
XILINX™ Shuffle

Abate, Alex

Brain and Cognitive Sciences

Department

Massachusetts Institute of

Technology

Cambridge, MA

aabate@mit.edu

Kravtiz, Samuel

Electrical Engineering and

Computer Science

Massachusetts Institute of

Technology

Cambridge, MA

skravitz@mit.edu

Abstract—We present the Xilinx Shuffle, a purely hardware-

based MP3 audio playback device implemented on an FPGA. With

a 2GB SD card used to store MP3 files, it can hold ~600 songs in

memory, and playback the songs at high-definition 44.1 kHz. Our

algorithm is built to support all varieties of MPEG-1 Layer III

encoded data at a fixed sampling rate of 44.1 kHz. Furthermore,

the XILINX Shuffle user interface consists of a play, pause, and

song skip button. Though we were not able to complete the full

product, we implemented in SystemVerilog up to the penultimate

step of conversion from an mp3 bitstream to 8-bit PCM values.

This includes frame parsing, Huffman decoding, requantization,

antialiasing, stereo conversion (supporting dual channel, joint

stereo, mixed stereo, and some combination of the three), an

inverse modified DCT, and frequency inversion. Additionally, we

implemented the interface to read mp3 bits directly from an SD

card.

Keywords—MP3, MPEG-1, audio playback, lossy compression

I. INTRODUCTION

MP3, a file format for audio, is perhaps the most ubiquitous
codec in use today. First proposed by the Moving Pictures
Entertainment Group (MPEG) in the 1990s, it was standardized
by the International Organization for Standardization (ISO) in
1993. The MP3 codec employs a combination of lossy and
lossless compression to reduce file sizes typically by a factor of
10 while maintaining discernible audio quality. Additionally,
MP3 files are structured in mostly independent chunks which
allow for the streaming of data. These qualities have made MP3
the first choice for many digital applications that store and play
audio.

For example, Apple’s first generation IPOD Shuffle
functioned as a dedicated MP3 playback device. Future
generations over the next decade held most of the audio
playback device market share. However, these devices
employed a system on chip (SOC) with a single processor
executing software commands. To this end, we introduce the
Xilinx Shuffle, an MP3 playback device capable of storing and
playing nearly 600 songs on board. Leveraging the streaming
decodability format of MP3, our playback device is designed
purely in hardware, implementing the entire algorithm without
the use of a central processor. As such, our design is optimized,
and more efficient than previous generation IPODs for MP3
playback.

II. COMPONENTS

A. 2 GB SD Card Writing and Reading

 As part of the project, there is a python file that

allows a user to convert an mp3 file into a .mem file. The user

can then copy the data from the .mem file onto the SD card

using HxD, while keeping track of the initial offset and the

number of frames the mp3 file contains. These can then be

inputted into the top level as parameters, and users can use the

switches to change which song they would like to play. Once

they have selected a song, they can use the up button on the

fpga to begin playback. If we had more time, another

additional user interface would be to add a switch to act as a

play/pause button, which would stop the decoding process

after the current frame. We could also have added fast-

forward/reverse capabilities by using the left/right buttons to

increment or increment which frame will be read next by the

SD controller.
 The button is part of an finite state machine (FSM)

for reading off the SD card, moving from the IDLE to PLAY

states. In the play state, the board communicates with the SD

card itself using the SPI controller with a 25 Mhz clock. It will

continue to read off the SD card until the number of frames

read is equal to the number of frames inputted by the user as a

parameter. Although we were unable to get the decoding

pipeline working on the board itself, the SD state machine

would likely also need a flag from one of the later modules to

ensure that header and side information data would not get

overwritten mid-frame.
 From the SD controller, each byte was written into

two modules: one which stores the most recent 4 bytes and

goes high when a valid header is detected, and a multiplexer

that takes in that valid header signal and either passes the data

to a module that parses the side information, or into a FIFO

buffer to be stored for Huffman decoding.

Fig 1. SD card writing mechanism: Example of frame data in
SD card sector

B. Nexys 4 DDR FPGA

 The FPGA will implement all steps of the decoding process
and audio reconstruction algorithm. First, it will stream out each
MP3 frame from the SD card. Then, it will run the full decoding
process on the frame. Finally, it will reconstruct the audio
waveform, create a PCM signal, and send the signal to an
onboard mono-channel audio jack.

 Additionally, the FPGA will have onboard play, pause,
and song skip buttons.

III. MP3 CODEC PARSING

 The MP3 codec (based on MPEG-1 Layer III) was designed
to employ two forms of lossy compression, one based on
mathematical limits of audio playback, and one based on
exploiting biological constraints of human audition.
Additionally, the final MP3 codec bitstream is compressed
losslessly using Huffman coding. These components contribute
to our design decisions for parsing the bitstream of MP3 data
coming from the SD card. We can outline 3 components in each
MP3 frame.

Fig 2: Full System Diagram (simplified)

A. Frame Header

 The start of each frame consists of a 4-byte header. The
header contains relevant information for parsing the side
information and the Huffman codes throughout the rest of the
frame. For example, our system can handle files with multiple
audio channels and variable bitrates. Both of these quantities can
be read out based on the header.

 Some audio files are also protected by an MPEG-1 CRC
checksum of the following form:

𝐺(𝑋) = 𝑋16 + 𝑋15 + 𝑋2 + 𝑋1

 Our design incorporates this error checker in parallel and
ignores audio frames containing broken data.

B. Frame Side Information

 Following the 4-byte header information and possibly the 2-
byte checksum, our parser then directs the incoming bitstream
to two parallel side information decoders (one for single channel
audio, one for dual/stereo/joint stereo audio). These occur in
parallel because they require different numbers of bytes from the
incoming bitstream. The side information also yields important
fields from decoding the Huffman codes, including the number
of bits allocated to a single granule and channel, the Huffman
tables used to decode portions of the filterbank spectrum (based
on a modified discrete cosine transform), and the location of the
start of the audio data. Note that the information from a single
frame may be encoded across several past frames according to a
‘bit reservoir’ technique to enhance quality in Layer III
encoding.

C. Frame Data

 The frame data consists of scaling factors (which determine
how amplified certain frequency bands are) and the cosine
transform coefficients for frequency bands. Ultimately, each
audio channel is coded into two granules, which are further
quantized into 576 different cosine frequencies. The MP3 codec
emphasizes lower frequencies by coding them at a higher
resolution than high frequencies. Our algorithm can handle
multiple common choices for encoding sub-bands of the cosine
transform.

 To account for the bit reservoir framework employed by
most MP3 encoding software, our bitstream parsing module
maintains a FIFO buffer of 8000 bits (meant to encompass 3
frames of audio data and thus handle the maximum load and
bitrate for MPEG-1 Layer III data). The FIFO buffer allows later
components to read out the bitstream from the SD card which
corresponds to scale factors and Huffman codes with a delay
compared to when the headers and side information are read out.
This accounts for the fact that audio data read in one frame may
not be useful until the decoder has parsed the header and side
information for the next three frames in line.

 Our implementation also has error checking at this stage of
bitstream parsing. The side information of each frame contains
a negative byte offset indicating how many bits from past frame
data are necessary for Huffman decoding. In the case where not
enough bits are present (if for example, the system starting
reading in frames from the middle of an mp3 file and does not

have a reservoir long enough yet) the FIFO buffer is maintained,
but the future steps are not implemented and consequently no
data is decoded for the PCM.

Fig 3: Frame bitstream decoding Schematic: The SD card
controller streams out one MPEG-1 Layer III frame at a time.
The above implementation accounts for multiple possibilities for
metadata structure (channels, CRC checksums, and variable
bitrates) while also maintaining the maximum size bit reservoir
to enable downstream audio reconstruction processes (main data
FIFO). Additionally, the side information parameters of the
frame are saved when a valid frame is processed, and these
parameters innervate almost all downstream modules.

IV. AUDIO RECONSTRUCTION

A. Huffman codes and scalefactors

The FIFO buffer containing the main audio data streams out
the bits related to scale factors and Huffman codes sequentially.
The bit-wise delay (the number of ancillary bits following the
last frame) can be determined based on the value
main_data_begin returned by the side information parsing
module. The number of bits within the FIFO module dedicated
to a particular channel and granule is also determined by the
meta data of the frame (part2_3_length). The Huffman codes are
decoded via a look-up-table. The ISO MP3 standard defines 32
look-up-tables for the high-accuracy regions of the frequency
spectrum, and 2 look-up-tables for the low accuracy regions of
the spectrum. These tables also contain variable word lengths.
Thus, they are implemented based on their table number and
word length combinationally (to support Huffman decoding at
25 MHz).

Note that since the Huffman decoding tables map seuqences
of bits to pairs of integer values, we used a sequential logic
buffer on the end of the Huffman decoder to slow down the
release of data into a single bitstream for requantization.

B. Huffman requantization

 The Huffman tables correspond to quantized values of
energy across an MDCT spectrum (of size 576). The values are
first requantized according to their scaling factors in an
elementwise manner using the following equation for short
windowed blocks:

𝑥𝑟𝑖 = 𝑠𝑖𝑔𝑛(𝑥𝑖) ∗ |𝑥𝑖|
4
3 ∗ 2

1
4

(𝑔𝑎𝑖𝑛−210−8∗𝑠𝑢𝑏𝑔𝑎𝑖𝑛) ∗ 2−(𝛼∗𝑠𝑐𝑎𝑙𝑒)

and with the following equation for long blocks:

𝑥𝑟𝑖 = 𝑠𝑖𝑔𝑛(𝑥𝑖) ∗ |𝑥𝑖|
4
3 ∗ 2

1
4

(𝑔𝑎𝑖𝑛−210)
∗ 2−(𝛼(𝑠𝑐𝑎𝑙𝑒+𝑝𝑟𝑒𝑡𝑎𝑏)

where 𝑥𝑟𝑖 is the ith iMDCT input and 𝑥𝑖 is the ith value decoded

from the bitstream. The first exponential |𝑥𝑖|
4

3 is computed via a
BRAM lookup table, with up to 1000 values. The lookup table
maps 1000 huffman codes to pairs of floating-point values, with
16 bits dedicated to the significand and 10 bits dedicated to the
base (in base 2).

 The base of the above formulas was first converted to fixed
point precision with Q8_2 numbers to accommodate the ¼
multiplier. Then, after computing the base, the final 𝑥𝑟𝑖 was
computed as a 𝑄2 30 number to accommodate the large negative
base-2 exponential. After this point, all computation were done
using fixed-point 𝑄2 30 numbers.

 Finally, in special cases of short block windows and
window-block switching, a reordering of the 576 frequency
bands was implemented using a BRAM lookup table.

C. Stereo Conversion

 For 1 granule, the 576 band MDCT was integrated between
channels to account for mixed stereo and joint-stereo encoding.
In the former case, the first channel encodes the mean-valued
MDCT spectra, while the second channel encodes the difference
between the left and right channel. The true left and right
channels can be computed according to the following formula:

𝐿 = (𝑋𝑐ℎ1 − 𝑋𝑐ℎ2) ∗
1

√2

Intensity stereo values can be computed according to the
following formula:

𝑢𝐼 = tan (𝑋𝑐ℎ1 ∗
𝜋

12
), 𝐿 = 𝑋𝑐ℎ1

𝑢𝑖

1+𝑢𝑖
 , 𝑅 = 𝑋𝑐ℎ2

1

1+𝑢𝑖

 Here, the tangents were also implemented according to a
combinational lookup table..

D. Antialiasing

The antialiasing modules operated by first compiling the stereo
conversion results from the previous module into a BRAM of
576 different 64-bit items (the first 32 bits corresponds to the
first channel, the second 32 bits correspond to the second
channel). An aliasing lookup table BRAM encoded the
antialiasing parameters for every frequency band in the MDCT,
so once the module compiled an entire granule of data (across 2
channels), it streamed out a new set of anti-aliased values. Since
these values were in general not ordered according to their
position in the MDCT, a different reordering module saved
streamed-out pairs of 32-bit integers into a BRAM and read
them off in ascending frequency band order. Also, since the rest
of the pipeline processes the left and right channels
independently in parallel streams, a 3rd module compiled both
the granules from a single channel into one BRAM for readout
into the rest of the pipeline.

E. Inverse modified discrete cosine transform

 The iMDCT was computed by implementing a high-
dimensional sate-space system matrix multiplication, where a
store buffer (a BRAM) contained the last state (576 different 32-

bit fixed-point values) and 3 separate BRAMS contained 3
possible sets of 18 different cosine lookup tables. Our system
combinationally implemented the matrix multiplication of a
vector of 36 32-bit integers and use sequential logic to select the
different cosine lookup-tables according to frequency band
position. Since the data stream out of the module was again
single 32-bit numbers,

Note that to support a more stream-like process, we computed
the full iMDCT in chunks according to their matrices, and added
the result to one final summation which eventually was saved
into a BRAM for output.

F. Frequency Inversion

Our final implemented step in the pipeline was to invert the

modified discrete cosine transform results according to the

placement in 18 different subbands. More specifically, we

multiplied the output of the iMDCT by -1 in certain cases

according to their placement. This module assumed a correctly

ordered input which reset at the onset of a new frame of data

from the SD card.

G. PCM synthesis (by subbands)

Though our implementation did not reach the synthesis step

of PCM samples, out plan of action included first compiling

subbands of incoming data from the iMDCT, then loading in

the subbands, and finally computing a matrix multiplication and

linearly combining the result with a stored state vector to output

64 PCM samples at a time. These PCM samples would be

encoded in the form of 8-bit integer values, signifying the

relative duty cycle of a PCM wave.

This implementation would require 3 more BRAMs, one to

store the subband data incoming from the iMDCT module, one

to save and retrieve the matric coefficients in 𝑄2 30 format, and

one to store the state vector which is linearly recombined.

Fig 3. Audio Reconstruction Pipeline: The mp3 bitstream has
is decoded over 7 consecutive modules, some of which require

coupled channel data, and some of which require coupled
granule data. Thus, our system implements several intermediate
modules which criss-cross the data streams after fully compiling
them. After a typical frame is detected, our system requires
148𝜇𝑠 to reach the output of the

V. AUDIO PLAYBACK

 Leveraging an onboard audio jack, we planned to convert the
frame’s audio sample into a PCM to be ported to the speaker
system. Since our algorithm handles MP3 files encoding
multiple audio channels (including dual channel, joint stereo,
and intensity stereo), the waveforms will be first combined into
a single waveform and then shipped to the audio playback
module.

VI. USER INTERFACE

We planned to implement a user interface system that

consisted of a play button, a pause button, a song skip button.

The play and pause can be implemented by starting or halting

the frame reading process once a single frame is completely

read through. The song skip button will be implemented as an

integer defining the address of the starting frame of a song

number (encoded as a lookup table in the first chunk of SD card

data).

Not that our frame parsing implementation innervates

all downstream processing modules (after the side information

parser) with the valid frame signal, and consequently uses that

signal to reset the state variables of the module where possible

(in some instances, a BRAM storage vector cannot be

overwritten upon new frame information, but this effect should

only contribute to interfering with a single frame, or 26 ms, or

audio data upon pressing the play button).

VII. RETROSPECTIVE SYSTEM IMPROVEMENTS

Although our design is fully synthesizable, it exceeds the
resources that are available for the Nexys A7 board. In our case,
we almost double the available lookup tables, as well as the
amount of DSP blocks on the board. Our implementation of the
Huffman lookup tables combinationally likely overused the
number of necessary carry bit adders by a factor of 15 times.

Additionally, our hybrid synthesis procedure combinationally
implemented a vector multiplication of 2 64 item (32-bits per
item) vectors that were consequently sequentially saved into a
third 64-item 32-bit vector. Though our implementation allowed
for a massive hardware speed up (the decoding up to frequency
inversions occurred in 148𝜇𝑠, when a single frame of data plays
in the PCM for 26𝑥103𝜇𝑠), this came with a massive resource
usage boost. We see our implementation as possibly supported
multiple mp3 data streaming operations sequentially.

Given more development time, we could reduce the carry-bit
usage by the Huffman lookup-tables by a factor of 15 by
employing a more flexible lookup table operation that can take
in a variable number of significance bits (which is otherwise set
as a parameter right now).

Our code can be found at github.com/ samuelkravitz/
6.111_Final-Projects, and an implementation of the SD card
usage can be found under the folder Sam/ sd_tester, and an
implementation of our full stack decoding process can be found
under Alex/ test_builds/ final_build/.

VIII. REFLECTION

For this project, I worked on the Verilog implementation of
handling the mp3 bitstream after it is inputted into the system
and a valid header has been determined. Sam worked on
developing the SD card interface and the initial parsing
measures to robustly detect the bitstream.

REFERENCES

[1] Information Technology—Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 MBits—Part 3. ISO/IEC
11172-3. September 1993.

[2] Sripada, Praveen, MP3 decoder in theory and practice.
Computer Science, 2006.

[3] Hoshi, Hajime, Go-mp3 Decoder,

github.com/hajimehoshi/go-mp3

