
Xilinx FPGA Augmented Reality Cards
6.205 Class Project: Final Report

Omozusi Guobadia
Department of Electrical Engineering & Computer Science

mozig@mit.edu

Ezra Kang
Department of Electrical Engineering & Computer Science

ehk@mit.edu

Abstract—This project is a Xilinx FPGA-Camera system that
works in tandem with developed AR Cards to produce 3D images
that appear on the monitor within the actual environment. While
moving the camera, in addition to seeing the normal display of
the environment, the user should be able to view various angles
of the 3D image on the monitor.

I. INTRODUCTION & MOTIVATIONS

In 1968, Ivan Sunderland, a computer scientist at Harvard
University, developed the Sword of Damacles, known to date
as the first augmented reality head-mounted display system
[3]. Since then, there have been multiple companies that
constructed devices that integrate AR to create more interactive
and immersive content.

A popular, successful instance of this technology was
introduced by Nintendo. In 2011, the company released a
system compatible tool in which users can utilize their 3DS
to view Augmented Reality figures on their system. Cleverly
identified as AR Cards, these items interfaced with the on-
system 3DS camera, for the user to freely capture interactive
displays of Nintendo Characters of their choice, and also
allowed individuals to creatively add them to select games
on the system [1].

Our project in a similar way aims to implement our very
own AR Cards with the Xilinx FPGA-Camera system model.
Our model will track the various custom made AR cards
distinctively, and depicts different 3D models depending on
the design of the card.

Fig. 1. Image of an AR Card

The AR Cards will be tracked using distinctive color coded
marks on the edges as well as the middle of the card, while
the 3D Modeling of the actual image will be made utilizing
a vertex-rasterization pipeline, which is similar to Interactive
Minecraft project constructed by Alexis Camacho and Chenkai
Mao [2]. Depending on the view of the camera, a different
angle will be shown of the 3D image. Due to the speed at
which the FPGA computes its frames, and the intrinsic parallel
nature of Verilog in its storage of values and computing
functions, this is almost a perfect device to execute this task
on.

II. SETUP

The FPGA-Camera system will be set up on a tripod at a
specified distance to limit the variability in the design. The
setup will also include a white mat for the card to be blacked
on that ignores noise in other objects, as well as a square
AR Card that will be a color between red, blue, and green.
The setup of the FPGA-Camera is initially projected to be
at an angle at sixty degrees,derived from the accelerometer
information from the FPGA system itself, and a distance forty
centimeters away from the center of the mat. An image of the
projected system is provided in Fig. 2, as well as full image
depiction in Fig. 3 and Fig. 4.

Fig. 2. Proposed Setup of Xilinx-FPGA Camera

Fig. 3. 1st POV Setup of Xilinx-FPGA Camera

Fig. 4. 3rd POV Setup of Xilinx-FPGA Camera

Fig. 5. Setup of Xilinx-FPGA System

III. APPROACH (MODULES)

The preliminary design is broken into three key processes
in order for the AR Card to function: the Pre-Rendering,
Rendering Pipeline, and the Post-Rendering Pipeline. The Pre-
Rendering Pipeline will be utilized to obtain the regular cam-
era raw output, and rotate the output in order to receive hcount
and vcount information, or x and y infomation that is easier to
code into modules (this was an arbitrary decision to include
before or after the rendering pipeline). The Rendering Pipeline
will use essential functions to create the image perceived onto
the monitor, replacing the regular card image partially. The
Post Rendering Pipeline outputs essential information as the
center and angle at which the card is positioned, which will
then be recycled to be used in the Rendering Pipeline itself.
These modules will be described in full detail.

A. Pre-Rendering Pipeline

The Pre-Rendering Pipeline is broken up into two modules,
the camera module which obtains the camera raw output, as
well as the rotate module, which converts the axes in which the
raw output for the camera is perceived from y-x axis (which
is vertical information being on the horizontal, and horizontal
information being on the vertical axis in comparison to the
monitor screen), to x-y axis (which is the exact opposite,
and what people are used to). The clocking for this pipeline
will be sixty-five megahertz, which is essentially the maxi-
mum capability of the attachable FPGA Camera. The Clock
Generation Module produces the necessary frequency needed
for the Camera attachment to function efficiently. The VGA
generation module produces the sync information for the pixel
display on the monitor, as well as provides a way to obtain
regular x and y information for the whole system without being
limited by specific modules or adding extraneous variables in
the system itself. Written Explicitly

• Clk Gen: This module will be included to produce the
sixty-five megahertz clock frequency for the camera and
vga, based on the normal FPGA clock frequency. Accepts
100MHz as input and returns sixty-five megahertz as
output (1 Bit).

• Camera: This module handles the camera information,
accepts the signals that generally come from the camera
board and returns the output frame done flag (1 Bit), pixel
valid out flag (1 Bit), and pixel out data (16 Bits).

• Rotate: Rotates the image in the correct orientation and
returns the pixel address (12 Bits), when given the frame
done flag (1 Bit) as the input.

• Recover: Retrieves the (16 Bits) camera output at
65MHz.

• VGA GEN: Handle Synchronization information in terms
of frame modeling. Outputs the hsync (10 Bit), vsync (9
Bit), hcount (10 Bit), and vcount (9 Bit) information.

B. Rendering Pipeline

The distance and the angle information will be provided
for the camera, to which we programmed have been tested
with a phi (spherical coordinates) of forty degrees and an of

sixty-four centimeters. The theta and camera coordinates will
determine the image of the picture composed and seen. These
variables can be input into a rendering pipeline to generate a
model on screen in real-time. The goal is to use the camera’s
perspective, along with a 3D model defined by its vertices,
to output certain pixel colors at the correct position on the
monitor. There are several stages to this process.

• Model Representation: A 3D model is traditionally
represented as an array of vertices in 3D space, with
texture mapping to put color onto the model. The first step
of the rendering process would break up these vertices
into triangles defined by its three vertices, which is a
shape that is both robust in terms of representing an
object well, and efficient in terms of the calculations
necessary farther down the pipeline. In the interest of
managing complexity, we will forgo the step of calculat-
ing triangles from vertices and instead represent a model
by its triangles directly. Texture mapping is a difficult
problem, early computer graphics would instead give a
single color to each triangle, which is the approach we
take here. Specifically, a model is stored in a BRAM,
initialized with lines of sixty-four bits. Each line contains
a single triangle, with the x, y, and z coordinates of its
three vertices, and a ten bit color. Each coordinate is a
signed six bit number, giving the model a resolution of
sixty-four.

• From 3D triangles to 2D triangles: The first step of the
rendering pipeline is to take the camera position and a line
from the model BRAM, and perspective shift the triangle
such that it is translated from the 3D space to a 2D space.
This allows the triangle to be displayed on a 2D screen in
a way that looks correct from the camera’s perspective.
To accomplish the perspective projection, the triangle’s
vertices need to be defined by the camera’s coordinate
system, where the origin is the camera’s position and the
axes are aligned with the angle from the model’s origin.
Note that in the camera’s coordinate system, the X and
Y axes correspond to horizontal and vertical positions on
a screen, and the Z axis corresponds to how far away the
vertex is from the camera depth-wise. The first calculation
is getting the vector from the camera’s position to each of
the vertices. This is done with a simple vector subtraction.
Then it is necessary to rotate the coordinate system,
which is accomplished by multiplying the vectors by a
rotation matrix The first step of the rendering pipeline is
to take the camera position and a line from the model
BRAM, and perspective shift the triangle such that it
is translated from the 3D space to a 2D space. This
allows the triangle to be displayed on a 2D screen in
a way that looks correct from the camera’s perspective.
To accomplish the perspective projection, the triangle’s
vertices need to be defined by the camera’s coordinate
system, where the origin is the camera’s position and the
axes are aligned with the angle from the model’s origin,
as shown in the figure. Normally, this is done by taking

the inverse of a four-by-four matrix that can translate a
point defined in world space to coordinates in the camera
space. Calculating this matrix, taking its inverse, and
multiplying the coordinates of a point by that inverted
matrix is a very computationally intensive process. A
fair amount of assumptions are made to significantly
reduce the complexity of this problem. Examples of these
assumptions are that the camera has a fixed angle in the
z-axis, the model is assumed to be viewed from at least a
certain distance away, and the model is always assumed
to be in full view.
The sines and cosines are calculated with the sine-table
module, which accesses a BRAM of precomputed sine
values. This BRAM contains ninety fixed point sixteen-
bit numbers, corresponding to ninety degrees of resolu-
tion of sine values. The sine-table module can take in a
theta of range [0, 360] and calculate the correct sine value
with combinational logic to determine the right BRAM
address to lookup. The cosine can also use this sine table,
as cos(theta) is the same as sin(theta+90). The BRAM has
a latency of two cycles, but is fully pipe-lined so both of
the required values can be received in three cycles.
The final step is to perspective project the triangle, which
is achieved by dividing the X and Y coordinates by
depth (Z). Normally, after the perspective projection the
pixel coordinates are reduced down to a range of [-1,
1] (as decimals). The coordinates can then be scaled
accordingly. However, a fixed point division in hardware
would double the amount of cycles needed compared to a
non-fixed point one. This problem was worked around by
first multiplying the X and Y coordinates by their scale
(32 in this case, which has the extra advantage of allowing
bit shifts rather than real multiplication), chopping off the
decimal bits, and then they are divided. The bit-shifts add
two cycles to the division, but with the aforementioned
method there would have been four cycles added, along
with a more costly fixed point multiplication. Division
is costly compared to bit shifts, but it is necessary here
to preserve the accuracy of the image. At this point,
the coordinates are fourteen bits to preserve information
from the various calculations. Note that the coordinates
are rounded to integers before the division, because this
information is not very important as there are no half-
pixels, and reducing the bit length reduces the division
complexity. The division takes six cycles, but it is fully
pipe-lined. After the division of the three vertices is
complete, the X, Y, and Z coordinates can be passed to
the rasterize module, along with the color. The overall
latency of the module is ten cycles, but it is almost fully
pipe-lined, ensuring that the module is efficient. This
module is fully pipe-lined with the caveat that if the
downstream rasterization module is processing a triangle,
and the 3dto2d module is ready to output, then the
pipelines within this module are paused. The rasterization
process takes a variable amount of cycles depending on
the triangle that is passed in, so it must output a busy

signal to indicate that it cannot receive any inputs in
that cycle. However, even if the rasterization module is
busy, the 3dto2d module still continues its calculations
as long as it is not currently ready to output a triangle.
This ensures that this module still makes efficient use of
its cycles.

• Rasterization: Rasterization is the process of taking a
triangle defined by three vertices, and calculating which
pixels lie within the triangle so it can be colored corre-
spondingly. There are several techniques to accomplish
rasterization, but we chose edge computation as it is rel-
atively simple to implement and still efficient to calculate
in terms of latency. Edge computation requires using the
three vertices to make three functions that take in a X
and Y coordinate. If these three functions all evaluate
to a positive number, then that coordinate is within the
triangle. An edge function takes the form E=Ax+By+C.
There are three pairs of vertices: (v0, v1), (v1, v2),
(v2, v0). These pairs are used to find the constants for
Equation 1.

A = V yi − V yj

B = V xj − V xi

C = V xi ∗ V yj − V xj ∗ V yi

(1)

Now we must test each pixel to see if it fulfills the
equations. It would be inefficient to check every possible
pixel coordinate, so we use the bounding box technique
to narrow down the search. The minimum and maximum
X and Y of the three vertices are found. No pixel outside
these bounds can be in the triangle, so only the range of
pixels within these bounds are tested. One pixel is tested
per cycle. If the pixel passes the test, then that pixel’s
coordinates and color are sent to the z-buffer module.
One pixel per cycle seems inefficient at first, as a triangle
spanning its whole possible area means that the rasterize
module would take around four thousand (specifically,
4096) cycles to complete just one triangle. However, the
rasterize module does not end up being the bottleneck
in the overall pipeline. The end goal is to write pixel
colors into a BRAM, and at full throughput for a BRAM
is limited to a single write per cycle. The issue with the
current approach is that there is an appreciable chance
that there will not be full throughput. If a pixel fails
the edge test, then a cycle was wasted not sending a
value to be written to the BRAM. There are two ways to
reduce the chances of a cycle being wasted. The first is to
calculate tighter bounds of the bounding box (such that
it is more of a bounding polygon.) The second is to test
multiple pixels in the same cycle. A combination of both
would be best, and we will work towards implementing
this.

• Z-Buffering: In the case that a pixel of a triangle was be-
hind another triangle, we do not want to display that pixel.
This means that the depth of that pixel must be checked.
This information was already calculated further up the

pipeline. Note that what was stored was the depth of each
of the three vertices of the triangle, not necessarily the
depth of each pixel within the triangle. Calculating this is
possible with interpolation, but it would add unnecessary
complexity. The only cases where interpolation would
matter would be when part of a triangle is behind another
triangle, and another part is in front of that same triangle.
To reduce complexity, it can be assumed that the model
is well-formed, so that this situation does not happen.
Then the depth that can be used is the smallest depth
of the three vertices of the triangle. The z-buffer module
takes in an X, Y, depth (Z) and color. It accesses two
BRAMs, with one containing the depth of the pixel at a
location and the other containing the color of the pixel at
a location. The address of a pixel location is calculated
from the X, Y, and then a read is sent to the BRAM
containing depth data. If the depth returned is more than
the depth of the current pixel the module is looking at,
then this pixel color should be replaced (the current pixel
is closer to the camera than the old pixel.) Therefore
a write request is sent to both BRAMs to replace the
color and depth at that location. If the depth returned
is less, then nothing should be written. After the whole
model is processed, there is now a BRAM containing
all of the correct pixel color data. The reason why two
BRAMS are used is because it allows for full throughput,
meaning that there can be reads and writes in the same
cycle. If one BRAM was used to store both depth and
color, then the z-buffer module can only read or write in a
cycle (as this BRAM is also used by the render module.)
Adding another BRAM allows the z-buffer module to
read/write to the depth BRAM in the same cycle, write
to the color BRAM, and still have one port open for the
render module.

• Rendering: The final step in the rendering pipeline is
to output a pixel color to the display. According to
the hcount, vcount, and image base location, the render
module picks the correct pixel from the two pixels (the
raw camera output pixel and model color pixel) and
outputs it to be displayed over VGA to the monitor.

C. Post-Rendering Pipeline

The Post Rendering Pipeline computes two necessary details
for the system. The first is that it computes which pixel infor-
mation to send out to the overall monitor, which is tabulated
by the VGA Mux at the end of the pipeline. The second is
that the pipeline also computes the angle and center of mass
information needed for the rendering pipeline, utilizing the
angle guesser module as well as the center of mass module.
The angle guesser module functions by counting the mass
of each horizontal line that is seen by the FPGA camera to
be within the AR Card, and predicts the angle based on the
previous tabulated angle as well as the perceived tilt of the card
itself. The center of mass module works by similarly counting
the mass number of pixels the camera perceives to be included

within the AR Card, and divides the summed location in both
the x and y direction by the total mass. More Explicitly:

• Framebuffer: Retrieves the pixel color information (16
Bit) when given the address of the pixel.

• Address Picker: Sends the appropriate pixel address
information (16 Bit) when given the current hcount (11
Bit) and vcount (10 Bit) information.

• Scale:Scales the size of the output imposed image by 8/3.
Returns pixel color output (16 Bit) information.

• Threshold Detector: Returns true if the pixel color
output meets a certain threshold value.

• Center of Mass (Card Body): Returns the corresponding
center of the card body, x-com(11 bit) and y-com(10 bit).
Dependent on the threshold value.

• Center of Mass (Angle Detector): Returns the corre-
sponding center of the card body, x-com(11 bit) and y-
com(10 bit). Dependent on the threshold value returning
true.

• Seven Segment Converter: Returns to the FPGA board
corresponding values to create the LED Number Display,
cat-out(7 bit) and an-out(8 bit).

• Angle Guesser: Returns the angle guessed (9 bit) based
on the center of mass information of the card body and
the angle detected.

• Angle to Coordinate Converter: Returns the x (9
bit signed), y (9 bit signed), z(8 bit) information for
rendering based on the angle information, as well as a
predetermined distance specified away from the card.

D. Full Approach

The system starts by perceiving a card. The initial cycle
bypasses the rendering pipeline until angle and center of mass
is derived. After the information is calculated, the information
will be sent to the rendering pipeline for further processing, in
which after the image is rendered the pixel information will
be taken to the vga-mux to be seen by the user on the monitor.
A full block diagram of the project is included at the end of
the report.

IV. EVALUATION/RESULTS

The rendering pipeline starts processing when it receives
a valid camera location. The latency from a valid signal to
the first pixel being written is fourteen cycles. If the overall
latency were to be quantified by the amount of cycles required
to process a whole model, then the latency would depend on
both the amount of triangles in the model, and the size of those
triangles. For a maximally large triangle (where its vertices
range from [-64, 64]) the rasterization takes around four
thousand cycles. Therefore the overall latency for processing
a maximally large model is equal to (4096+13)*(amount of
triangles in model).

The throughput depends on how it is quantified. If the
throughput is defined by the pixels being written to the BRAM,
then the pipeline has full throughput (a pixel is written per
cycle at full throughput). If instead the throughput is defined
by its processing of valid signals, then it does have full

throughput. The pipeline pauses when the rasterization module
is currently processing a triangle and another triangle is ready
to be sent to it.

The rasterization takes the most amount of time in the
pipeline. In a more average case, with a triangle of size sixteen,
the rasterization still takes around two hundred (specifically,
256 cycles) cycles to complete. However, the rasterize module
does not end up being the bottleneck in the overall pipeline.
The end goal is to write pixel colors into a BRAM, and at
full throughput the BRAM is limited to a single write per
cycle. However there is still room for optimization here. The
issue with the current approach is that there is an appreciable
chance that there will not be full throughput. If a pixel fails
the edge test, then a cycle was wasted not sending a value
to be written to the BRAM. There are two ways to reduce
the chances of a cycle being wasted. The first is to calculate
tighter bounds of the bounding box (such that it is more of
a bounding polygon.) The second is to test multiple pixels in
the same cycle. A combination of both would be best.

The biggest improvement to the throughput and latency of
the system would be changing the RAM that is used such
that multiple writes are allowed per cycle. Overall the RAM
usage of the rendering system is three BRAMs, one for sine
values of size (90 * 16 bits), one that holds the pixels of the
model (64*64*10bits), and one that holds depth information
for z buffering (64*64*9bits). These sizes could technically
be reduced, but that would mean decreasing the robustness of
the design (by having less accurate sine values, or a smaller
resolution of the model.)

The timing requirement is the pixel clock speed, sixty-
five megahertz. The WNS of the synthesized design is three
nanoseconds, which makes sense considering our design im-
plementation worked effectively, since it is borderline near
being a terrible design, it wouldn’t’t make sense to fit more
logic in per cycle.

In terms of DSP utilization, since we only utilized the
camera, it makes sense that the overall utilization is six
percent. Since we now know this, the potential opens up
for utilizing different cameras to process varying AR cards.
For instance one camera will be dedicated on processing red
output information and the other camera will be dedicated on
processing blue output information, and we could superimpose
the two depictions to generate the two AR images in a single
frame. We could also use a different function like audio to
signal the AR image to jump and become more interactive, to
add additional features.

The total memory utilization was even smaller than antici-
pated. The BRAMs, the major component in terms of memory,
only took up twenty-eight percent of the total memory usage.
This means that we also have the potential to add up to two
more AR images to create specificity in card choice. Of course,
this means we would have to create two more cards to exercise
this feature. We could also have a more detailed AR image
encoded, which would take up more memory. LUT utilization
was kept below ten percent, although this was not a huge
concern for us.

V. DISCUSSION/RETROSPECTIVE

A. Kang’s Retrospective

There were several lessons we had learned throughout the
development of this system. The rendering pipeline processes
and moves a large amount of bits per cycle. In the interest of
reducing bit bleed, we wrote the modules to use unpacked
arrays. However, IcarusVerilog has problems working with
unpacked arrays, so the modules that used unpacked arrays
could not be simulated. Instead, we tested the modules on
hardware by outputting onto the seven segment display. This
ended up taking an extremely large amount of time, both
in waiting for compilation and having to write less effective
tests. In hindsight, it would have been better to duplicate the
modules to use packed arrays so that they could be tested
in simulation, but use the unpacked versions on hardware.
The process of perspective projecting the 3D triangles into
2D space ended up being a much larger and complex problem
than first anticipated. In fact, this module was as complex as
the rest of the rendering system put together. Because this was
not understood beforehand, a substantial amount of time was
spent having to replan and rewrite this module. This part of
the project would have benefited greatly from properly under-
standing the requirements and better planning. The rendering
pipe-lining ended up involving an abundance of computer
graphics concepts. We had no prior knowledge of the subject
beforehand, and this was a major hindrance throughout the
project. Particularly with respect to the perspective projection,
modules had to be heavily modified or rewritten when it turned
out that the math was incorrect. In the future, heavy guidance
should be sought for topics that one is not necessarily expected
to know for the class, such as computer graphics.

B. Guobadia’s Retrospective

Over the course of programming the pre-rendering pipelines
and post-rendering pipelines, I gained a new found appre-
ciation for the 3DS, especially for its complex processing
hardware for handling AR Card Detection. Especially for it
to be able to process AR Cards in a variety of different
environments irrespective of changes in background color.

This was a two component project, in which I had to think
of the optimum environment for tracking the AR Card, and
also creating the code to be able to run the detection (for
both the center of mass and the angle detection). To limit
the amount of noise introduced in the system, which was
especially concerning considering that there was no way of
filtering out the noise entirely, we had to use a black cloth
as the background. Looking back, it would have been ideal to
realize this early, as it would have limited the amount of hours
dedicated to detecting the card. I also designed the card to be
as simple as possible, as in the beginning, I overestimated the
cameras detection abilities (I initially thought that the camera
would be able to detect color information at the span of a
mm, but the camera’s resolution capacity is way less). So
even though this was a coding project, this also fit under the
description of a “design” project.

The code needed to detect the card needed a lot more
requirements from the video pipe-lining template lab. We
needed to optimize the code, change unneeded sequential
parts to combinatorial, to maximize the speed of processing
the angle and center of mass.In addition to adding the angle
detector modules (I also needed a way to reduce noise that did
not include the filter modules; the filter modules had additional
BRAMs that would have sent the memory utilization upwards),
this dedicated a majority of the time for my section of the
project. Although the ideation process was very insightful, it
would have been great if I could skip, so it would have been
also to implement other stretch goals for the project.

Another idea to create a robust system, with more AR
Designs and Card Detection capabilities that we could have
implemented, was to try to integrate multiple FPGAs to double
the memory and processing capabilities. Although that would
have been an additional amount of weeks dedicated to proper
integration. Maybe a component for the class in the future
would be to integrate into one of the labs, how to use multiple
FPGAs on the same project (it could be a sub-project lab to
get used to working in teams before the final project).

VI. AUTHOR CONTRIBUTIONS

A. Guobadia’s Contribution

I looked into optimizing the video processing pipeline in
order to reduce the amount of memory utilized, including an
angle detector pipeline. I also designed and made the card, and
the environment needed for card detection. I was involved in
proof-reading the project documents, restructuring the block-
diagrams and images, and researching augmented reality, its
history and general tips for creating an AR system.

B. Kang’s Contribution

I researched computer graphics extensively in order to
understand how a full rendering pipeline is implemented. This
included the full problem of going from a digital model defined
by vertices all the way into outputting pixels onto the screen in
correct positions. Additionally, I had to solve several problems
related to the assumptions and optimizations that one can make
in order to simplify the rendering system. Overall, I researched
and implemented the entire rendering pipeline. I also did
quantitative analysis on the system in terms of timing, latency,
throughput, and resource utilization. I wrote the portions of the
report and created figures relating to the rendering pipeline.

REFERENCES

[1] AR cards. Nintendo. (n.d.). Retrieved October 25, 2022, from
https://nintendo.fandom.com/wiki/AR Cards

[2] Camacho, A., Chenkai, M. ”Interactive Minecraft” MIT, Digital Elec-
tronics Laboratory, Fall 2020.

[3] The mainstreaming of augmented reality: A brief history. Harvard
Business Review. (2016, October 4). Retrieved October 25, 2022,
from https://hbr.org/2016/10/the-mainstreaming-of-augmented-reality-a-
brief-history: : text=The%20first%20AR%20technology%20wa
s,AR%20head%2Dmounted%20display%20system.

Final Pr oj ect Pipel ine
omozusi g. & ezr a k. | December 14, 2022

VGA GEN

hsync

[10:0] hcount

[9:0] vcount

vsync
bl ank

CLK GEN
(Nor mal Cl k
100MHz t o

65MHz)

CAMERA

ROTATE

RECOVER

cam_cl k_in

[15:0] r ec_pixel _out put

[15:0] cam_pixel _out put

[15:0] r ot _pixel _out put

CENTER OF
MASS (CARD

BODY)

CENTER OF
MASS (ANGLE
DETECTOR)

ANGLE
GUESSER

FRAMEBUFFER

THRESHOLD
DETECTOR

ADDRESS
PI CKER

SCALE[11:0] pixel _addr ess

[15:0] pixel _out

[15:0] pixel _out

mask

[10:0] cent er ed_GREENX

[11:0] x_com, y_com

VGA MUX

[10:0] hcount

[9:0] vcount

[8:0] angl e

ANGLE TO
CARDI NATE
CONVERTER

[7:0] r ender ing_z

[8:0] r ender ing_x, r ender ing_y

[8:0] angl e

SEVEN
SEGMENT

CONVERTER

[15:0] pixel _out

val id_out

[10:0] hcount

[9:0] vcount

[10:0] hcount

[9:0] vcount

OUTPUT

[9:0] cent er ed_GREENY

PRE- RENDERI NG PI PELI NE

POST- RENDERI NG PI PELI NE

RENDERI NG PI PELI NE
* Pipel ine onl y incl udes
main input and out put s
and not r el at ional

[7:0] an_out

[6:0] cat _out

MODEL BRAM SI NE TABLE

3D_t o_2D

[8:0] ANGLE

[8:0] MODEL DATA

[15:0] SI N VALUE

[8:0] THETA

[11:0] PI XEL ADDRESS

MODEL COLOR
BRAM

OUTPUT

OUTPUT

RASTERI ZE

Z- BUFFER

MODEL DEPTH
BRAM

[54:0] MODEL DATA

[30:0] PI XEL OUT

[8:0] Z- I NDEX

[11:0] PI XEL ADDRESS

[11:0] PI XEL ADDRESS

[11:0] PI XEL OUTPUT

SCALE

[15:0] PI XEL_OUT

[10 :0] hcount

[9:0] vcount

[15:0] PI XEL_OUT

Copyright 1986-2022 Xilinx, Inc. All Rights Reserved.
--
| Tool Version : Vivado v.2022.1 (lin64) Build 3526262 Mon Apr 18 15:47:01 MDT 2022
| Date : Wed Dec 14 17:44:22 2022
| Host : EECS-DIGITAL-27 running 64-bit Ubuntu 20.04.5 LTS
| Command : report_utilization -file /tmp/tmp.KugjIu/obj/placerpt_report_utilization.rpt
| Design : top_level
| Device : xc7a100tcsg324-1
| Speed File : -1
Design State : Physopt postPlace

Utilization Design Information

Table of Contents

1. Slice Logic
1.1 Summary of Registers by Type
2. Slice Logic Distribution
3. Memory
4. DSP
5. IO and GT Specific
6. Clocking
7. Specific Feature
8. Primitives
9. Black Boxes
10. Instantiated Netlists

1. Slice Logic

+----------------------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------------------+------+-------+------------+-----------+-------+
Slice LUTs	3874	0	0	63400	6.11
LUT as Logic	3791	0	0	63400	5.98
LUT as Memory	83	0	0	19000	0.44
LUT as Distributed RAM	28	0			
LUT as Shift Register	55	0			
Slice Registers	2336	0	0	126800	1.84
Register as Flip Flop	2318	0	0	126800	1.83
Register as Latch	18	0	0	126800	0.01
F7 Muxes	7	0	0	31700	0.02
F8 Muxes	0	0	0	15850	0.00
+----------------------------+------+-------+------------+-----------+-------+

1.1 Summary of Registers by Type

+-------+--------------+-------------+--------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+-------+--------------+-------------+--------------+
| 0 | _ | - | - |
| 0 | _ | - | Set |

0	_	-	Reset
0	_	Set	-
0	_	Reset	-
0	Yes	-	-
0	Yes	-	Set
19	Yes	-	Reset
1	Yes	Set	-
2316	Yes	Reset	-
+-------+--------------+-------------+--------------+

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	1436	0	0	15850	9.06
SLICEL	971	0			
SLICEM	465	0			
LUT as Logic	3791	0	0	63400	5.98
using O5 output only	2				
using O6 output only	2462				
using O5 and O6	1327				
LUT as Memory	83	0	0	19000	0.44
LUT as Distributed RAM	28	0			
using O5 output only	0				
using O6 output only	28				
using O5 and O6	0				
LUT as Shift Register	55	0			
using O5 output only	31				
using O6 output only	15				
using O5 and O6	9				
Slice Registers	2336	0	0	126800	1.84
Register driven from within the Slice	1478				
Register driven from outside the Slice	858				
LUT in front of the register is unused	380				
LUT in front of the register is used	478				
Unique Control Sets	56		0	15850	0.35
+--+------+-------+------------+-----------+-------+
* * Note: Available Control Sets calculated as Slice * 1, Review the Control Sets Report for more information regar
ding control sets.

3. Memory

+-------------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+-------------------+------+-------+------------+-----------+-------+
Block RAM Tile	39	0	0	135	28.89
RAMB36/FIFO*	38	0	0	135	28.15
RAMB36E1 only	38				
RAMB18	2	0	0	270	0.74
RAMB18E1 only	2				

+-------------------+------+-------+------------+-----------+-------+
* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only one FIFO36E
1 or one FIFO18E1. However, if a FIFO18E1 occupies a Block RAM Tile, that tile can still accommodate a RAMB
18E1

4. DSP

+----------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------+------+-------+------------+-----------+-------+
| DSPs | 15 | 0 | 0 | 240 | 6.25 |
| DSP48E1 only | 15 | | | | |
+----------------+------+-------+------------+-----------+-------+

5. IO and GT Specific

+-----------------------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+-----------------------------+------+-------+------------+-----------+-------+
Bonded IOB	76	76	0	210	36.19
IOB Master Pads	35				
IOB Slave Pads	38				
Bonded IPADs	0	0	0	2	0.00
PHY_CONTROL	0	0	0	6	0.00
PHASER_REF	0	0	0	6	0.00
OUT_FIFO	0	0	0	24	0.00
IN_FIFO	0	0	0	24	0.00
IDELAYCTRL	0	0	0	6	0.00
IBUFDS	0	0	0	202	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	0	24	0.00
PHASER_IN/PHASER_IN_PHY	0	0	0	24	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	0	300	0.00
ILOGIC	0	0	0	210	0.00
OLOGIC	0	0	0	210	0.00
+-----------------------------+------+-------+------------+-----------+-------+

6. Clocking

+------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+------------+------+-------+------------+-----------+-------+
BUFGCTRL	3	0	0	32	9.38
BUFIO	0	0	0	24	0.00
MMCME2_ADV	1	0	0	6	16.67
PLLE2_ADV	0	0	0	6	0.00
BUFMRCE	0	0	0	12	0.00
BUFHCE	0	0	0	96	0.00
BUFR	0	0	0	24	0.00
+------------+------+-------+------------+-----------+-------+

7. Specific Feature

+-------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+-------------+------+-------+------------+-----------+-------+
BSCANE2	0	0	0	4	0.00
CAPTUREE2	0	0	0	1	0.00
DNA_PORT	0	0	0	1	0.00
EFUSE_USR	0	0	0	1	0.00
FRAME_ECCE2	0	0	0	1	0.00
ICAPE2	0	0	0	2	0.00
PCIE_2_1	0	0	0	1	0.00
STARTUPE2	0	0	0	1	0.00
XADC	0	0	0	1	0.00
+-------------+------+-------+------------+-----------+-------+

8. Primitives

+------------+------+---------------------+
| Ref Name | Used | Functional Category |
+------------+------+---------------------+
FDRE	2316	Flop & Latch
LUT3	1743	LUT
LUT4	1419	LUT
LUT2	1028	LUT
CARRY4	913	CarryLogic
LUT6	518	LUT
LUT5	268	LUT
LUT1	142	LUT
SRL16E	64	Distributed Memory
OBUF	47	IO
RAMB36E1	38	Block Memory
IBUF	29	IO
RAMS32	28	Distributed Memory
LDCE	18	Flop & Latch
DSP48E1	15	Block Arithmetic
MUXF7	7	MuxFx
BUFG	3	Clock
RAMB18E1	2	Block Memory
MMCME2_ADV	1	Clock
FDSE	1	Flop & Latch
FDCE	1	Flop & Latch
+------------+------+---------------------+

9. Black Boxes

+----------+------+
| Ref Name | Used |

+----------+------+

10. Instantiated Netlists

+----------+------+
| Ref Name | Used |
+----------+------+

