

Undertale on FPGA
Shun Yoshikawa

Department of Mechanical Engineering

Massachusetts Institute of Technology

Cambridge, MA

shuny@mie.edu

Abstract—I present a design for replicating one of the game
scene from the video game, “Undertale” as well as the
implementation for interaction between players and FPGA with
the use of camera inputs. At the end of the project the system was
developed to the extent it can give entertaining experience to the
user. This project has shown a new approach to utilize fpga
involved system as a game engine.

I. COMPONENTS
 This Project is composed of three parts: FPGA, a VGA
monitor, and a camera board. The majority of codes constituting
the game mechanic is writtten in System Verilog, which is
uploaded to FPGA. The FPGA is connected to the monitor with
a VGA cable and the actual game play is displayed on it. The
camera board is also attached to the FPGA in order to take in
visual input from a player.

II. STATE TRANSITION

 The actual game mainly consists of three states. They
are connected in a definitive sequence, and the system
continuously transits from one state to another. game_state.sv
module is responsible for this phase transition as well as most
of other functionality that are relevant to game mechanics in
the system. The logic called state_out, which is 4 bits in size,
is defined to store the value corresponding to the current state.
For each state in the game, there are a set of logics to
determine the current state of the game. They are:

• logic X_busy_out;
• logic X_finish_out,old_X_finish_out;

• logic[11:0] X_pixel_out;
(where X is replaced by a term representing each phase)

when one of the phases are active ,namely X_busy_out is set
high, X_pixel_out is written to the output of the game_state.sv
(pixel_out). X_finish_out goes high when the game exits its
current active state. The game_state.sv module looks for the
rising edge of this logic to detects the end of the state. Then it
properly shift to the next state of the game by modifying the
value of state_out.

A. Menu State
Whenever the game initiates, it goes into the menu state.

During this state rectangular-shaped white frame appears in the
middle of the display. Below that are four buttons indicating
different commands from the original game which the player can
choose one from. Those buttons are aligned horizontally, and
only one button is highlighted at a time to show that it is being
selected. The button highlight shift either to left or right
depending on the controller input from the camera board
(discussed in section III). The sub-module that dictates the menu
state is menu.sv.When the value of state_out in the
game_state.sv becomes 4’b0000, menu_busy_out is set to high
and performs all the functionality described above unitl the
player chooses one of the commands. To avoid unnecessary
complication,however, not all of the four commands would be
implemented in exactly the same way they work in the original
game. The one that would be implemented thoroughly is the
Fight command. When the player chooses to carrry out this
command,menu_finished_out goes high, and the game exits the
menu state and proceeds to the player state.

B. Player Phase
 In this section, the state refered to as “player state” indicates
the one which follows the menu state after the player chooses the
Attack command out of four commands in the menu. The sub-
module named player.sv controlls player state. The value of
state_out which represents the enemy state is 4’b0001. During
this state, a player is supposed to play a mini game to decide how
much damage is dealt to the enemy for the round. As soon as the
player state commences, a vertical bar appears on the right hand
side of the rectangular frame (described in A.) . The vertical
frame starts moving horizontally, and dissappears when it
reaches the other side of the frame. The player can apply input

signal (detail of which will be described in section III) to stop
the bar while it is visible on the display. The damage the player
deals to the enemy is determined by where the bar stopped inside
the frame. In specific, the closer to the center of the frame the
bar is, the more damage will be dealth to the enemy. When either
the bar stops moving and the damage is dealt, or the bar
dissapears from the screen, player_finish_out goes high to
trigger the game_state.sv to move onto the next state.

C. Enemy Phase

 The sub-module enemy.sv is responsible for the enemy state.
Enemy_busy_out is asserted high when state_out is equal to
4’b1000. Conpared to menu.sv and player.sv, enemy.sv has
considerable amounts of functionalities.

i. Properties of Arrows

 During the enemy state, arrows appear from either of four
sides (top,down,left right) of the screen, and move toward the
center of the display, where there is a heart-shpaed sprite
representing the player. The behavior of arrows follows one of
the fixed patterns that are pre-defined, and the pattern to be used
is switched every round. Each pattern information is stored in
pattern.sv. Its properties are:
output logic[71:0] timing
output logic[71:0] speed

output logic[47:0] direction

output logic[23:0] inversed

pattern.sv also has parameters. Their values are written into the
logics shown above, respectively in a combinational logic..
That is, a pattern can be defined by making an instance of
pattern.sv with proper parameter values assinged. Each logic
has a bit size of a factor of 24. This is because the maximum
number of arrows that appear during the enemy state is 24.
Timing is a 72-bit logic, and each 3 bit define the interval
between two arrow instantiation. Timing[2:0] represents the it
takes the first arrow to appear, and timing[5:3] represents the
time from when the first arrow appears to the second arrow is
intantiated, and so on. The interval between two arrow
instantiation are actually represented by the number of clock
cycles enemy.sv holds the process.The unit number of clock
cycles is 6500000 (theoretically 0.1 seconds since the frequency
of the clock signal is 65MHz). The interval is acquired by
multplying timing[i+2:i] by 6500000. The rest of logics of
pattern.sv also store data in the same way as “timing”. There

are 10 instances of pattern.sv in enemy.sv and all the parameter
values are stored into two-dimentional arrays called:

• logic[9:0] timings[71:0];

• logic[9:0] speeds[71:0];

• logic[9:0] directions[47:0];

• logic[9:0] inverseds[23:0];
Depending on the turn number, values from one of the pattern
instances is called in sequence. The turn number is handed	to
the enemy.sv by	game_state.sv via the logic turn_out, a 4-bit
logic that ranges from 1 to 10.

ii. arrow.sv

 The actual movement of each arrow is dictated by the
module arrow.sv. As mentioned earlier, they are 24 instances of
arrow.sv to accommodate the maximum number of arrows that
could appear during one round. Inside arrow.sv logic x and y
are modified at every frame. Arrows that take in inversed_in ==
0 only move straight toward the heart in the center of the
monitor. If inversed_in is set to high, on the other hand, arrows
are supposed to change its moving direction halfway.

 The actual trajectory of an arrow
would look like what is shown on the
picture of the left. The curving path is
realized by using quaderatic equation. In
the case of the picture, the value of y is
incremented by a fixed number, and the
value of x is found by the equation:

y = 607- (1/128)(y-384)^2

 Inside arrow.sv there is a logic
called inverse_state to controll the phase
of the movement of an inversing arrow. It
first moves straight (inverse_state ==

0)and at a certain point it starts to follow the curving path
(inverse_state == 1), and when it reaches the other side it starts
to move toward the heart once again(inverse_state == 2).

 Arrow.sv has also a functionality for collision detection.
When an arrow reaches the center of the display i.e. it hits the
heart sprite, arrow.sv asserts hit_player high, which is passed
onto enemy.sv in order for it to determine whether it should
modify the health bar on the screen. In addition, when an arrow
passes where the shield can be positioned, arrow.sv checks if
the shileld in the way of the arrow by comparing the value of
direction[1:0] in arrow.sv and rotate_out[1:0] from shield.sv.
When shield successfully block an arrow, the corresponding
arrow.sv module stops rendering the arrow by setting one of the
output logic valid_out to low. If an arrow hits the heart, it sets
another output logic called is_player_hit to high for one clock
cycle, which is passed onto health_bar.sv via game_state.sv to
modify the visual of the health bar of the player. Either way a
logic called is_hit is set to high whenever collision occurs.
Enemy.sv detect the rising edge of is_hit from each instance of
arrow.sv and counts the number of provoked edges at each
round. When it reaches the number of arrows that are supposed
to appear during the round, it indicates that all the arrows

dissappeared either because they are blocked by a shileld or
they reached the heart.

iii. Shield

 A player uses a shield to block the moving arrows to protect
the heart sprite in the center of the display. The shield has a
narrow rectangular shape, and is located near the heart sprite
facing one of the four directions.The player manipulates the
position and the rotation of the shield to block either of the four
paths arrows follow. The behavior of the shield is contolled by
shield.sv. This module takes in rotate_in[1:0] as input, which
determines the direction the shield has to face. The logic is
wired to the input from the camera board via game_state.sv.

The game exits the enemy state when all the arrows for the
round dissappear from the display (either by reaching the center
or being blocked by the shield)

III. CAMERA INTERACTION
 In this project, the fpga takes in visual input from the
player by using camera board. Input extracted from camera.sv
is stored into the BROM. Then it is scaled in a size of 360 by
480 pixels by mirror.sv and scale.sv. r_and_cr.sv extracts the r
and cr value of camera input in order to detect location of the
red sphere in the camera view. The player physically
manipulates the location of this red sphere to send desired
input to the system. The system basically identifies the input
by which one of the four sections inside the 360x480 frame
the red sphere is located. These sections are divided by two
linear equations: 3x – 2y = 0, 3x + 2y = 960, where x and y
represents the horizontal and vertical values of pixel
coordicate, respectively. Controller.sv is responsible for
actually outputting the value rotate_out[1:0] which indicates
the section the red sphere is in.

A. Shield Movement
 Taking the value of rotate_out[1:0], the shield in the
enemy state changes its position and rotation in a way it faces
either of the four directions.

B. Swipe
 During the player state, the player is supposed to stop the
bar inside the rectangular frame in order to give damage to the
enemy. This will be done by making a “swipe” motion in from
of the camera board. The system detects swipe when the red
sphere moves from the upper section to the lower section.
Player.sv looks for an edge case where the value of
rotate_out[1:0] goes from 2’b00 (up) to 2’b01 (down).

C. Menu Select
 Menu.sv also make use of the logic rotate_in. This
module divides the camera board input into three vertical areas
. The center area of the three is a base area where nothing
happens when the center of mass is located inside it. When the
center of mass shifts to either area next to it (one on the left or
right), it asserts left or right key input depending on the area
the center of mass moved to.
IV. Graphics

 In order to draw objects on a monitor this project uses
several methods to store pixel information to render objects.

A. Loading Sprites Images with BRAMs
 Inside the projects there are two BRAMs that store
the value of mem files for sprite images.

(i) undyne.png

 (ii) attack_board.png

The sprites shown above are instantiated inside game_state.sv
and player.sv, respectively.

i. undyne.png
 undyne.png is a sprite image that appearts as the
enemy of the game. The instance of image_sprite.sv for this
sprite is created in game_state.sv, and it is shown throughout
the game until the game enters the GameOver phase. There are
two visual effects that are related to this image. One is to
oscillate it when a player successfully gives damage to the
enemy. When player.sv detects the player’s attack, output
logic undyne_x sends value to game_state.sv to communicate
where in the x coordinate the image should at a particular time
to generate oscillating effect. The base x position of the image
is 326, and undyne_x is a result of doing either adding or
subtracting the value of logic oscillate_x, which is attenuated
at every frame, to 326.

The process of attenuating oscillate_x is continued until the
health bar of the enemy (which is described in a later section),
finishes modifying its appearance.

 Another feature is alpha blending. During the Enemy
phase, the image turns translucent . This is realized by
separately dividing r,g, and v values of each pixel by 2.

ii. attack_board.png
 This image is rendered during the Player phase. There
is no additional visual effects to it. It only stays inside the
white frame as a background image.

B. Fonts
 The original game of Undertale has a unique font of
texts. I made an attempt to replicate this as similarly as
possible by using 2d array to manually define each letter that
appears in the game. The example array that indicates the
structure of the letter “G” is show below.

Each letter is mostly expressed either with 12by12 ,12by8, or
8 by 8 array depending on the size of the letter. The module
that stores all the representation is called fonts.sv, which has 2
parameters, 6 inputs, and 2 outputs:

• parameter X_POS = 128, Y_POS = 128
• input wire[10:0] hcount_in,
• input wire[9:0] vcount_in,
• input wire[5:0] letter_in,
• input wire[11:0] color_in,
• input wire[3:0] scale_in,
• output logic[11:0] pixel_out,
• output logic in_sprite

inside the module there is a big case statement that determines
which letter to write its pixel value to pixel_out based on the
value of letter_in. Each case condition in the module
calculates the relative coordinate from the origin of the
corresponding array (top-left corner). That is, we subtract

X_POS and Y_POS from hcount_in and vcount_in,
respectively, and assign the result to the internal logic,
relative_x and relative_y. When the coordinate (relative_x,
relative_y) is within the array, the value of the (11-
relative_x)th bit of the (relative_y)th row of the corresponding
array is written to in_sprite. The module writes the value of
color_in to pixel_out when in_sprite is high, otherwise it
writes 0 to pixel_out. When the relative coordinate is outside
the range of the array in_sprite is also set to low.

The 3-bit input scale_in indicates the rate of magnification of
the letter. It is expressed by the number of bit shifts the
module makes. If scale_in is equal to 1, meaning the size of
the letter is scaled up by a factor 2, the size of the array is
virtually expanded by 2. In the case of 12by12 array, it
becomes 24by24 when checking if the relative coordinate
(relative_x, relative_y) is inside the array. Because the values
of relative_x and relative_y could be more than 11, and would
not fit into the original size of the array, we remap them to the
range of 0 to 11 by shifting left by 1. This way I could scale up
the size of the letter by a factor of 2 to the power of scale_in.
Instances of fonts.sv are created inside the module that need to
draw texts.

C. Images without mem Files
 Other images or visual effects are created either by
using modules inheriting block_sprite.sv, or those that utilize
the method used in fonts.sv.

i) health_bar.sv / enemy_health_bar.sv

 Examples of
modules that inherit
block_sprite.sv are
health_ba.sv and

enemy_health_bar.sv they have the same functionality of
rendering a health bar in the game. They are made separately
since each of them has other functionalities. Health_bar.sv, for
instance, is also responsible for outputting numbers that
indicate the current health of the player.
What they distinguish themselves from block_sprite.sv is that
they will render a rectangle that consists of two sections each
of which has a different color. They have an input logic called
border_in, which provides them with the x value of where the
border of two different color blocks is. By decreasing the
value of border_x, the border of the two color sections shifts to
the left, indicating that the health is decreased. If the value of
border_x is modified at every frame, it will create an
animation where the health decreases over time.

ii. arrow_sprite.sv
 arrow_sprite.sv is one module that uses exactly the
same method as fonts.sv for rendering an image of an arrow.
This module is instantiated inside arrow.sv.

 This pixel filling (represented
by a unpacked 2d array,
pixel_bram) shown on the left
is used for rendering arrows
facing all the four directions
instead of making different
one for each direction. This is
realized by properly modifying
the indices. In the case of
rendering an arrow facing
down, the indices would be

pixel_bran[relative_y][relative_x]. When the arrow should be
facing right, on the other hand, indices should be flipped, and

pixel_bram[relative_x]-[relative_y] would give a disired
output.
Adding to that, this module takes in the value of logic next_in
and inversed_in from arrow.sv as inputs. When either of them
is set to high, the color of the arrow changes from its normal
color. The color of the arrow under each condition is defined
by parameters.

iii. green_heart_sprite.sv
 This is another module that utilizes the pixel filling
method used in fonts.sv to render a heart on the monitor.

Hearts appear in serveral
parts of the game. It is
possible to change the
color of the heart with a
parameter. The position
of the image is also
defined by parameters,
thus the heart will stay at
the same place
throughout the game.

V. GameOver
 The GameOver phase is independent from the rest of
the phases in the game (Menu, Player, Enemy). That is,the
system enters the GameOver phase whenever the condition is
satisfied. It indicates that the game is terminated by showing
some animations and texts on the display.

A. Entering GameOver Phase
 Whether the system should enter the GameOver
phase is determined by an output logic of health_bar.sv,
game_over_out. This logic is asserted high for a single clock
cycle after the hp of the player reaches zero. The maximum hp
of the player is 56, the player health decreases by 8 at every hit
by an arrow. Inside health_bar.sv there is a logic called
health_count which is reset to 0 at the initialization of the
system. It is incremented every time the player gets hit by an
arrow, and when it reaches 7, which means 7 arrows have hit
the player in total, game_over_out is set to high.

B. Heart Sprite
 Game_state.sv is responsible for rendering sprites and
texts that appear during the game_over phase. When it detects
the rising edge of game_over_out from health_bar.sv, it exits
from the enemy_phase, and starts rendering for the GameOver
phase. A 2-bit logic animation_phase is defined to control the
process of the GameOver phase. The phase starts with
animation_phase == 0. In this condition a red heart sprite
appears in the middle of the game and it breaks in two after a
short period of time. Green_heart_sprite.sv is used for this
purpose. Then animation_phase is set to 1. When this happens
the heart sprite dissappears from the monitor and it is followed
by an animation of the heart falling apart. This animation is

managed by heart_fall_apart.sv and heart_fall_apart_sprite.sv.
The former module dictates the position of each piece of the
heart that changes over time, and the latter module draws
actual sprite of each piece of the heart. Heart_fall_apart.sv has
logics for x and y values of all pieces, respectively, and they
are modified at every frame. Heart_fall_apart_sprite uses
almost the same method as fonts.sv to define two different
sprites to draw as a piece of the heart, and it switches which
sprite to draw into the monitor at every frame, which creates a
visual effect of a small piece oscillating in the air.

C. Text Display
 After the heart sprite breaks into parts, the text saying
“GAMEOVER” starts to appeart on the display at the
condition of animation_phase == 2. The text is made to have
fade-in effect. A logic called timing_count is incremented at
every frame, and when it reaches 2, the r, g, and b value of text
color(represented by 12 bits) is incremented, respectively.
This cycle is repeated 12 times for the pixel color to reach
12’FFF, which is complete white.

VI. Performance Discussion
 Since this project entails rendering of a lot of visual
effects, I anticipated that the number of BRAMs would be
massive to the extent it conflicts with the memory limit. In
fact, I could not load more than 1 undyne.png. I ended up
using only two BRAMs for image_sprite.sv. For the rest of
complicated images (including texts) to be displayed during
the game, I used the method of storing all the data in a 2d
packed array. This contributed to memory storage, and made it
possible to include everything that is needed to draw the game
scene. The system used 117 BRAM tiles output 135 available
BRAMs(86.67%), and 100 out of 240 DSPs (41.67). Pipe-
lining was incorporated into the camera interaction part to
improve the accuracy of input the camera board takes in .
Although there were no relevant, critical cases where timing
issues break the game mechanics. There were a considerable
amount of warning messages on the build log indicating that
pipe-lining would improve the performance. There was also
one apparent result that is thought to be caused by the timing
issue is that arrows that appear on the monitor sometimes look
like they jitter. According to the report the slack of the system
was 0.883 nano seconds, and the skew -0.275 nano seconds. If
I had had more time, I should have looked into the pipe-lining
issues more, especially in the area that has to do with the game
mechanics such as moving arrows.

VII. Reflection
My project has been developed to the extent it can be played
as a game, which was the commitment of the game. A player
can comfortably manipulates shields, select commands, and
attack the enemy. The number of patterns of arrow movement
are enough to give players excitement while they play the
game. Graphics and animations look as similar as those from
the original game. It would have been great I had had time to
put music into the game. It took me unexpectedly a long time
to implement and debug enemy.sv, one of the main modules of

the system, and was not able to meet all of my stretch goals.
Other than that I am satisfied with what has been achieved for
my project.
One thing I could have done better is to think about the
implementation and the structure of the entire system more
thoroughly before I actually start write my codes. During the
development there are so many cases where some
functionalities that I did not consider are needed, and I ended
up devicing a new module for them, leading me to restructure
the system to conform to those new implementations.
Anticipating and comprehending all the modules that would be
needed to build the whole system would have spared me
trouble of going back and forth during the development. This
idea would be even more significant if I were to work as a
team in the future.

VIII. Acknowledgments

I would like to express my sincere appreciation to our
instructor Prof. Joe Steinmeyer, who provided me with
sufficient help with completing my project. I am also grateful
to Jay, Fischer and other TA/LAs who supported me
throughout the semester.

VIII References
Source Code:
https://github.com/shuny42657/6.205_final_project.git

A.

