
REND3R: Raytracing Engine and Networked
Device for 3D Rendering

Dev Chheda
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

dchheda@mit.edu

Moruph Osuolale
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

moruph@mit.edu

Abstract—We propose REND3R, a hardware-based 3D graph-
ics pipeline capable of rendering three-dimensional primitives
to a VGA-connected screen given commands over an Ethernet
interface. The system can parse graphics commands, complete
the geometry calculations necessary for mapping 3D to 2D space,
and paint vertices, edges, and planes to the screen. We implement
two versions of REND3R, one which uses rasterization rendering
and another which uses raytracing rendering. Each rendering
mode requires distinct computations, but the overall structure of
the system is similar in both.

Index Terms—Digital systems, Field programmable gate ar-
rays, Domain-specific architecture, Instruction set architecture,
Graphics processing, Computer networks

I. INTRODUCTION

A. Overview of 3D rendering techniques

In general, 3D rendering is accomplished by keeping track
of three main aspects that constitute a “scene”:

• the camera
• light sources
• geometric objects
By calculating the relationship between these three things,

we can determine the value for every pixel on the screen.
For a rasterization implementation of rendering, geometric

objects are represented as triangles in three dimensional space,
which can be projected to the two-dimensional viewport of the
camera. The color of a particular triangle depends on how the
triangle faces any light sources. Then for every pixel on the
screen, we check to see if it is within any of the calculated
2D triangles, and if so, we assign to the pixel the color of the
enclosing triangle.

The raytracing implementation of rendering involves casting
rays from the focus of the camera, through each pixel in
the viewport, onto the 3D scene. In order to calculate the
value of each pixel, we first determine the nearest geometric
object that each ray collides with by intersecting the ray with
every object in the scene. Then, we compute the lighting (and
potentially reflections/refractions) using recursive raycasts, and
mix with the color of the object to compute the pixel value.
So, in raytracing rendering, it is most convenient to represent
geometric objects using analytically described surfaces which
for which we can easily compute ray intersections. We specify
these shape types further in Section II-D.

B. Physical System

The entirety of the hardware needed to run the system exists
onboard the Digilent Nexys 4 DDR FPGA. To interface with
the system, an ethernet cable is used to send commands, and
a VGA cable is used to output display to a screen.

C. System Design Overview

The REND3R system consists of three primary stages:
• intepreter: The system receives commands over ether-

net which are written into an instruction bank1. the
instructions are read out and processed by the instruction
processor. Instructions that involve updating properties of
the 3D objects require writing to the memory bank. Other
control instructions are handled by passing certain signals
to the rendering controller.

• geometry processor: The rendering controller manages
the scheduling of computations based on control events
passed from the instruction processor and based on the
rendering mode. The rendering controller passes data as
scheduled from the memory bank to the renderer, which
actually completes the rendering computations. As the
renderer produces results, the controller tabulates and
writes pixel values into the frame buffer.

• display: The VGA state machine implements the VGA
specification and passes pixels from the frame buffer to
the FPGA’s VGA lines.

A diagram of these stages is shown in Figure 1.

II. INSTRUCTION SET ARCHITECTURE

We define a custom 32-bit instruction set architecture for
specifying graphics commands to our processor. The instruc-
tions set allows the programmer to fully specify a frame-by-
frame 3D graphics sequence.

The processor deals with four fundamental types of in-
structions: frame instructions (F-type), camera instructions (C-
type), lighting instructions (L-type), and shape instructions (S-
type). Each instruction type is designated a unique opcode, and
each has its own division of bits into various fields, as shown

1Due to time constraints we were not able to configure ethernet tools on
our computers to actually send ethernet packets to the FPGA board. Instead,
we load the instruction bank from a preset main.mem file.

mailto:dchheda@mit.edu
mailto:moruph@mit.edu


Fig. 1: High-level system overview

in Figure 3. S-type instructions are further divided into SE-
type and SD-type, as discussed further in Section II-D. We
currently implement 8 total instructions, as shown in Figure
2.

A. F-type instructions

Frame instructions are used to signal frame-level and control
events. The type of frame event is determined by the func
bits (instruction[10:9]). We currently support the following
functions:

• 2’b00 = end render. This signifies the end of a render.
• 2’b01 = new render. This signifies the beginning of a

new render and clears all existing shape and lighting
information

• 2’b10 = new frame. This signifies the beginning of a new
frame.

• 2’b11 = loop render. This signifies to loop the rendering
by jumping to the top of buffered instructions.

However, as seen in Figure 3, there are many unused bits in
the F-type instructions, allowing for many possible extensions.
For example, one extension might involve allowing the pro-
grammer to specify a desired frame-rate, which would signal
the processor to drop computations to match the frame-rate at
the expense of graphics quality.

B. C-type instructions

Camera instructions are used to set and modify the proper-
ties of the camera in the 3D scene. Each instruction includes
the property being modified and the new value of that property.
Each property is a 16-bit value, and for the properties currently
implemented, all values are interpreted as 16-bit floating point
numbers. The properties of the camera are listed in Figure 4,
and we offer brief descriptions below.

Camera properties:
• x-, y-, and z-location determine the location of the camera

in 3D space.
• r-, i-, j-, and k-rotation determine the rotation of the

camera as a quaternion.
• near-clip and far-clip determine the distances of the near-

and far-clipping planes of the camera.

• fov-horizontal and fov-vertical determine the field of view
in the camera’s horizontal and vertical axes.

We note that the specified rotation and field-of-view of the
camera are relative to default camera settings. In particular,
the camera points in the negative z direction (i.e. towards
(0, 0,−1)) by default, with its rotation about the z-axis such
that the x- and y- axes of the worldspace are aligned with the
horizontal and vertical axes of the screen space, respectively.
The default near-clip is 1, and the default camera viewport has
a width of 10 and a height of 7.5. The field-of-view and near-
clip properties are just used to scale these parameters rather
than set them directly.

C. L-type instructions

Lighting instructions are used to set and modify the prop-
erties of the various lights in the 3D scene. Similar to camera
instructions, lighting instructions require the specification of
the property being modified and the new value, but in addition
to this, we must also specify the light index, since there are
potentially many lights in the scene. The list of currently
supported light properties is shown in Figure 4. We offer brief
explanations of the properties which are different from the
camera properties:

• Source type: the last 2 bits of the value determine the
type of light source. We currently support the following:

– 2’b00 = light off
– 2’b01 = directional light

We were not able to implement support for point light
sources due to time constraints, but we could they would
fit cleanly into our existing system, as the directionality
of point light sources can be easily determined given the
location of the object and location of the light. After that,
point sources would be handled just as directional sources
are handled.

• x-, y-, and z- forward determine the direction in which
the light points.

• Color: the 16-bit color of the light consisting of a 5-bit
red channel, 6-bit green channel, and 5-bit blue channel.

• Intensity: a 16-bit floating point number determining the
intensity of the light.



Fig. 2: Supported instructions and syntax

Fig. 3: Instruction encodings

Fig. 4: Camera, light, shape, and triangle properties



D. S-type instructions

Shape instructions are the most complex in our instruction
set due to supporting a large number of shapes. As shown
in Figure 3, we support 19-bit shape indices, allowing the
programmer to use a total of up to 219 = 524, 288 shapes.
However, since our instructions are only 32-bits wide, and
since the opcode uses 3 bits, this leaves only 10 bits for
specifying the property and value to update for a given
shape. We standardize on 16-bit values (especially important
for floating-point values to maintain a consistent level of
precision), so this presents a problem.

We solve this limited bit-width problem by splitting each
shape update instruction into two 32-bit instructions: one
SE-type instruction and one SD-type instruction. With 64-
bits for shape updates, we have more than enough bits to
specify the required values; in fact, we now have enough
bits to specify two properties and two 16-bit values. We take
full advantage of this gained bit-width to reduce the total
number of instructions in any graphics program (which would
help improve performance). The SE instruction is responsible
for specifying the shape index and the two properties to be
updated; the SD instruction simply holds the two 16-bit values
for each property.

Note, however, that this means that SD instructions do not
have an opcode. In order to ensure that SD instructions are
interpreted correctly, we require that SD instructions always
immediately follow SE instructions. When our processor en-
counters an SE instruction (as determined by its opcode), it
will always expect the next instruction to be an SD instruction
(and will always interpret the next instruction as if it is SD).

Another problem arises with our method of updating two
properties at once with SE/SD instructions — what if the
programmer only wants to update a single shape property?
For this reason, we include the null shape property, as shown
in Figure 4. Updating this property will not affect any of the
shape’s actual properties and allows the programmer to update
just one value using the SE/SD scheme.

Note, we actual provide two sets of instruction and property
tables for setting shape properties. As described in Section I-C,
rasterization rendering and raytracing rendering are handled
in very different ways; particularly, rasterization rendering is
accomplished using triangles while raytracing is best suited
for shapes which can be analytically described. When the
processor is run in rasterization mode, it interprets shape
data as specified in the Triangle properties table; when the
processor is run in raytracing mode, it interprets shape data
as specified in the Shape properties table (see Figure 4). As a
result, we also provide two separate high-level instructions
for setting shape data — sp and tr, as see as seen in
Figure 2. This conveniently allows the programmer to use the
appropriate symbolic names when writing programs intended
for either rendering mode. Note that both sp and tr are
assembled into SE/SD-type instructions.

We now briefly describe the properties for triangles and
shapes. In rasterization mode, triangles are specified by simply

specifying their vertices in 3D space (x1, y1, z1), (x2, y2, z2),
(x3, y3, z3). In raytracing mode, we instead choose from a
preset number of analytic shapes, and then transform the
shapes as desired. We currently support the following shape
types:

• 4’d0 = shape off
• 4’d1 = sphere
• 4’d2 = cylinder
• 4’d3 = cone

These shapes were selected because they can easily be de-
scribed and solved for ray intersections analytically. We ex-
pand on this further in Section IV-B2 and also refer readers to
[1] for a more in-depth explanation of how ray intersections
are computed on these shapes.

Raytracing shapes have both rotation and scaling, although
we require that the programmer provides the inverse scaling,
since this significantly simplifies raycasting computations.

Color for both triangles and shapes is as specified for lights.
The final property for shapes is the material property, which
selects a preset material type (which can be used to describe
reflectivity, refractivity, etc.). We don’t implement different
material types in this report (due to time constraints) but allow
for future implementations by including in the ISA.

E. Assembler

We also provide an assembler to assist with programming
for our processor. The assembler is a Python script which
parses the human readable instructions shown in Figure 2 and
writes out the equivalent binary instructions. The assembler
gives a one-to-one instruction translation for the program given
by the user, with the exception of sp and tr instructions.
As discussed in Section II-D, shape updates are actually split
across two 32-bit instructions, so the assembler accordingly
assembles sp and tr instructions into one SE instruction and
one SD instruction (in that order, as required by the processor).

III. INSTRUCTION PROCESSOR AND CONTROL

The instruction processor reads instructions from the in-
struction bank, decodes them from the 32-bit encoding, and ex-
ecutes them appropriately. The processor executes C-type, L-
type, and S-type instructions by simply updating the specified
properties in the memory bank by writing to the appropriate
address (as determined by the object type and the object
index).

F-type instructions allow for control over the system, and
are therefore more complicated to handle. First, we note that
the instruction processor should not update 3D objects while
the rendering controller is reading from the memory bank
and performing computations. This could lead to undesired
behavior in which the rendered performs computations on data
that has only been partially modified. In particular, the renderer
should only perform computations after all updates for a given
frame have been made (since no guarantee is made about the
order of updates or the order of computations scheduled by
the controller).



Fig. 5: Block diagram for rasterization process

So, a state machine is implicitly implemented in which the
system is either in update mode or in compute mode at any
given time. When the processor executes a nf command,
it puts the system into compute mode until the controller
signals that computation is completed, after which the system
is restored to update mode. While in compute mode, all
stages of the instruction processor stall to prevent updates until
computation is completed.

When the processor receives a nr command, it clears the
memory bank, and signals to the controller to clear the frame
buffer. When the processor receives a lr command, it jumps to
the top of the instruction bank, effectively looping the specified
render program. Finally, When the processor receives an er
command, it permanently stalls and does not consume any
additional instructions.

IV. RENDERING

A. Rasterization mode

1) Scheduling: When in rasterization mode, the controller
schedules computations one triangle at a time. In particular,
the controller iterates through all triangles and passes each
to the renderer. Since the renderer may take many cycles to
produce the output for a single triangle, the renderer passes
back a pause signal to the controller, signifying when it is
ready to consume the next triangle in the scene.

2) Data transformations: As mentioned previously, trian-
gles are stored as vertex triples in a buffer within the BRAM
as half precision (16 bits) floats. All math is done with
half precision floats. We use the floating point Vivado IP,

to perform operations on floats. In the previous stage (the
instruction parser), the high level information about the shape
is interpreted. From this information, we use the position and
orientation of the shape to calculate the 3D triangle array for a
specific shape. In addition, we store the shape’s desired color
into a BRAM. We then attach the address of the shape’s color
to the triangle array, which is used when determining the color
of a triangle before the corresponding projection is calculated.
This process creates an array of data that is described by Figure
6.

Next, we stream the 3D triangle array (and its attached
address) into a module that will transform it into the repre-
sentation given by Figure 7. For each triangle of each shape
we can calculate its associated surface normal, which is the
vector perpendicular to the plane coincident with the triangle.
This comes from the vector cross product of any two edges of
the triangle. Note that there are actually two surface normals,
collinear with each other and pointing in opposite directions.
The order of the vertices when determining the triangles thus
matters, and must be properly specified to the controller. We
can then take the dot product of the surface normal with the
direction vector to any lights in the scene to determine how
much a surface is “looking at” a particular light source. Then
we mask the defined color of the shape with a lighting layer
to get the final color of the triangle. When this step is over,
we will have turned an array of shapes, as shown in Figure 6,
into an array of triangles, as shown in Figure 7.

3) Projection: Notice at this point, we have dropped the
concept of shapes, and are now working with just triangles



- info_address: 0x123
- triangles_3d:

- { 0.0, 1.0, 2.0 }
- ...

Fig. 6: Data format for 3D vertex array in DDR2 as shapes

- vertices_3d: { 1.0, 2.0, 3.0 }
- color: 0x123

Fig. 7: Data format for raw 3D vertex array as triangles

and their colors. With the associated position and orientation
information given by the camera command, it is possible
to know how a shape will appear in 2D space. For each
3D triangle, we project each of its vertices onto the plane
associated with the given camera command. If the triangle lies
at least partially on the screen, it is saved to a 2D vertex buffer
that is within the DDR2 RAM along with its associated z-
index. This “z-index” is actually the distance of the position of
the centroid of the 3D triangle to the camera. The subsequent
2D triangle array contains items as shown in Figure 8.

- vertices_2d: { 10.0, 20.0, 30.0 }
- z-distance: 5.0
- color: 0x123

Fig. 8: Data format for projected 2D vertex array

4) Painting: To paint, the module does checks on each
triangle in the 2D vertex buffer. A state machine is used to
order the triangles by z-distance in descending order. Then
for each triangle, a 2D bounding box is calculated around the
shape of the triangle. This allows us to do checks on the pixels
only within the bounding box, so as to not waste time on every
other pixel in the scene. For each 2D pixel in the bounding
box, we check if that pixel exists within that triangle. If so, we
assign the pixel to the color of the triangle. All other pixels
default to a color of black. With this information, we have
created an entire frame of data, which is saved to a frame
buffer implemented with BRAM.

B. Raytracing mode

1) Scheduling: For raytracing, we compute each pixel value
one at a time. Computing the value of a single pixel involves
finding the first intersection for the ray which originates at
the camera focus and passes through the virtual pixel in
the 3D viewport. However, in order to compute the nearest
intersection, we must intersect the ray with every shape in the
scene2. So, our controller performs a raycast for every shape
for every pixel.

2There are heuristics which could be employed to skip raycast computations
for certain shapes, but since our raycaster is fully pipelined, this would provide
little to no benefit, since applying the heuristic on a given shape would take
more time than simply raycasting onto the shape

In order to compute lighting and more advanced material
effects, recursive raytracing is required. Particularly, after
computing the intersection for a pixel ray, computing the
lighting requires scheduling rays from the intersection point
towards each of the light sources to determine interference
from other shapes. And, computing for reflective materials just
requires scheduling a reflection ray from the intersection in the
appropriate direction. We don’t implement advanced material
effects, but we do implement lighting effects.

2) Raycaster: Most of the computation is handled by
the raycaster module. Each raycast involves determining the
intersection between a 3D ray (specified by a source and
direction) and a given shape. As mentioned in Section II-D,
we currently only implement spheres, cylinders, and cones.
We chose these specific shapes because for each, computing a
ray intersection involves solving a quadratic equation of very
similar form.

For each shape type, the quadratic is simplest when the
shape is assumed to be in normal form; i.e. centered at the
origin, with unit size, and standard rotation. Thus, to perform
raycast computation, we need to be able to convert between
the normalized spaced and the real world space. Every shape
X can be written in the form X = TRSX̂ where T , R, and
S represent translation, rotation, and scaling transformation
respectively, and where X̂ represents the normal form of the
shape. The normal forms of our implemented shapes are:

• Sphere: Unit-radius sphere centered at origin.
• Cylinder: Unit-radius infinite sphere aligned along the z-

axis centered at (x, y) = (0, 0).
• Cone: Infinite double-cone defined by the curve z2 =

x2 + y2.

Note that, for each shape, T , R, and S are specified by the
programmer’s setting of shape properties.

Rather than transforming the shapes (and thus the quadrat-
ics), we instead transform the ray into the normalized space of
the shape. Particularly, for source S and direction D in the real
space, we compute Ŝ = S−1R−1T−1S and D̂ = S−1R−1D.
Then, we perform the raycast in the normalized space before
transforming the result back to the real world space. For more
mathematical details, we encourage readers to refer to [1].

So, overall, the raycaster first transforms the ray into the
shape’s normalized space, then it generates the appropriate
quadratic coefficients (which are based on the ray parameters)
dependent on the shape type, then it solves the generated
quadratic for the smallest real solution, and finally it computes
the related intersection point, distance, normal vector, etc. to
give as output.

In the future, we could easily implement coordinate-based
clipping for the analytical shapes, since this would just require
checking the coordinates of each intersection point to see if it
was within the specified bounds. This would allow for finite
(open-ended) cylinders and cones along with other interesting
objects.



V. SYSTEM EVALUATION

We define the following parameters for discussion of our
system’s resource usage and performance:

• NUM_INSTRUCTIONS = number of instructions stored
in bank.

• NUM_LIGHTS = number of lights in the 3D scene.
• NUM_TRIANGLES number of triangles in rasterization

mode.
• NUM_SHAPES = number of shapes in raytracing mode.
• SCREEN_WIDTH = width of virtual screen (in pixels).
• SCREEN_HEIGHT = height of virtual screen (in pixels).
• NUM_PIXELS = total number of pixels,
SCREEN_WIDTH * SCREEN_HEIGHT.

• CLK_PERIOD = period of the system clock used to drive
all computation and rendering.

We kept SCREEN_WIDTH = 512, SCREEN_HEIGHT =
384, and CLK_PERIOD = 10 ns (corresponding to a clock
speed of 100MHz) constant throughout evaluation.

A. Memory

To store the vertices used for our rendering, we first consid-
ered using DDR2 RAM. This affords us high capacity memory
at relatively high speeds with only the minor inconvenience
of actually interfacing with the internal DDR2 module. The
internal module in question is from Vivado IP called the
Memory Interface Generator (MIG). Using Vivado’s wizard,
we configured the MIG to our needs. The internal module has
its own clock for the physical memory, which we have chosen
to be 325 MHz, which both divides cleanly from our system
clock of 100MHz, allowing for very fast physical memory. The
controller clock is at a 4:1 PHY, so it runs four times slower
than the memory clock, at 81.25MHz. This necessitates clock
domain crossing for reading and writing data.

However in practice, managing the DDR2 module proved
to be extremely difficult. DDR2 is fast, but it was slow enough
that it took a couple hundred cycles before it could fully fulfill
a request. From an initial implementation, this caused pixels
to be offset from where they were requested. In addition,
managing DDR2 came with the responsibility of an added
clock domain to the project. This would mean we would have
to manage crossing clocks between the trio of our system clock
(which makes write requests), the DDR2 clock, and pixel clock
(which makes read requests and controls writing to the screen).
The extensive use of BRAMs to weave information between
these clock domains in conjunction with the inferred BRAM
usage by the controller for buffering the reading and writing of
pixels pushed our BRAM utilization to its limit. We needed
to be able to buffer the pixels coming from DDR2 because
of the variable response cycle count to ensure we put each
pixel in the right place. However, we were already at 88%
BRAM usage, which made it impossible to buffer pixels at
any reasonable rate.

We thus decided to drop DDR2 from our project entirely.
We shrunk our target resolution from 1024 × 768 to 512 ×
384, a four-fold reduction. We now use a simple dual port

BRAM for our frame buffering purposes, and scale the pixels
up to the original resolution 1024 × 768 size. Had we more
BRAM resources on our board, we would have been able to
properly buffer the pixels coming out of the DDR2 before
painting them, which would have allowed us to paint at the full
1024 × 768 resolution, but switching to BRAM was the best
possible course of action at the point we made the decision.
We ended with 53% usage using BRAM for our frame buffer
(for rasterization mode), saving precious space and expanding
the amount of instructions and triangles that we store.

B. DSP and LUT

We make extensive use of Vivado floating-point IP in our
design to perform geometry and rendering calculations which
dominate the compute resources. For the float_add_sub
and float_multiply and floating-point modules, Vivado
provides the option to synthesize with no DSP usage (i.e. all
LUT), half DSP usage, or full DSP usage. As a result, we see
a clear trade-off in the DSP/LUT resource utilization of our
system.

For each of float_add_sub and float_multiply,
we consider synthesizing using no DSP usage or full DSP
usage, resulting in four total combinations for each of our
designs.

1) Rasterization: Synthesizing and implementation com-
plete with no issues for both the full-DSP and no-DSP variants
of float_add_sub and float_multiply.

float_add_sub float_multiply LUT usage DSP usage
LUT LUT 10 % 8%
LUT DSP N/S% N/S%
DSP LUT N/S% N/S%
DSP DSP 8 % 20%

TABLE I: LUT and DSP utilization for rasterization renderer
design for various implementation choices of floating point
modules. N/S indicates not synthesized.

2) Raytracing: The DSP/LUT utilizations for the raytracing
rendering mode are shown in Table II. We found that the
raytracing design did not synthesize when we attempted to use
DSP for both float_add_sub and float_multiply.

float_add_sub float_multiply LUT usage DSP usage
LUT LUT 60.13 % 1.02%
LUT DSP 45.87% 58.75%
DSP LUT 80.42% 48.66 %
DSP DSP N/A N/A

TABLE II: LUT and DSP utilization for raytracing renderer
design for various implementation choices of floating point
modules. N/S indicates not synthesized. N/A indicates synthe-
sis failed due to lack of resources.

As seen in TableII, we do not make full use of the compute
resources available with our current raytracing design. We
could better utilize the resources available to us by increasing
the number of raycast modules, since this would increase
the throughput of our raytracing computations proprtionally.
This would require more overhead to manage a more complex



controller, as well as requiring more read ports on the memory
bank to read shapes and lights at an increased rate to pass to
the raycasters.

We synthesize just the raycaster to getter a better sense of
the maximum possible throughput of our system. As seen in
Table III, if we use LUT for float_add_sub and DSP for
float_multiply, we could fit an additional raycaster onto
our raytracing renderer, thereby doubling the throughput of
our design. As discussed in V-C2, this would result in halving
the render time for a single frame (assuming that raycasts
could be scheduled efficiently with a more advanced rendering
controller).

float_add_sub float_multiply LUT usage DSP usage
LUT LUT 40.60% 0%
LUT DSP 24.24% 37.08%
DSP LUT 34.24% 57.50%
DSP DSP 17.82% 94.58%

TABLE III: LUT and DSP utilization for raycaster module for
various implementation choices of floating point modules.

C. Performance

We measure the performance of our system based on the
number of geometric objects being rendered, the rendering
mode, and the time to render a single frame. We provide
performance estimates based on calculations, and in cases
where measurement was possible, we provide actual render
times as well.

1) Rasterization: The rasterization pipeline is split into
two sections. One section performs the hard calculations
which transforms the three-dimensional triangles to the two-
dimension space mapped to our screen. The second section
performs the half-plane check, determining if a triangle is
visible for any given pixel position on the screen. The first
section has a latency of 63 cycles for every triangle calculated.
The second has a latency of four cycles and needs to be run
for every pixel address in our resolution space before it is
complete, and for every triangle calculated. Our resolution
space is 512 ∗ 384 = 196608 in size, so this totals to
63 + 4 + 196608 = 196675 cycles before it can write a full
triangle’s worth of information to the frame buffer. Using a
clock period of 10ns, this equates to a latency of 1.96ms for
calculating the frame buffer for single triangle, linearly scaling
the number of triangles in the frame.

2) Raytracing: We were able to make performance esti-
mates for raytracing mode based on the specified behavior
of our system. Our implementation of the fully-pipelined
raycaster module has a latency of 205 cycles. So, intersecting
a single ray with all shapes requires NUM_SHAPES + 205
cycles (plus some small number of cycles to tabulate results).
And, thus computing the value of a single pixel requires
(NUM_SHAPES + 205) * (NUM_LIGHTS + 1) cycles since we
require one initial ray and NUM_LIGHTS lighting rays after
the intersection is computed. So, the total number of cycles
to render a single 3D frame is approximately (NUM_SHAPES
+ 205) * (NUM_LIGHTS + 1) * NUM_PIXELS. If material

effects were implemented, this would simply add another
multiplicative factor to the cycle computation to process the
recursive raytraces. We fix NUM_PIXELS = 512 * 384 =
196608. Using a clock period of 10 ns, we produce estimates
for frame render times, as shown in Table IV.

NUM_SHAPES NUM_LIGHTS Estimated render time (s)
1 0 0.405
16 0 0.435

256 0 0.906
4096 0 8.456

1 1 0.810
16 1 0.869

256 1 1.813
4096 1 16.912

TABLE IV: Estimated raytracing render times (in seconds) for
a single frame as NUM_SHAPES and NUM_LIGHTS vary.

As seen in Table IV, the constant factor in running time
dominates for small NUM_SHAPES (e.g. ≤ 16), but for larger
values (e.g. ≥ 256), the linear term dominates. The running
time grows linearly with the number of lights.

We note that the multiplicative factor for lighting is a worst
case estimate; currently, our design does not execute lighting
raytraces if no shape is hit for a given pixel. Additionally, in
the case that lighting must be calculated, the multiplicative
factor for lighting could be improved by terminating lighting
raytraces whenever a shape is hit, rather than waiting to
intersect the ray with all shapes. This is because once a shape
is hit, we know the light source is blocked, so we don’t need
to continue raycasting. While the worst case runtime would
be the same, this heuristic would strictly improve the average
runtime since it amounts to early termination of a raytrace.
We don’t implement this second early termination of lighting
heuristic in our present design.

We also measure the actual render times with one light and
2 shapes. The estimated number of cycles (using our formula)
for this setting is 81,395,712 ≈ 8.1 · 1010 and the estimated
runtime is 0.814 seconds. The actual measured number of
cycles is 45,766,350 ≈ 4.5 ·1010, corresponding to a run time
of 0.458 seconds. We think the number of cycles is lower than
estimated due to the fact that not all pixel rays hit a shape,
and so the number of lighting rays is significantly less than
computed, as explained above.

VI. IMPLEMENTATION

Our implementation is hosted at
https://github.com/vedadehhc/rend3r. Note that raytracing is
on a separate branch of the repository while rasterization is
on the main branch.

REFERENCES

[1] Dodgson, Neil. “Ray Tracing Primitives.” Ray Tracing
Primitives, University of Cambridge, 29 Oct. 1999,
https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node2.html.

[2] Scratchapixel. (2015, January 25). Rasterization, A Practical
Implementation. Rasterization: A practical implementation (an overview
of the rasterization algorithm). Retrieved December 14, 2022, from
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-
practical-implementation

https://github.com/vedadehhc/rend3r

	Introduction
	Overview of 3D rendering techniques
	Physical System
	System Design Overview

	Instruction Set Architecture
	F-type instructions
	C-type instructions
	L-type instructions
	S-type instructions
	Assembler

	Instruction Processor and Control
	Rendering
	Rasterization mode
	Scheduling
	Data transformations
	Projection
	Painting

	Raytracing mode
	Scheduling
	Raycaster


	System Evaluation
	Memory
	DSP and LUT
	Rasterization
	Raytracing

	Performance
	Rasterization
	Raytracing


	Implementation
	References

