the right,
left, up, and down. When receiving input from the IMU,
the frame_bounds module with accept the angle values
received by the IMU and use them to determine where the
new frame bound should lie.

With this functionality, the display of stars can move from
left to right across the display when the user pressed the
buttons on the FPGA. Our system also accounts for potential
wrapping issues that may occur when a frame bound passes
from 360 degrees back to 0 degrees. This will allow users
to continuously move their frame bound from left to right,
causing all of the stars in the display the shift depending on
which button was pressed.

VII. PHYSICAL CONSTRUCTION

The VR headset consists of:
• Cardboard headset.
• Nexys 4 DDR FPGA board with a 2GB SD card that

stores the star DB
• LCD screen that is inserted in the headset. The screen is

split into two identical images to account for its closeness
to the eyes. The intended VR headset thin display was,
unfortunately, not obtained in time for testing.

• Adafruit 9-DOF IMU Breakout (L3GD20H + LSM303)
is used since it contains LSM303 which includes a
magnetometer and an accelerometer. 9-axis IMU LM303
attached to the headset that collects the head tilt infor-
mation to update the star display.

• ESP32S2 microcontroller for communicating with the
server to get some astronomical data and receive IMU
data.

VIII. EVALUATION

[BRAM Usage]
• Star memory 360x180x34 bits
• One-hot cache 360x180 bits

Total: 3.8%
[Timing Requirements]
• Our system consisted of 65MHz VGA signal, 25MHz

SD card communication, and 9600 baud was used for
ESP32-FPGA UART communication. The systems were
synchronized by carefully organizing the subsystems that
worked on a slower clock.

• We did have a negative WNS, so we failed to meet timing
requirements in some portions of our system, which we
will describe further in the next section.

[Slack] After building our project, all of the WNS values
produced in our timing report summary were approximately
-3.5. This is not a good thing, as it means that there is
negative slack in our system that is causing us to not reach



timing requirements. Our best guess as to where this negative
slack may be coming from is accessing the star and one hot
memory to obtain the information used the plot the stars on
our visual display. We attempted to circumvent this issue by
pipelining our hcount, vcount, and memory values, but
later realized that the logic that we did to display the stars
were contained within an always_comb block, which may
have prevented this pipelining from making the difference that
we hope for. Despite this timing issue, our system still worked
as expected and did not seem to impact our performance in a
very detrimental way, but this would definitely be something
that we would have looked into more if we had more time.

[ESp32-FPGA Communication] ESP32 and FPGA UART
communication was tested using multiple ESP32 units, oscil-
loscopes and wave generators, as well as a direct connection
between ESP32 and the FPGA in combination with a Serial
Monitor to evaluate the UART implementations. While the
ESP32 seems to have met the requirements, the FPGA state
machine has not passed all of the tests and thus it was
not integrated with the overall system. The FPGA UART
communication seems to be working well on its own but not
as a state machine communicating with the ESP32. Further
inspection and testing are needed for these modules to be
integrated into the whole system so that the VR headset can
be fully functioning.

[Star Placement] One method that we used to visually eval-
uate if stars were placed in the correct position on the display
was through the use of reference lines, as we mentioned earlier.
In our design, each line represented 1 degree of either the RA
angle or DEC angle. These visual lines allowed us to determine
if our design for the display was successful or if an error was
being made when calculating where stars should be placed. If
we noticed a discrepancy in our display using this method, we
would know where the code was failing and what needed to
be investigated in order to fix it.

[Use Cases and Project Checklist Deliverables] We did
reach all of our minimum goals; however, we were not able to
meet our ideal goals. The main bottleneck to the system was
the ESP32-FPGA UART communication state machine. In the
given timeframe, we were unable to debug the communication.
The problem seems to be coming from the FPGA side;
however, we were not able to identify the exact source of
the problem.

Despite this, we were able to reach one of our stretch goals:
• drawing stars to the display using the color of the star

that is stored in the star memory.
Another stretch goal we could have met was building the
headset; however, the parts (most importantly, the display)
have not arrived in time for us to assemble a feasible headset
(the screen we were provided with was too big for the
cardboard case).

[Potential Future Improvements and Expansions]
These are some of the ways that we believe our project

could be expanded in the future:
• Implementation of a star memory access that would allow

for roll rotation.

• Implementation of frame_bounds that would tilt to-
gether with the user horizon.

• Implementation of a variable grid size to display stars.
This would allow us to alter the visual width and height
of the display and not limit our potential values for
frame_bounds.

• Implementation of variable star sizes using the informa-
tion that is stored in star memory. While the dimensions
of the grid could remain constant, we could use the
brightness of each star to determine what percentage of
its 9x9 pixel square it would take up in the grid.

IX. CONTRIBUTIONS

Masarah was responsible for understanding the calculations
needed to translate the celestial coordinate to the observant
(user) coordinates and the possible approximations that can
be implemented in the FPGA. She communicated with Prof.
Michael Person, a professor at MIT and a research scien-
tist and director of Wallace Astrophysical Observatory, for
guidance and explanation of the methods for different star
coordinate systems and to verify the scientific accuracy of the
implementation. She researched IMU applications for virtual
reality and the methods to find the absolute head orientation.
She worked on implementing the user interface, the IMU
implementation, and calibration on the ESP32, SPI, UART
and UART FSM modules on the FPGA. Also, she worked
on writing the python code for the server side using astropy
library.

Vanessa was responsible for designing and implementing
the graphics that were used to display the system. She worked
on the mathematical concept used to convert pixel position to
RA and DEC angle values, obtaining the correct values from
memory to properly plot stars in the display, and creating a
module that would allow for both a stationary and moving
display.

Lejla was responsible for designing and implementing the
memory parts of the system, top_level, and the ESP32
UART communication; worked on the mathematical and con-
ceptual design, system design and data representation, as
well as system integration; worked on designing, testing, and
implementing the ESP32-FPGA communication system, most
notably the ESP32-side communication as well as the FPGA-
side UART communication.

Source Code:
• Title: SkyLocator
• Date: 14-12-2022
• Code version: 1.0
• Availability: https://github.mit.edu/lejla/6205 F22

Final Project Lejla Masarah Vanessa

REFERENCES

[1] Astropy Collaboration et al., “Astropy: A community Python package
for astronomy,” vol. 558, p. eA33, Oct. 2013, doi: 10.1051/0004-
6361/201322068.

[2] “Stellar classification,” Wikipedia, 18-Nov-2022. [Online]. Avail-
able: en.wikipedia.org/wiki/Stellar classification. [Accessed:
23-Nov-2022].



Fig. 1: Project block diagram.

[3] “Apparent magnitude,” Wikipedia, 18-Nov-2022. [Online]. Avail-
able: en.wikipedia.org/wiki/Apparent magnitude. [Accessed:
23-Nov-2022].

[4] D. Hoffleit and W. Warren Jr , “The Brightest Stars
Database,” The brightest stars. [Online]. Available:
atlasoftheuniverse.com/stars.html. [Accessed: 23-Nov-2022].

[5] ”March equinox,” Wikipedia, 14-Dec-2022. [Online]. Availale:
https : //en.wikipedia.org/wiki/Marchequinox [Accessed:
14-Dec-2022].

[6] ”Horizontal coordinate system,” Wikipedia,
14-Dec-2022. [Online]. Availale: https :
//en.wikipedia.org/wiki/Horizontalcoordinatesystem
[Accessed: 14-Dec-2022].


