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Abstract—We present the Xilinx Shuffle, a purely hardware-

based MP3 audio playback device implemented on an FPGA. With 

a 2GB SD card used to store MP3 files, it can hold ~600 songs in 

memory, and playback the songs at high-definition 44.1 kHz. Our 

algorithm is built to support all varieties of MPEG-1 Layer III 

encoded data at a fixed sampling rate of 44.1 kHz. Furthermore, 

the XILINX Shuffle user interface consists of a play, pause, and 

song skip button. Though we were not able to complete the full 

product, we implemented in SystemVerilog up to the penultimate 

step of conversion from an mp3 bitstream to 8-bit PCM values. 

This includes frame parsing, Huffman decoding, requantization, 

antialiasing, stereo conversion (supporting dual channel, joint 

stereo, mixed stereo, and some combination of the three), an 

inverse modified DCT, and frequency inversion. Additionally, we 

implemented the interface to read mp3 bits directly from an SD 

card. 
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I. INTRODUCTION 

MP3, a file format for audio, is perhaps the most ubiquitous 
codec in use today. First proposed by the Moving Pictures 
Entertainment Group (MPEG) in the 1990s, it was standardized 
by the International Organization for Standardization (ISO) in 
1993. The MP3 codec employs a combination of lossy and 
lossless compression to reduce file sizes typically by a factor of 
10 while maintaining discernible audio quality. Additionally, 
MP3 files are structured in mostly independent chunks which 
allow for the streaming of data. These qualities have made MP3 
the first choice for many digital applications that store and play 
audio. 

For example, Apple’s first generation IPOD Shuffle 
functioned as a dedicated MP3 playback device. Future 
generations over the next decade held most of the audio 
playback device market share. However, these devices 
employed a system on chip (SOC) with a single processor 
executing software commands. To this end, we introduce the 
Xilinx Shuffle, an MP3 playback device capable of storing and 
playing nearly 600 songs on board. Leveraging the streaming 
decodability format of MP3, our playback device is designed 
purely in hardware, implementing the entire algorithm without 
the use of a central processor. As such, our design is optimized, 
and more efficient than previous generation IPODs for MP3 
playback. 

II.  COMPONENTS 

A. 2 GB SD Card Writing and Reading 

 As part of the project, there is a python file that 

allows a user to convert an mp3 file into a .mem file. The user 

can then copy the data from the .mem file onto the SD card 

using HxD, while keeping track of the initial offset and the 

number of frames the mp3 file contains. These can then be 

inputted into the top level as parameters, and users can use the 

switches to change which song they would like to play. Once 

they have selected a song, they can use the up button on the 

fpga to begin playback. If we had more time, another 

additional user interface would be to add a switch to act as a 

play/pause button, which would stop the decoding process 

after the current frame. We could also have added fast-

forward/reverse capabilities by using the left/right buttons to 

increment or increment which frame will be read next by the 

SD controller. 
 The button is part of an finite state machine (FSM) 

for reading off the SD card, moving from the IDLE to PLAY 

states. In the play state, the board communicates with the SD 

card itself using the SPI controller with a 25 Mhz clock. It will 

continue to read off the SD card until the number of frames 

read is equal to the number of frames inputted by the user as a 

parameter. Although we were unable to get the decoding 

pipeline working on the board itself, the SD state machine 

would likely also need a flag from one of the later modules to 

ensure that header and side information data would not get 

overwritten mid-frame. 
 From the SD controller, each byte was written into 

two modules: one which stores the most recent 4 bytes and 

goes high when a valid header is detected, and a multiplexer 

that takes in that valid header signal and either passes the data 

to a module that parses the side information, or into a FIFO 

buffer to be stored for Huffman decoding. 



 

Fig 1. SD card writing mechanism: Example of frame data in 
SD card sector 

B. Nexys 4 DDR FPGA 

 The FPGA will implement all steps of the decoding process 
and audio reconstruction algorithm. First, it will stream out each 
MP3 frame from the SD card. Then, it will run the full decoding 
process on the frame. Finally, it will reconstruct the audio 
waveform, create a PCM signal, and send the signal to an 
onboard mono-channel audio jack. 

 Additionally, the FPGA will have onboard play, pause, 
and song skip buttons. 

III. MP3 CODEC PARSING 

 The MP3 codec (based on MPEG-1 Layer III) was designed 
to employ two forms of lossy compression, one based on 
mathematical limits of audio playback, and one based on 
exploiting biological constraints of human audition. 
Additionally, the final MP3 codec bitstream is compressed 
losslessly using Huffman coding. These components contribute 
to our design decisions for parsing the bitstream of MP3 data 
coming from the SD card. We can outline 3 components in each 
MP3 frame. 

 

Fig 2: Full System Diagram (simplified) 

 

A. Frame Header 

 The start of each frame consists of a 4-byte header. The 
header contains relevant information for parsing the side 
information and the Huffman codes throughout the rest of the 
frame. For example, our system can handle files with multiple 
audio channels and variable bitrates. Both of these quantities can 
be read out based on the header. 

 Some audio files are also protected by an MPEG-1 CRC 
checksum of the following form: 

𝐺(𝑋) = 𝑋16 + 𝑋15 + 𝑋2 + 𝑋1 

 Our design incorporates this error checker in parallel and 
ignores audio frames containing broken data. 

B. Frame Side Information 

 Following the 4-byte header information and possibly the 2-
byte checksum, our parser then directs the incoming bitstream 
to two parallel side information decoders (one for single channel 
audio, one for dual/stereo/joint stereo audio). These occur in 
parallel because they require different numbers of bytes from the 
incoming bitstream. The side information also yields important 
fields from decoding the Huffman codes, including the number 
of bits allocated to a single granule and channel, the Huffman 
tables used to decode portions of the filterbank spectrum (based 
on a modified discrete cosine transform), and the location of the 
start of the audio data. Note that the information from a single 
frame may be encoded across several past frames according to a 
‘bit reservoir’ technique to enhance quality in Layer III 
encoding. 

C. Frame Data 

 The frame data consists of scaling factors (which determine 
how amplified certain frequency bands are) and the cosine 
transform coefficients for frequency bands. Ultimately, each 
audio channel is coded into two granules, which are further 
quantized into 576 different cosine frequencies. The MP3 codec 
emphasizes lower frequencies by coding them at a higher 
resolution than high frequencies. Our algorithm can handle 
multiple common choices for encoding sub-bands of the cosine 
transform. 

 To account for the bit reservoir framework employed by 
most MP3 encoding software, our bitstream parsing module 
maintains a FIFO buffer of 8000 bits (meant to encompass 3 
frames of audio data and thus handle the maximum load and 
bitrate for MPEG-1 Layer III data). The FIFO buffer allows later 
components to read out the bitstream from the SD card which 
corresponds to scale factors and Huffman codes with a delay 
compared to when the headers and side information are read out. 
This accounts for the fact that audio data read in one frame may 
not be useful until the decoder has parsed the header and side 
information for the next three frames in line. 

 Our implementation also has error checking at this stage of 
bitstream parsing. The side information of each frame contains 
a negative byte offset indicating how many bits from past frame 
data are necessary for Huffman decoding. In the case where not 
enough bits are present (if for example, the system starting 
reading in frames from the middle of an mp3 file and does not 



have a reservoir long enough yet) the FIFO buffer is maintained, 
but the future steps are not implemented and consequently no 
data is decoded for the PCM.  

Fig 3: Frame bitstream decoding Schematic: The SD card 
controller streams out one MPEG-1 Layer III frame at a time. 
The above implementation accounts for multiple possibilities for 
metadata structure (channels, CRC checksums, and variable 
bitrates) while also maintaining the maximum size bit reservoir 
to enable downstream audio reconstruction processes (main data 
FIFO). Additionally, the side information parameters of the 
frame are saved when a valid frame is processed, and these 
parameters innervate almost all downstream modules. 

IV. AUDIO RECONSTRUCTION 

A. Huffman codes and scalefactors 

The FIFO buffer containing the main audio data streams out 
the bits related to scale factors and Huffman codes sequentially. 
The bit-wise delay (the number of ancillary bits following the 
last frame) can be determined based on the value 
main_data_begin returned by the side information parsing 
module. The number of bits within the FIFO module dedicated 
to a particular channel and granule is also determined by the 
meta data of the frame (part2_3_length). The Huffman codes are 
decoded via a look-up-table. The ISO MP3 standard defines 32 
look-up-tables for the high-accuracy regions of the frequency 
spectrum, and 2 look-up-tables for the low accuracy regions of 
the spectrum. These tables also contain variable word lengths. 
Thus, they are implemented based on their table number and 
word length combinationally (to support Huffman decoding at 
25 MHz). 

Note that since the Huffman decoding tables map seuqences 
of bits to pairs of integer values, we used a sequential logic 
buffer on the end of the Huffman decoder to slow down the 
release of data into a single bitstream for requantization. 

B. Huffman requantization 

 The Huffman tables correspond to quantized values of 
energy across an MDCT spectrum (of size 576).  The values are 
first requantized according to their scaling factors in an 
elementwise manner using the following equation for short 
windowed blocks: 

𝑥𝑟𝑖 = 𝑠𝑖𝑔𝑛(𝑥𝑖) ∗ |𝑥𝑖|
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(𝑔𝑎𝑖𝑛−210−8∗𝑠𝑢𝑏𝑔𝑎𝑖𝑛) ∗ 2−(𝛼∗𝑠𝑐𝑎𝑙𝑒) 

and with the following equation for long blocks: 

𝑥𝑟𝑖 = 𝑠𝑖𝑔𝑛(𝑥𝑖) ∗ |𝑥𝑖|
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∗ 2−(𝛼(𝑠𝑐𝑎𝑙𝑒+𝑝𝑟𝑒𝑡𝑎𝑏) 

where 𝑥𝑟𝑖 is the ith iMDCT input and 𝑥𝑖 is the ith value decoded 

from the bitstream. The first exponential |𝑥𝑖|
4

3 is computed via a 
BRAM lookup table, with up to 1000 values. The lookup table 
maps 1000 huffman codes to pairs of floating-point values, with 
16 bits dedicated to the significand and 10 bits dedicated to the 
base (in base 2). 

 The base of the above formulas was first converted to fixed 
point precision with Q8_2 numbers to accommodate the ¼ 
multiplier. Then, after computing the base, the final 𝑥𝑟𝑖  was 
computed as a 𝑄2 30 number to accommodate the large negative 
base-2 exponential. After this point, all computation were done 
using fixed-point 𝑄2 30 numbers. 

 Finally, in special cases of short block windows and 
window-block switching, a reordering of the 576 frequency 
bands was implemented using a BRAM lookup table. 

C. Stereo Conversion 

 For 1 granule, the 576 band MDCT was integrated between 
channels to account for mixed stereo and joint-stereo encoding. 
In the former case, the first channel encodes the mean-valued 
MDCT spectra, while the second channel encodes the difference 
between the left and right channel. The true left and right 
channels can be computed according to the following formula: 

𝐿 = (𝑋𝑐ℎ1 − 𝑋𝑐ℎ2) ∗
1

√2
 

 

Intensity stereo values can be computed according to the 
following formula: 

𝑢𝐼 = tan (𝑋𝑐ℎ1 ∗
𝜋

12
), 𝐿 = 𝑋𝑐ℎ1

𝑢𝑖

1+𝑢𝑖
 , 𝑅 = 𝑋𝑐ℎ2

1
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 Here, the tangents were also implemented according to a 
combinational lookup table.. 

D. Antialiasing 

The antialiasing modules operated by first compiling the stereo 
conversion results from the previous module into a BRAM of 
576 different 64-bit items (the first 32 bits corresponds to the 
first channel, the second 32 bits correspond to the second 
channel). An aliasing lookup table BRAM encoded the 
antialiasing parameters for every frequency band in the MDCT, 
so once the module compiled an entire granule of data (across 2 
channels), it streamed out a new set of anti-aliased values. Since 
these values were in general not ordered according to their 
position in the MDCT, a different reordering module saved 
streamed-out pairs of 32-bit integers into a BRAM and read 
them off in ascending frequency band order. Also, since the rest 
of the pipeline processes the left and right channels 
independently in parallel streams, a 3rd module compiled both 
the granules from a single channel into one BRAM for readout 
into the rest of the pipeline. 

E. Inverse modified discrete cosine transform 

 The iMDCT was computed by implementing a high-
dimensional sate-space system matrix multiplication, where a 
store buffer (a BRAM) contained the last state (576 different 32-



bit fixed-point values) and 3 separate BRAMS contained 3 
possible sets of 18 different cosine lookup tables. Our system 
combinationally implemented the matrix multiplication of a 
vector of  36 32-bit integers and use sequential logic to select the 
different cosine lookup-tables according to frequency band 
position. Since the data stream out of the module was again 
single 32-bit numbers,  

Note that to support a more stream-like process, we computed 
the full iMDCT in chunks according to their matrices, and added 
the result to one final summation which eventually was saved 
into a BRAM for output. 

F. Frequency Inversion 

Our final implemented step in the pipeline was to invert the 

modified discrete cosine transform results according to the 

placement in 18 different subbands. More specifically, we 

multiplied the output of the iMDCT by -1 in certain cases 

according to their placement. This module assumed a correctly 

ordered input which reset at the onset of a new frame of data 

from the SD card. 

G. PCM synthesis (by subbands) 

Though our implementation did not reach the synthesis step 

of PCM samples, out plan of action included first compiling 

subbands of incoming data from the iMDCT, then loading in 

the subbands, and finally computing a matrix multiplication and 

linearly combining the result with a stored state vector to output 

64 PCM samples at a time. These PCM samples would be 

encoded in the form of 8-bit integer values, signifying the 

relative duty cycle of a PCM wave. 

This implementation would require 3 more BRAMs, one to 

store the subband data incoming from the iMDCT module, one 

to save and retrieve the matric coefficients in 𝑄2 30 format, and 

one to store the state vector which is linearly recombined. 

 

 
Fig 3. Audio Reconstruction Pipeline: The mp3 bitstream has 
is decoded over 7 consecutive modules, some of which require 



coupled channel data, and some of which require coupled 
granule data. Thus, our system implements several intermediate 
modules which criss-cross the data streams after fully compiling 
them. After a typical frame is detected, our system requires 
148𝜇𝑠 to reach the output of the  

V. AUDIO PLAYBACK 

 Leveraging an onboard audio jack, we planned to convert the 
frame’s audio sample into a PCM to be ported to the speaker 
system. Since our algorithm handles MP3 files encoding 
multiple audio channels (including dual channel, joint stereo, 
and intensity stereo), the waveforms will be first combined into 
a single waveform and then shipped to the audio playback 
module. 

VI. USER INTERFACE 

We planned to implement a user interface system that 

consisted of a play button, a pause button, a song skip button. 

The play and pause can be implemented by starting or halting 

the frame reading process once a single frame is completely 

read through. The song skip button will be implemented as an 

integer defining the address of the starting frame of a song 

number (encoded as a lookup table in the first chunk of SD card 

data).   

Not that our frame parsing implementation innervates 

all downstream processing modules (after the side information 

parser) with the valid frame signal, and consequently uses that 

signal to reset the state variables of the module where possible 

(in some instances, a BRAM storage vector cannot be 

overwritten upon new frame information, but this effect should 

only contribute to interfering with a single frame, or 26 ms, or 

audio data upon pressing the play button). 

VII. RETROSPECTIVE SYSTEM IMPROVEMENTS 

Although our design is fully synthesizable, it exceeds the 
resources that are available for the Nexys A7 board. In our case, 
we almost double the available lookup tables, as well as the 
amount of DSP blocks on the board. Our implementation of the 
Huffman lookup tables combinationally likely overused the 
number of necessary carry bit adders by a factor of 15 times. 

Additionally, our hybrid synthesis procedure combinationally 
implemented a vector multiplication of 2 64 item (32-bits per 
item) vectors that were consequently sequentially saved into a 
third 64-item 32-bit vector. Though our implementation allowed 
for a massive hardware speed up (the decoding up to frequency 
inversions occurred in 148𝜇𝑠, when a single frame of data plays 
in the PCM for 26𝑥103𝜇𝑠), this came with a massive resource 
usage boost. We see our implementation as possibly supported 
multiple mp3 data streaming operations sequentially. 

Given more development time, we could reduce the carry-bit 
usage by the Huffman lookup-tables by a factor of 15 by 
employing a more flexible lookup table operation that can take 
in a variable number of significance bits (which is otherwise set 
as a parameter right now). 

Our code can be found at github.com/ samuelkravitz/ 
6.111_Final-Projects, and an implementation of the SD card 
usage can be found under the folder Sam/ sd_tester, and an 
implementation of our full stack decoding process can be found 
under Alex/ test_builds/ final_build/. 

VIII. REFLECTION 

For this project, I worked on the Verilog implementation of 
handling the mp3 bitstream after it is inputted into the system 
and a valid header has been determined. Sam worked on 
developing the SD card interface and the initial parsing 
measures to robustly detect the bitstream. 
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