
The Soul Reader - 6.205 Final Report

Nick Hougardy
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: nickhoug@mit.edu

Abstract—In Texas Hold’em, when a player correctly identifies
the other player’s card with minimal information, it is typically
called a soul read and is widely regarded as being an amazing
player. Using this name as inspiration, the goal of this project is to
implement a playing card reader through an FPGA and camera
module. The FPGA will determine the card and communicate
what card it is through the seven segment display on the FPGA.
To do this, it will be determining the edges of the card, finding
the top left hand corner, and performing a XOR the pixels with
a predefined kernel.

I. INTRODUCTION & MOTIVATIONS

This project aims to identify a player’s hole cards (the two
cards a player holds face down) using the FPGA and camera
module given to us in Lab 3. There are some open source
software’s that do this in Python on a Raspberry Pi, but the
camera output is around 5 frames a second and processing the
data is quite challenging. This process could be streamlined
and quickened by using specialized hardware meant for the
job. Once the card has been identified, it will be outputted
on the seven segment displayed using characters defined in
Figure 2.

The inspiration of this project came from me not completing
it’s predecessor over the summer. As said above, I could never
get the image recognition working on the Raspberry Pi, but
I built out the hardware (woodworking, routing, upholstery,
etc.) before working on the software (Figures 1 and 2). Thus,
I have a smart poker table just waiting for electronics.

II. MEMORY

The memory requirements are as follows: after the frame
has been grabbed from the camera, it will then be transformed
from a 16-bit RGB frame with size 240x320 to a 1-bit frame
with size 240x320 (76800 pixels). From this frame, the corners
of the card will be found and the hardware will grab the pixels
from the top-left corner to preform a XOR operation on. Since
there are 17 kernels, 13 with size 28x40 (1120 pixels) and 4
with size 28x29 (812 pixels), there will be 17 corresponding
BRAM modules of the same size that will store the corner
pixels. In total, the BRAM used is 112416 bits (14052 bytes),
which is much less than what is available on the FPGA.

Fig. 1. Original Poker Table

Fig. 2. Reupholstered Poker Table



Fig. 3. Seven Segment Display Suits and Ranks

III. IMAGE PROCESSING

Figures 4 - 8 show the general steps that the FPGA takes
to determine the card’s suit and rank. The code can be found
here: Nick Hougardy’s GitHub .

A. Grayscale and Masking

From Figure 4 to Figure 5, this is where the FPGA does
the threshold processing. The ”threshold.sv” module takes in a
pixel, converts it to Luminance by averaging each of the pixels
evenly

(
L = R+G+B

3

)
, and then masks the bit to either 255 or

0 using a mask parameter fed into the module (Figure 6).
In this example, the images were masked using a parameter
of 210 and one place this project can go is cycling through
a set of mask parameters and choosing the best one for the
image; this is typically called adaptive thresholding and is
supposed to be a useful technique when dealing with non-
uniform backgrounds. Since the cards were tested on a dark
black background, this wasn’t needed. For the purposes of
this project, the mask was able to be controlled using 8 of the
FPGA’s switches and could cycle through all values from 0 to
255.

B. Center-of-Mass Algorithm

From Figure 6 to Figure 7, the FPGA then performs a
center-of-mass calculation to approximate the center of the
card. The purpose of this is to grab a point within the card
versus being no where near the card. This is needed for the
edge detection algorithm to work. However, most of these
cards are not symmetrical. Some are symmetrical across the
vertical axis, like the Ace of Hearts, and some are symmetrical
across the horizontal axis, like the Ace of Diamonds. But,
most of these cards do not exhibit these properties. Because
of this, one side of the card is weighted more than the other
and causes the center-of-mass calculation to be incorrect and
slightly askew. Even for the example image in Figure 7, the
heart in the center has more black pixels on the top half of the
card than the bottom half just because of the shape of the heart,
meaning that more white pixels contribute to the bottom half,
dragging the center of mass down. However, despite being
slightly incorrect, it still yields a pixel within the center of the
card 100% of the time and works for this application.

C. Finding the Edges

Using the Center of Mass, the ”find edges.sv” module grabs
the pixels located underneath the pink cross-hair in Figure 7,

Fig. 4. Down-sampled (5:6:5)

Fig. 5. RGB to Luminance

Fig. 6. Thresholded

https://github.com/nickhoug/6205-fp


stores them in a cache, and determines where the edges of
the card are. This goes under the assumption that the card is
perfectly straight and has no rotation. Using this algorithm,
the edges are able to be found as seen in Figure 8.

D. Zooming into the Corner

Once the edges have been found, this also means the
coordinates for the top left corner have also been found.
Using this index, pixels are read from one BRAM into another
using the hcount and vcount generated by the ”VGA gen.sv”
module. If the pixels are apart of the corner, then they are
stored. If not, they just pass through without any interaction

E. XOR Module

Once the top left hand corner of the card is detected, we
will then perform a XOR operation on it with kernels stored
on the FPGA. These kernels symbolize the 4 suits and 13
ranks (17 kernels total). Once this is done, we can add up the
total pixels in the frame (White = 1, Black = 0). The one with
the best score (closest to 0) gets outputted. The reason for this
scheme is a XOR gate is a difference operation and the FPGA
has a surplus of XOR gates. In order to prevent problems later
on, it would benefit the project to plan on using XOR gates
from the beginning to design the scoring scheme. Figure 9 is
an example of how this would work. XORing our image with
the correct kernel outputs all black pixels with a score of 0.
When we XOR it with a worse fitting kernel, the score rises,
telling the FPGA that the two images are dissimilar.

IV. CONCLUSIONS

In conclusion, the card reader works well. In fact, better
than I expected. When determining the rank of the card, it is
accurate near 100% of the time. Issues are outlined below in
more detail, but to get this high accuracy, the card needs to
be played with a bit to get it in just the right rotation to be
read.

However, when determining suit, the card detector is correct
about 50% of the time. Even at max zoom, the camera is such
a low resolution that the input image of the top left corner is
only 28x69 pixels. Without the rank, the suit is only 28x29
pixels. Given this, small changes in size are not clear enough
once pipelined through the camera to have a distinguishable
score. XORing a heart with the spade gives a score very close
in magnitude when XORing a heart with a heart. Further work
needs to be done in this area and further solutions are outlined
below.

As for responsiveness, the difference is very clear. Working
with the Raspberry Pi as before is much slower than the FPGA.
As the card is getting in the right rotation, the FPGA picks
it up nearly instantaneously and this is because of how the
system is designed. Since the corner is being XORed against
all of the kernels simutaneously, the process is quicker by a
minimum factor of 17x.

Fig. 7. Center of Mass

Fig. 8. Edges

Fig. 9. XORing scheme



V. BLOCK DIAGRAM

Fig. 10. Block Diagram



VI. POTENTIAL IMPROVEMENTS

A. Averaging frames

Greatly cutting down on the memory usage means that in
order to improve the accuracy of the image recognition, we
can take several frames and average them together, effectively
forming a low-pass filter across the pixels. This would just
serve as a redundancy and one of the issues with the main
card reader is that it will recognize the correct suit/rank, and
then flicker. Averaging several frames would reduce this high
frequency flicker.

B. Using Weights and Colors

Specifically for suit, the card recognizer has a tough time
with hearts and spades. Given that our camera won’t get any
better than it currently is, using color in conjunction with the
kernels could nudge the device into determining which suit is
correct.

Given that train of thought, the system as it stands is a
”One layer linear neural net with no weights”. The first ever
neural net was used to recognize numbers and implementing
what was learned into this project would be a good idea. To
give an example, the card recognizer would often have trouble
with 5’s and 7’s, which makes sense. Given the top half of
each number, they are very similar. But, the bottom halves are
wildly different. Splitting the kernel into sixteenths or even
fourths and assigning different weights to each would greatly
increase the performance of the device.

C. Communication over UART

One of the stretch goals for the project that didn’t get
done was using the card recognizer to detect the cards, but
then communicating with a python script over UART to
compute the odds of a specific set of two cards winning
the hand. Implementing the UART protocol over USB seems
straightforward and would be a nice addition to the project.

D. Rotation

A greedy algorithm to implement is to calculate the edges
and locate the suit and rank. If nothing gets detected, then the
starting image gets rotated and the process repeats until either
the whole card has been rotated or the suit and rank have been
found. Finding rotation would help eliminate the tediousness
of finding the ”perfect spot” for the card recognizer to work
and would make the system more robust as a whole.

E. Dealing with Zoom

As it stands, the camera is a fixed distance away from the
table where the cards are displayed. Using this fixed zoom
level, I was able to determine the precise corner size and
hard coded it into Verilog. Everything up until this point,
the thresholding, the center of mass module, and the edge
detection, is not hard coded and is not dependent on zoom. The
main issue at hand is with the XORing scheme, both the corner
pixels stored in the BRAM and the kernel stored initially need
to be the same size. This way, each pixel is mapped to another
and everything is accounted for. Dealing with scaling and

determining a method for making both images the same size
would solve this issue, but would take a considerable amount
of thought. From a practical standpoint, if the camera does
make it into the poker table, it will always be a fixed distance
from the cards, but it would be better to make the system more
robust in general.

What’s nice about the cards used (found here) is that the
horizontal distance of the corner compared to the horizontal
distance of the card is 1

7 and the vertical distance of the corner
compared to the vertical distance of the card is 1

4 (Figures
11 and 12). No doubt this has to do with some gambling
regulation, but it makes the math straightforward on the FPGA
and would be used to determine corner size given a variable
zoom.

Fig. 11. Card Dimensions
Fig. 12. Zoomed in Dimensions

Fig. 13. Live Demo with Cards shown

https://www.amazon.com/Bicycle-Standard-Playing-Card-Pack/dp/B08DJ7BM11/ref=sr_1_5?keywords=bicycle+playing+cards&qid=1671000845&sr=8-5

	Introduction & Motivations
	Memory
	Image Processing
	Grayscale and Masking
	Center-of-Mass Algorithm
	Finding the Edges
	Zooming into the Corner
	XOR Module

	Conclusions
	Block Diagram
	Potential Improvements
	Averaging frames
	Using Weights and Colors
	Communication over UART
	Rotation
	Dealing with Zoom


