
FPGA Photobooth Final Report
1st Diego Rodriguez

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
diegorod@mit.edu

2nd Ellie Rabenold
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

rabenold@mit.edu

3rd Kojo Anane-Fordjour
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

kananefo@mit.edu

Abstract—This document outlines a design for a photobooth
system developed on a Nexys 4 DDR FPGA as a final project for
6.2050 at the Massachusetts Institute of Technology in Fall 2022.
The FPGA Photobooth project consists of three key elements —
image processing, a user interface, and a pen plotter. This report
will detail the considerations and challenges that influenced the
digital design of each facet of the system.

I. OVERVIEW

This project mimics a photo booth that enables the user to
take a photo, pass it through a filter of their choosing, and
print it onto paper via the 2-axis pen plotter. Once the user
has triggered a photo to be taken, they are presented with 6
options for to filter the grayscaled image; among the offered
filters are dithering, a wave filter, and edge detection. The
user manipulates the on-board buttons to make their selection
with the VGA-based user interface. Then, the user follows a
similar process to select the threshold value that is applied to
the image as it is converted from grayscale to black and white.
Once the picture has been processed, it is compressed and sent
to the pen plotter, which draws it out onto a canvas.

II. IMAGE PROCESSING AND MANIPULATION (DIEGO)

A. Filters

Fig. 1. The grayscale-dither filter applied to an image

• Dither: applies a Floyd-Steinberg Formula that converts
the image to black and white using a pattern that dis-
sipates pixels and emulates a grayscale picture while
minimizing error by dispersing it across the picture. This

is done by finding a pixel’s “lowest error” pixel, and then
adding a fraction of said error to the pixel to the right, as
well as the 3 pixels under it. This was implemented using
a single BRAM that continuously reads the offset for the
pixel in front of the current pixel, and writes the total
offset of the pixels for the next line, directly behind the
current pixel, pipelined accordingly. We hoped that since
this converts pixels to 1 bit, we could use it to save space
on BRAMs, though we then learned afterwards that the
minimum width is 8 bits.

• Wave: Applies a polynomial to the pixel’s y-coordinates
that moves the x-coordinates left or right, and also checks
their updated position, and wraps them around back to the
other side of the image as necessary to preserve dimen-
sions and pixels. The polynomial uses signed variables
that detect the y-coordinate location (which turned out
to be hcount sync) relative to the midpoint and bottom
of the image, and moves the x-coordinate of the current
pixel, checks if it’s in bounds, and wraps around if
necessary. The fact that hcount and vcount are irregular
means that careful use of its BRAM is required to ensure
the image is stored and read correctly, which can be
confusing with the applied transformations on the image.

• Ridge: This one makes use of convolution, buffers, and
kernels, adapted to work with grayscale pixels. It uses
the same ridge kernel as lab 4b, outputting pixels as
their value minus the value of the pixels surrounding
them, meaning only pixels with a sufficiently high value
compared to those surrounding it are seen.

• Identity: This one also uses the same approach, though
it instead uses the blur convolution to appear less noisy.

• Wave y: This works similar to the other wave filter,
though it applies the polynomial to the x-coordinates and
adds an offset to the y-coordinates. Once again, rotation
and mirroring makes this tricky to make work correctly.
As well, ensuring the multiplication can be done within a
single clock cycle, and the resulting offset isn’t so large
as to completely disrupt the image is also required.



• Negative: since we started running out of space for
BRAMs, this one reads from the exact same BRAM
as identity, but instead outputs its inversion, allowing
another filter to be used without consuming another
BRAM.

B. Threshold

Based on the input, a threshold is chosen. If a pixel’s value
is above the threshold, it is evaluated as white, otherwise black.
This converts to a 1-bit data size. The pixel data that is fed
through the threshold is 7 bits and four options for thresholding
are offered, each being roughly equidistant points between 0
and 127, the values we used for grayscale intensity.

case (thresh_mux)
2’b00: pixel_out = (pixel_in > 25);
2’b01: pixel_out = (pixel_in > 51);
2’b10: pixel_out = (pixel_in > 77);
2’b11: pixel_out = (pixel_in > 102);

endcase

Fig. 2. Dithered image thresholded at 25 and 51

Fig. 3. Dithered image thresholded at 77 and 102

C. Average and Compression

In order to make an input small enough for the plotter to
write on a small paper, we learned that we had to convert
our images to 240x320 to 80x106. In order to do this while
preserving the image, we created a convectional image com-
pressor that averages 3x3 pixel values to a single pixel. Since
at the point that the image is received by the plotter side, the
pixels are 1 bit in size, the approach simply involves using
a buffer to obtain a 3x3 kernel of pixels, and checking if it
has 5 or more pixels with a value of 1. Then, we keep track
of the hcount and vcount to only receive and store the pixels
from every third hcount of every third vcount. This allows the
plotter to use a smaller aspect ratio while still maintaining the
general shape of the image.

III. USER INTERFACE (KOJO)

The user interface internally is a finite state machine that
takes on a different display depending on the state of the
program. Image sprites were utilized to show instructions on
how to interact with the program. The camera module was
also used to output a gray scale image onto the screen. The
code for the UI is housed within a module named screen,
which is divided into four main states: START, FILTERS,
THRESHOLD, and SEND.

Fig. 4. The state machine for the user interface

• START: This is the initial screen a user will see. There is
a 240x320 pixel gray scale live feed from the camera and
also instructions on how to use the FPGA to operate the
system. When sw[15] turns high, the live video becomes
a still image. To proceed, the user needs to press btnc.
When btcn goes high, the state is changed to FILTERS.

• FILTERS: In this state, some basic mathematical cal-
culations are used to create 6 boxes and an arrow that
is symmetric. Since the VGA monitor is 1024 pixels
wide and each image is 240 pixels wide, on a y-axis,
the vertical columns for the images are between [50,
290), [390, 630), and [730, 970). The monitor is 768
pixels wide and each image is 320 pixels. To also allow
a 100x100 pixel arrow image sprite to run across the
middle of the screen, the x-axis values for the horizontal
rows for the images are between [26, 346) and [446, 776).
This setup leaves 26 pixels vertically at the very top of the
screen which is enough to display the instructions for this
filters state. The arrow image sprites are moved around
based on input from btnl and btnr, which is how the
user decides which filtered image they want to process.
Once the desired filter is picked, the user can advance by
pressing btnc.

• THRESHOLD: In this state, the user is shown their
selected filtered image at four different levels of thresh-
olding. To achieve this, filter selection is tracked at the
previous state and that filtered image is thresholded and
displayed. Again, by interfacing with btnl and btnr, the
user is able to select which thresholded image they want
to continue with. Once satisfied, btnc advances the user
to the next state.

• SEND: This state serves as an end state. Here, the filtered
image and the thresholded black and white image for that
filter is saved and ready to connect with the rest of the
system such that the plotter can begin drawing the image.

The state machine within screen served to be the boiler
plate that would hold the filtered images for user selection.



Fig. 5. Simplified example of filter select screen

Within the top level module were the BRAMs which held the
filtered data. Additionally, was the vga module which is what
allowed pixels to be put on the screen. By using the same vga
instantiation for both the user interface and filtered images,
it was possible to display both instances at the same time.
Calculations were performed to get the specific addresses for
filters in specific boxes. Since the VGA screen is 1024 pixels
by 768 and each image was 240 pixels by 320 pixels and there
are six different options, it was determined that box 1 should
occupy a hcount of [50, 240) and a vcount of [26, 346). Since
the data is stored in a BRAM, we can read the address by
shifting from the BRAM by shifting the current hcount and
vcount by the image start offset. However, due to a design
choice in an earlier part of the system, the camera’s pixel data
is placed into the BRAM in a reverse order. More generally,
if the desired location for a box is known, addresses can be
mapped by this general equation:

read addr = (img width ∗ img height− 1)−
((hcount− start h) ∗ img width+ (vcount− start v))

(1)

IV. PLOTTING THE PICTURE (ELLIE)
A. Hardware

Fig. 6. The 2-axis pen plotter

The 2-axis pen plotter system consists of an X-Y frame
borrowed from a Flashforge Inventor II 3D printer. A ballpoint

pen of respectable quality (ideally a Pilot G2 07) is mounted
with tape to the front end of the gantry block. A combination
of linear rods, linear bearings, pulleys, and timing belts enable
the gantry to traverse the coordinate plane. The gantry is
actuated by two bipolar stepper motors mounted to the plotter’s
frame, and each stepper motor is driven by a L298N motor
driver. The motor driver modules are powered by 12V and are
connected to the JC and JD PMOD pins on the Nexys 4 DDR
board.

B. Motor Control

The plotter hardware informed a significant portion of the
digital design that commands the plotter. The most salient
place this occurred is in how the stepper motors are actuated.

• Pulse-width Modulation: The plotter motors are con-
trolled by L298N motor drivers that accept PWM input
signals to affect the stepper motors’ speed and direction.
The top level module initializes with a 100MHz clock,
but to prevent clock domain crossing with the camera
clock, the plotter module operates at 65MHz. An internal
counter in the PWM generator module acts as a clock
divider to generate a 50% duty cycle signal at the desired
frequency. Because the plotter does not need to vary its
speed, a set 50% duty cycle is sufficient. Although a
frequency as low as 10Hz is sufficient to operate the
plotter, at that speed a drawing would take at minimum
two hours to complete. Through experimental testing a
40Hz PWM signal was found to be appropriate.

• Phase Sequencing: Each phase of the stepper motor
must be energized in a specific sequence to generate
a step. To spin the motor clockwise, the phases are
pulses by moving forward through the sequence. By
stepping backwards through the sequence, the motor can
be reversed.
The plotter control module uses one state machine per
motor. A global counter variable keeps track of the step
in the sequence. By incrmenting or decrementing each
counter variable, the state machine is able to step the
plotter in either direction. One feature of the plotter is that
it can be paused mid-drawing. By tracking the sequence
steps, the plotter can resume drawing without issue.
To operate at the desired frequency, the motor pulse state
machines only write to the PMOD pins on the rising edge
of the 40Hz PWM signal.

• Scaling the Drawing: Another decision driven by the
hardware is how the image should be scaled on the
canvas. The design was bounded by two constraints -
the dimensions of the plotter’s ’build volume,’ and by
the distance that a single stepper pulse moves the pen.
The gantry can traverse at most a 5.5” x 5.5” square on
the canvas. Determined experimentally, this translated to
roughly 1000 steps of of the pulse sequence. From this,
a 3x scaling of the image’s 320x240 dimensions seemed
appropriate.
However, it turns out that even with 3x scaling, three
plotter steps (representing an edge of a pixel), is not



Fig. 7. The pulsing sequence to drive a motor

enough to visually separate rows. Through trial and error,
it was determined that nine plotter steps are sufficient to
distinguish between different rows of pixels. But, 240
pixels per row at nine steps per pixel is outside the
plotter’s dimensions. To solve this, the final black and
white image is put into a 9x9 pixel convolution module
that determines whether the region is mostly black or
mostly white. Here, the image is compressed by 3x - its
new dimensions are 106x80. This compressed image is
written into a BRAM, then its data is sent to the plotter
pixel by pixel.

• Representing a Pixel: One consideration when designing
the plotter system was how to represent a pixel versus
an empty space. Given that the pen stays on the canvas
the whole time, an empty pixel necessarily must be
represented by a straight line of 9 steps of the stepper
motor sequence. A filled pixel is represented with an ’X’
shape by pulsing both steppers in a specific sequence.
See the image below for a visual representation of this.

Fig. 8. Example sequence

V. PLOTTER FSM DESIGN

The plotter design is governed by a state machine that is
responsible for controlling the counters used in the stepper
motor sequence. For the plotter to operate without manual
input, it has to be capable of four key functions.

• It needs to be able to draw a filled pixel.
• It needs to be able to draw an empty pixel.
• It needs to be able to shift the carriage from the right

end of the canvas back to the left end of the canvas.
• It needs to be able to shift the carriage down to the next

row.
These plotter functions are encapsulated within a state machine
that is engaged when the processed image is ready to be drawn.
The initial state depends on the value of the image’s first pixel.

From there, the image’s pixels are output onto the canvas while
a horizontal position tracker monitors whether the plotter is
approaching the edge of the canvas. If this triggers, the system
enters the CARRIAGE RESET state, which pauses the receipt
of new data as the carriage is pulled back across the horizontal
axis.

Once the horizontal counter has reached 0, meaning the
carriage is back at the left edge of the canvas, the state machine
then enters the SHIFT LINE state, which moves the carriage
down to the next row. Then, the state machine enables pixel
data receipt, and moves to the state that corresponds to the
received pixel.

A vertical position tracker monitors the position of the
carriage as it proceeds down the canvas. Once the carriage has
reached the bottom right corner of the canvas - the last column
in the last row, the vertical counter triggers the DRAWING
DONE state. At this point, the user can cut the power supply,
remove the plotter, and take their finished drawing.

VI. EVALUATION

A. Memory

Due to the nature of the project, it was necessary to store lots
of image data. For this, the FPGA’s block RAM was utilized.
The process initially stores the camera’s pixels to a BRAM,
which is 320x240 pixels each 12 bits wide. From there, five
other BRAMs are utilized to store the various filters, each
one with a height of 320*240 and a depth of 7 pixels. In
total, this is close to 3.6 million bits of data stored on the
BRAM at a given time. Additionally, a few image sprites are
used within the project, but this storage is almost negligble
compared to the pixel data. According to specifications of the
FPGA, the BRAMs can store close to 4.8 million bits, meaning
that almost all of the storage was used. In fact, while testing
later builds, the FPGA did run out of memory, so there may be
extra storage that is unknown. This is not sustainable for future
extensions since there is a risk of running out of space. One
possible fix for smalller variables might be to hold multiple
variables in the same address on a BRAM, since they each use
a minimum of 8 bits in width. As well, with some extremely
careful pipelining, it may have been possible to use some filters
without storing their outputs in a BRAM.

B. Timing

By analyzing the build logs, it was discovered that the
Post Router Timing for the project had a worst negative slack
(WNS) of -0.076 and a total negative slack (TNS) of -0.118.
During Physical Synthesis Initialization, there was a WNS of
-2.03 and TNS of -329. This indicates that the signal path is
slower than the required time for most stages of the build.
Although timing constraints are not met, the functionality of
the design was not affected heavily. Apart from button pressing
and switching, there is not other places of the code where it
is mandatory that timing is sufficient.



C. Use Cases

The initial goal was not met, however it was very close.
Individual components were for the most part sound, but
integrating all the pieces took quite longer than expected. A
stretch goal included using some sort of clustering to better
decide how to draw pixels. This would have been a great
improvement because currently even with the plotter scaling a
240x320 image down to a 80x106, it takes around 30 minutes
to draw. Another stretch goal was to use a colored image rather
than a gray scale one. After constructing this project with gray
scale and observing high memory usage, there would have
be optimizations in other areas that would allow for colored
images to run through multiple filters properly.

VII. RETROSPECTIVE

• The user interface was an important part of the project’s
experience. To best design it, there was careful consid-
eration in place to map out all coordinates such that the
images displayed nicely. Throughout the process, a lot
of these values changed due to adding new constraints
such as more image sprites to the screen. When these
values were changed, it became difficult to keep track of
where every instance was, and it was also a struggle to
ensure that my group mates’ code had the same values. In
the future, there should have been parameters established
early on to hard code those constants.

• Due to time constraints, there was average effort made
to pipeline the system entirely. Currently, the design still
contains some artifacting and stray lines that should not
be present. As the system design evolved, ensuring that
timing was met became more difficult.

• Originally, it was outlined that there would be image
manipulation within the project, and there indeed is.
One of the filters creates a wave effect on an image.
It would have been nice to have included more image
manipulation, such as a spiral or kaleidoscope effect.
With more time, this would have been a path to consider
since it would have provided the project with more
advanced functionality.

• For the sake of the project, the camera was sufficient, but
if this was to be extended to other users, a higher quality
camera would be required. With a higher quality camera,
filters would have appeared nicer and thresholding would
have provided much more drastic differences.

• Within the code base itself, there could have been better
coding conventions. For example, there were a few mod-
ules and files that were not utilized and could have been
deleted to clean up the folder. Additionally, some modules
could have interfaced with others. There was also some
duplicated code within modules that could have been
reduced by using better modularity and parametrization.

• Above all, starting to integrate much earlier would have
been the best thing for the group. As time ran out
and things became rushed, it was difficult to combine
everything while having to wait a long time for builds
and to debug as well.

VIII. ACKNOWLEDGEMENTS

For this project, Kojo focused mainly on the user interface,
Diego was tasked with image processing, and Ellie worked
with the hardware and plotting modules. Kojo and Diego
paired up to ensure that the filters could lay atop of the user
interface. We would like to thank Joe for being an engaging
professor, Jay and Fischer for being great TAs, and the other
LAs who have dedicated plenty of their time to help with labs,
psets, and projects.

IX. REFERENCES

https://github.com/rabenold/6.111FinalProject


