
Adversarial Tetris Preliminary Report
Aishah Jones

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

aishah@mit.edu

Elmer Cruz
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
cruze@mit.edu

Abstract—Tetris is a classic arcade game where a
single player must destroy lines of blocks before said
blocks reach the top of the screen. The active, player-
controlled block is randomly chosen from a set of
blocks, and the player can move the block side-to-side
and rotate the block at will while the block is “falling”
down the screen. Once the block lands at the bottom of
the screen or onto another block, it becomes immov-
able, and a new block is generated for the player to
control. Our project implements an extension of this
game where the next block is generated by a second,
adversarial player by means of holding an image of the
desired block up to a camera. The adversarial player
has the ability to generate either an existing Tetris
block or create a “custom” block that can add varying
levels of difficulty for the active player.

I. Introduction
In order to implement Adversarial Tetris, the sys-

tem is divided into three major groups: Game Logic,
Graphics, and Camera Image Processing. This re-
port will detail the specifications of each major
group, and a block diagram of the entire system can
be found on the final page of this report.

II. Game Logic
The Game Logic portion of the system is respon-

sible for initializing and updating the Tetris game
states, and its outputs will be sent to the Graphics
portion in order to display the game onto a computer
monitor. An outline of the Game Logic subsystem’s
states, inputs, and outputs are given below:

States:
• Welcome Menu
• Play Game
• Pause Game
Inputs:
• FPGA Button Signals

– btnl
– btnr
– btnc
– btnu

– btnd
• active_board[3:0][3:0][11:0]
• active_board_dimension[1:0][2:0]

Outputs:
• new_game
• landed
• game_state([2:0])
• out_board[19:0][9:0][11:0]

The Game Logic portion of the system will be
responsible for initializing and updating the Tetris
game states, and its outputs will be sent to the
Graphics portion in order to display the game onto
a computer monitor. The Game Logic module starts
with a Welcome Menu state where the signals re-
ceived from the up and down buttons help navi-
gate the menu and the center button makes selec-
tions between regular and adversarial Tetris. Once
selected, the state changes to a Play Game state
where a block starts to descend, and the player
can control the movement with the left and right
buttons. The up button in this state will serve
with rotating the block, the center button will be
used for switching between a paused and a playing
state and the down button will serve as the restart
button which returns the game to the initial state.
In the playing state, besides the button signals as
inputs, the module also uses an active_block in-
put along with active_block_dimensions input. ac-
tive_block is a 4x4x12 array that gets passed in
from the next_block_generator module and this ar-
ray represents the playable block in the game. ac-
tive_block_dimensions is a 2x3 array that gives the
dimensions of the block since not every block fills
the 4x4 space. The output of this module is the
updated board after every move made by the player.
The logic uses the board to determine if a move can
be made when that movement’s respective button is
pressed and it updated the board with this moved
active block. The landed output of this module tells



the next block generating module to start generating
the next block. The new_game output specifically
differentiates between the game intro at the start of
a game and the intro during pauses. The game_state
output keeps track of the game FSM for the rest of
the build.

III. Graphics

The Graphics subsystem is responsible for dis-
playing all necessary visuals onto the computer
monitor. The computer monitor itself displays three
things: the Tetris game board, a preview of the next
tetromino that will fall, and a live camera feed.
Figure 1 shows a mockup sketch of this layout.

Fig. 1. A mockup of what is to be displayed on the computer
monitor during gameplay

The Graphics subsystem will thus be split into
two modules for the game board and next tetromino
preview, and a smaller subsystem to encompass
the camera feed. A multiplexor at the end of the
Graphics system will, based on the VGA’s hcount
and vcount values, determine which pixel from each
subsystem (if any) is displayed on the monitor.

The following inputs will be routed to each subsys-
tem in Graphics (and thus not explicitly repeated in
input listings on future pages):

• 65MHz clock
• hcount[10:0]
• vcount[9:0]

A. display_board module
The display_board module is responsible for con-

verting the grid coordinates from Game Logic into
pixel coordinates and displaying those pixels onto
the monitor. The game board is a 10x20 grid where
each grid square is 30 pixels long. In pixels, the
game board is 300x600.

Inputs:
• Graphics system inputs
• board_in[19:0][9:0][11:0]: A 10x20 array

of 12-bit numbers representing the current
game board (output of Game Logic)

• current_game_state: A number representing
one of the 6 game states

Outputs:
• pixel_out[11:0]: A 12-bit number represent-

ing the [R,G,B] value of the game board pixel at
(hcount, vcount )

B. next_tetro_preview module
The next_tetro_preview module is responsible for

showing a preview of the next tetromino to fall on
the monitor. This is a standard feature of the classic
Tetris game that allows the player to quickly plan
where they will place that block. For our system
specifically, this feature also serves as feedback to
confirm that the Camera Image Processing subsys-
tem correctly identified the block being displayed in
front of the camera.

Inputs:
• Graphics system inputs
• next_tetro[3:0][3:0]: A 4x4 grid represent-

ing a tetromino. A value of 1 in a given array
location indicates that that grid square is part
of the tetromino. This input comes from the
Camera Image Processing subsystem.

• current_game_state: A number representing
one of the 6 game states

Outputs:
• tetro_pixel_out[11:0]: A 12-bit number

representing the [R,G,B] value of the block pre-
view pixel at (hcount, vcount )

C. Camera
The Camera subsystem is responsible for accept-

ing input directly from a camera connected to the
FPGA and displaying the masked image on the
screen. The system applies a red chrominance mask



to the camera image, thus the adversarial player
must show bright pink/red colored tetrominoes to
the camera for proper detection. The objective is
that the visual of the mask on screen will provide
clear feedback on how easily and clearly the blocks
are being isolated by the system. This subsystem is
essentially a simplified version of the infrastructure
provided for Lab 4, and a block diagram is provided
at the end of this report.

Important modifications and notes regarding the
given infrastructure are as follows:

• scale: This module has been removed due to
the fact that the camera image on screen will be
at the smallest scale, 240x320.

• mirror: Takes no switch inputs; mirror will
always be on for our system

• rgb_to_ycrb: Modified so that there is only
one output: cr_in

• threshold: Modified so that there is only one
input: cr_in

• vga_mux: Removed and replaced with combina-
tional logic in top_level in the project’s current
iteration; will likely be returned at a later stage
to increase top_level’s readability

IV. Camera Image Processing
The Camera Image Processing subsystem is re-

sponsible for analyzing the camera data output
from the Camera subsystem and determining what
tetromino is currently being shown to the cam-
era. The accuracy of this subsystem is essential
for smooth, enjoyable, and functional gameplay. As
demonstrated during the class labs, the existing
red chrominance mask performs exceedingly well at
isolating red or pink objects, so this system’s design
will use that to its advantage.

A. tetro_detector module
The Camera Image Processing subsystem is en-

capsulated entirely in the tetro_detector module. Any
given tetromino can be thought of as existing on
a 4x4 grid - the squares making up the tetromino
are considered “active”, and the empty squares are
considered “inactive”. This module determines the
next tetromino by keeping 16 running sums, one
for each square of the 4x4 grid, and updating these
sums based on hcount, vcount, and the masked
camera feed input coming from the Camera sub-
system. If this pixel input equals the system’s mask
value (currently this value is hexadecimal number
A26), then the sum for the square containing that
pixel is incremented by 1. If the sum for a square
equals the area of that square (i.e. length x width in
pixel coordinates) to within a small margin, then it
is considered an active square.

Inputs:

• 65MHz clock
• hcount_in
• vcount_in
• masked_pixel_in[11:0]: A 12-bit number

representing the [R,G,B] value of the masked
camera pixel at (hcount, vcount )

Outputs:
• next_tetro[3:0][3:0]: A 4x4 array repre-

senting a tetromino block. (A 1 represents an
“active” square, a 0 represents an “inactive”
square)

V. Next Block Generator
The Next Block Generator subsystem will be in

charge of converting the array received from Camera
Image Processing and converting it into a Tetris
block by assigning each detected sub-block the
same randomly assigned color. If adversarial game
mode is not active or if no block is detected, then the
next block that gets generated is randomly selected
from the seven default Tetrominos as shown in Fig-
ure 1. The color is randomly selected regardless for
this version of Tetris.

Fig. 2. The seven Tetrominoes, each named according to the
alphabet letter they most resemble.

Inputs:
• Camera Block: A 4x4 array received from Cam-

era Image Processing
Outputs:
• next_block[3:0][3:0][11:0]: Represents

the next playable block
• next_block_dimensions[1:0][2:0]: Repre-

senting the dimensions of the Next Block since
the block sizes aren’t constant or always fill up
the 4x4 space

VI. Evaluation
This system ran into many trade-offs, especially

between throughput and resource usage. Because



Tetris relies on being able to determine whether a
move can be made or not relative to other blocks
and the borders of the board, it became easier to
use large structures like our 20x10x12 array repre-
senting the board. Arrays have the benefit of being
readily accessible which simplified the logic for block
movements and rotations.

VII. Block Diagrams
See System Overview and Camera Subsystem

block diagrams on the following pages:



Fig. 3. Block diagram representing the entire Adversarial Tetris system

Fig. 4. Block diagram for the Camera subsystem responsible for displaying live camera feed with a red chrominance mask


