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Abstract—We demonstrate an Field Programmable Gate Array
(FPGA)-based piano and additionally develop an end-to-end key
modulation pipeline that receives single-note melodies, transposes
them to a different key, and transmits the resulting melody.
The FPGA piano is built with added functionality (e.g., different
timbres, VGA display, and multiple note selection (chords)) to
allow the user flexibility and convenience beyond that of a tone
generator. We also develop a “player piano” that modulates the
user-specified key and performs stored tunes. Together, these
pipelines combine elements of audio processing (e.g., fast Fourier
transforms) and digital logic-based music theory to showcase the
versatility of FPGAs in audio signal reception and transmission.
The design is centered around the Nexys 4 DDR FPGA, with
added elements to receive and transmit analog audio signals at
the ends of the pipelines.

Index Terms—Audio processing, Field programmable gate
array, Pulse width modulation, Fast Fourier transform

I. INTRODUCTION (SAHIL)

This project explores audio pipelines and processing using
digital logic in a musical setting. We first design the equivalent
of an FPGA piano, which takes “notes” as inputs from dif-
ferent sources (computer keyboard/switches) and maps them
to their corresponding frequencies via internal digital logic.
Afterwards, we drive a speaker with pulse width-modulated
output to play these frequencies using different waveforms
and implement a VGA display as an added user interface for
note visualization. We show how the FPGA piano design (and
its variants) implement the following objectives:

1) Basic single frequency tone generation,
2) Different sound qualities via distinct waveforms (i.e.

timbres) that have contributions from higher harmonics
relative to the fundamental frequency (e.g., sawtooth and
square waves),

3) Chords via the ability to play multiple notes simultane-
ously, and

4) Key modulation/transposition via the extension of a
“player piano” which performs tunes predefined as a
sequence of scale degrees.

The second part of this project involves transposing music
via key modulation.

II. FPGA PIANO (SAHIL)

A. Basic Piano

In this section, we describe the audio pipeline that takes user
input and produces notes of different frequencies via PWM

audio output. The overall block diagram is presented in Figure
4. The piano consists of the following elements:

1) Computer keyboard - user input to specify one of 12
notes in given octave

2) Nexys 4 DDR (Digilent) Field Programmable Gate
Array (FPGA) - other user inputs and synthesis

3) Computer monitor - VGA display
4) Speakers with audio jack (and volume control)
User input occurs through switches/keyboard for note selec-

tion (one of 12 possible notes in a given octave) and buttons
btnu/btnl to control the octave. Table I gives the mapping
of piano keys to computer keyboard keys. (This mapping is
performed using the PS2 protocol: that is, more precisely,
the note index is determined from the PS2 code produced
by a PS2 decoder module.) When switches are used, sw[3:0]
directly give the note index, with 1 corresponding to C and
12 corresponding to B (last note before next octave). Users
can also control the timbre - the setup is currently designed
with seven waveforms: square, sawtooth, sine, piano, violin,
trumpet, and flute (Figure 2). Apart from the square wave,
these waveforms are generated in Python scripts and encoded
as look-up tables in .mem files with 256 16-bit values per
period (values are in the range [0, 216)). In order to generate
waveforms for the instruments, publicly-accessible .wav files
were downloaded and read using librosa [1,2]. The resulting
audio samples were downsampled to 256 values (for a single
period) and rescaled to the range [0, 216), then saved in a
waveform BRAM. The .wav files were for the note C4: though
the different waveforms produce the correct frequency, some
timbres are harder to achieve than others (e.g., flute).

The note index is used to pull the period of the correspond-
ing note (in clock cycles) from a BRAM (which stores periods
for the octave C4-B4). This period is calculated according to

period =
clock frequency

note frequency
, (1)

where clock frequency = 65 MHz to avoid clock domain
crossing with the VGA pipeline and note frequency denotes
the note’s frequency in Hz (e.g. A440 is 440 Hz). Once this
period is extracted, it is bit shifted based on the user-specified
octave. Specifically, octave = 2 corresponds to the octave
C4-B4 (“middle octave”), so that for example the period is
reduced by 2 if octave = 3 (higher frequency) or increased
by 2 if octave = 1. The resulting octave-corrected period is



Fig. 1: VGA display consisting of seven-octave piano keyboard
and 12-note octave with mapping between computer keys and
music note names indicated. One block sprite spans the current
octave in the top keyboard and a second sprite is overlaid on
the current key.

divided into 256 intervals, corresponding to each value in the
waveform BRAM. These analog values were then passed to
a pulse width modulator (PWM) that performs a comparison
to a sharply varying sawtooth wave to create a digital signal
whose duty cycle corresponds to the analog signal. The PWM
signal is then used to directly drive the mono audio output on
the FPGA.

Separately, the note index and octave are passed to the
piano drawer module, which takes in (hcount, vcount)
from a VGA module and outputs pixel color such that we
obtain two block sprites corresponding to the current octave
and key overlaid upon a custom-made piano image (stored as
.mem file with 256 color look up palette.mem) via α blending
(Figure 1). The sprites allow users to see which note/octave
they are playing in real time. The VGA sequence is pipelined
to avoid artifacts at the edges of the screen.

1) Design Evaluation: The FPGA piano pipeline has a
worst-case negative slack (WNS) of 1.882 ns, which results
in little worry about the stability of operation. Note that
the timescales for audio considered here are on the order
of milliseconds, which is significantly slower than timescales
intrinsic to the FPGA such as the clock cycle. This means
timing is generally not an issue (users will also change input
on a timescale much longer than the clock cycle, of course).
The design is also very low on resource utilization, with 0.51%
of LUTs used for logic, 0.16% of LUTs used for memory,
and 0.20% of registers used as flip flops. DSP utilization

Note Keyboard key sw[3:0] “One-hot encoding”
C A 1 000000000001

C♯/D♭ W 2 000000000010
D S 3 000000000100

D♯/E♭ E 4 000000001000
E D 5 000000010000
F F 6 000000100000

F♯/G♭ T 7 000001000000
G G 8 000010000000

G♯/A♭ Y 9 000100000000
A H 10 001000000000

A♯/B♭ U 11 010000000000
B J 12 100000000000

TABLE I: Mapping of piano keys to computer keyboard keys.
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Fig. 2: Single period waveforms for piano, flute, violin, and
trumpet. Calculated from C4 audio signal and rescaled to 256
16-bit analog values. The sampling rate can be increased for
higher resolution.

is 0.42%. However, 50% of BRAMs are used - memory
utilization comes mainly from LUTs storing note periods in
clock cycles (20 × 12 = 240 bits) and waveform LUTs
(256× 16× 5 = 20480 bits, or 2.56 kilobytes). This usage is
quite large and could be reduced by using 8-bit encoding for
the waveform LUTs and floating point representation for the
note count lookup. More efficient encodings are possible:
for example, one could only store a quarter cycle of the
sine wave and use combinational logic to encode relationships
between different quadrants of the unit circle.

As mentioned above, the VGA pipeline must also be
pipelined to avoid small artifacts at the left edge of the piano
display: in particular, 4 clock cycle delay was introduced
before the blanking logic due to pulling from the BRAMs
encoding the piano image sprite.

B. Player Piano

As an extension to the design presented in Section II-A, we
next consider the related goal of constructing a “player piano,”
which plays a stored melody given user inputs. As shown in
the second block diagram of Figure 4, the main differences
from the FPGA piano pipeline are as follows:

1) User selection of a note now corresponds to a key rather
than a note index (this can still occur via computer
keyboard or onboard switches). Together with a switch
to control major/minor quality, this completely specifies
the key (e.g., C major or F minor) that the tune will be
performed in.
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Fig. 3: Top: Block diagram for FPGA-based piano. The user
has control over the note, octave, and waveform (e.g., sine,
sawtooth, etc.); loudness is just controlled externally via the
speakers. Internal digital logic stores the user’s choice as a
note index and performs look ups to sample the specified
waveform at the correct frequency. The resulting analog signal
undergoes pulse width modulation and drives an external
speaker. For user convenience, a VGA display shows the
current note/octave. Middle: Modified design for a “player pi-
ano.” The user now specifies a key (together with major/minor
quality) and can choose a tune, which is encoded as an LUT
of scale degrees. This LUT is decoded to give a note index
and octave which are then processed according to the FPGA
piano pipeline. Bottom: “Multinote piano” design. In contrast
to earlier designs, we respresent the note index as a 12-bit
bus pressed that indicates which notes were pressed (1) and
which notes were released/not pressed (0). Computation of the
analog signal is essentially performed in parallel for each of
the 12 possible notes and PWM is performed over the note-
averaged composite analog signal.

2) Users have control over the tune itself (e.g., an ascending
scale, arpeggio, or nursery rhyme) and tempo at which
the tune is performed.

3) The central part of the pipeline occurs as follows.
The tune is written as a series of scale degrees in
the tune lut module, comprising a key-independent
encoding of the tune. The relationship between the scale
degree and note index depends on the key selected and
may involve a change in octave if needed (shown in
Table II for C major). This is taken care of by a separate
module scale degree lut.

In addition to acting like a musical jukebox, this design
gives a proof-of-concept demonstration of key modulation.
Specifically, tunes are defined by key-independent scale de-
grees and can be transposed internally by matching corre-
sponding scale degrees of the original and transposed keys.
Mathematically, if a given note is the ith scale degree of a
key f(x), the transposed note in another key g(x) is simply
g(i) (here, f, g are mappings of scale degrees to notes modulo
octaves).

The transmitting stage of this pipeline is analogous to that
presented in Section II-A. In particular, the processed note
index and octave are used to drive the VGA display and mono
audio output pipelines as outlined above. Modules designed
here, in particular the scale degree lut are shared with
the key modulator pipeline described below.

1) Design Evaluation: The 12 major/minor key scales com-
prise a total of 96 bits and are simply defined as packed arrays
and stored in DRAM on the FPGA. Similarly, the tunes are
also defined as packed arrays, totaling only around 240 bits.
The encoding of tunes by scale degrees and implementation of
key scales as “lookup tables” significantly reduces the memory
requirements of this pipeline. A naive brute force method that
encoded lookup tables for each key and tune combination
would require nearly 25 times the memory. Thus, using our
encoding, the player piano can handle tunes of hundreds of
beats without incurring significant memory cost. Currently,
tune lut is designed such that a scale degree is assigned to
the smallest unit of time in the tune. For example, a tune whose
smallest unit of time is a quarter note would be represented
as as a packed array of dimension equal to the total number
of quarter note beats. This means that for longer beats (e.g.,
half notes in the above example), there is repetition in the

Note Scale degree Note index
C 1 1
D 2 3
E 3 5
F 4 6
G 5 8
A 6 10
B 7 12

TABLE II: Notes and their corresponding scale degrees and
internal note index encodings for one octave of a C major
scale. A change in note index by 1 indicates a half step; a
change by 2 indicates a whole step.



encoding of a scale degree. (Note that rests are also encoded
by a “scale degree” that, when read, does not drive the PWM
audio output.) Thus, more efficient schemes that only store
scale degree changes and the length of time to play each scale
degree may be possible.

For concrete numerical values, the WNS is 2.712 ns (i.e.
combinational logic does not need to be pipelined with regis-
ters). Resource utilization is still very low for LUTs and DSPs,
though BRAM usage is around 49% (the same BRAMs as
in Section II-A are being used). LUT utilization for memory
is larger for this design since the predefined tune sequences
are stored in DRAM (there is no reason not to have this on
BROM besides the clock cycle delay which is irrelevant for
the timescales of this problem).

C. Multinote Piano

As another variant on the FPGA piano design, we demon-
strate a piano capable of playing multiple notes simultane-
ously. As shown in Figure 4, the note encoding is funda-
mentally different from the previously described schemes. The
previously used note index is replaced by a 12-bit bus pressed
(similar to one-hot encoding), with each bit toggled on/off
depending on whether the corresponding computer keyboard
key is pressed/released. Computation of the analog signal is
done in parallel for each pressed note according to the pipeline
described in Section II-A, the resulting analog signals are
summed and averaged over the number of pressed notes before
pulse width modulation. Averaging is done to keep spectral
energy density (i.e. audio volume) roughly constant when
single or multiple notes are pressed.

1) Design Evaluation: Without pipelining, the design does
not meet timing due to the usage of divider.sv in averaging
the analog signals (this is relevant when the number of active
notes is not a power of 2; when it is, simple bit shifts can be
used). Instead of pipelining, we employ another method. Since
the divisors d are very small (number of active notes must be
less than 12) while the dividend n is much larger (sum of
analog signals can exceed 216), using the division algorithm
in divider.sv is somewhat efficient. We also do not need a
very accurate average: small fluctuations in the spectral energy
density will translate into negligible fluctuations in volume.
Thus, we express division by d as an approximation of sums
of bit shifts which are much faster to compute:
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Furthermore, care must be taken in pipelining the
VGA-related modules in this design. In particular, in

piano drawer.sv, the key block sprite is essentially be-
ing instantiated 12 times combinationally each clock cycle.
pixel out is computed as the sum of the pixel values of all
of the block sprites and the piano image sprite (possibly with
α blending if overlapping). A naive implementation that only
pipelines the syncing and blanking logic for the VGA as in
the above designs (due to the 4 clock cycle delay incurred
by the image sprite) fails here: it eliminates artifacts at the
edges of the screen, but a WNS of nearly -3 ns is obtained. To
avoid this issue, we introduce 5 registers between the 12 block
sprite pixel calculations and the combinational pixel out

calculation. The WNS is then 1.331 ns. This turns the VGA
pipeline into a 6-stage pipeline including blanking logic, so
that the latency is L = 6 · 1/tclk ≈ 92 ns and throughput
is T = 1/tclk = 65 MHz. The latency might be optimized
further, but for our applications it is not important given that
the timescales of operation are on the order of ms.

III. KEY MODULATOR (BEN/SAHIL)
A. Construction

The key modulator consists of the following elements:
1) PmodMIC3 microphone module
2) Nexys 4 DDR (Digilent) Field Programmable Gate

Array (FPGA). Not the same as the one used for the
FPGA Piano.

3) Speakers with audio jack

B. Design description (Ben)

There are three main pieces to the key modulation pipeline;
in order, they are the extraction of the frequency of a note
from audio, the actual transformation (modulation) of this
frequency, and the output of this transformed note. The design
of the third part is identical to the design of the pulse width
modulation scheme for the FPGA piano, so we focus on
the first two. The extraction of the frequency is the more
complicated of the two, and can be broken up into a series
of steps:

1) The PmodMIC3 consists of a microphone which picks
up analog audio signals and a 12-bit Analog-to-Digital
Converter. It interfaces with the FPGA board through
the SPI protocol. The module pmod to audio spi.sv
facilitates the communication between the PmodMIC3
and the FPGA board. The MISO port passes in an audio
sample one bit at a time, and the 12-bit audio sample
output is passed downstream for processing. Our clock
has a frequency of 104MHz, and it takes 16 clock cycles
to produce one 12-bit audio sample (the first four bits
are leading zeros), so the value of samples per second
produced is 6.5MSPS.

2) We now seek to narrow the range of the frequency
spectrum of the incoming audio signal so that there
is sufficient frequency resolution in determining notes
of interest. This is accomplished via downsampling in
downsampler.sv. The notes lie in the frequency range
of 130Hz to 530Hz, so our Nyquist rate has to be a bit
more than a kilohertz. Audio signals have a maximum



frequency of around 20KHz, so running the signals
through a LPF with passband range 1

16 · 2π means that
the output frequencies all have maximum frequencies
less than 20/16 = 1.25KHz. We generate a low pass 31-
tap FIR filter using the Vivado IP (fir compiler 1);
the (scaled) coefficients for this FIR filter are fed into
the Vivado GUI and can be found using the command
round(fir1(30, 0.0625) ∗ 1024) in MATLAB. To fin-
ish downsampling, we decimate the resulting output by
a factor of 2400, giving us a samples per second rate of
6.5·106/2400 = 2.708KSPS, sufficient to avoid aliasing.

3) We now want to perform an FFT on the downsampled
audio. We can do so with the xfft module in the Vivado
IP, and setting the number of bins as 1024. We get a
frequency resolution of around 2.708/1024 ≈ 2.7Hz,
which is sufficiently small to differentiate notes from
each other. After getting the frequency spectrum coeffi-
cients, we find their magnitude by summing the squares
of their real and imaginary parts and then passing the
result through the Vivado IP CORSIC square root module.

4) The 1024 magnitudes are written into a BRAM with
port B having a clock rate of 65MHz, which we assume
for the rest of the downstream modules. The reason
for this is it is the appropriate rate for drawing pixels
through a VGA connection, and we want to display the
relative amplitudes of each frequency component as a
bar graph. The width of the BRAM is 32 and the depth
is 1024, so the BRAM will store around 4Kb, which
is within its storage capacity. This is also the largest
amount of storage we will need, as downstream modules
will only need a frequency corresponding to one of the
components, not all 1024.

5) freq extract.sv reads from the BRAM and finds the
frequency with the largest magnitude. The problems of
noise and harmonics arises. I was not able to implement
it, but a possible solution is to take advantage of the
fact that there are a relatively small number of notes.
For every note, we could play the same note a couple
of times and average the frequency spectrum that results
in a lookup table. Finding the note corresponding to a
frequency spectrum with the highest similarity (cosine
correlation is a criterion) might be more robust and also
does away with the need for the next module in the
pipeline, closest note.sv. This module uses a lookup
table with the frequencies of the twelve notes between
C4 and G4, inclusive. It iterates through the twelve
notes and possible octaves and returns the note-octave
combination giving the smallest difference with the input
frequency.

6) The note converter.sv module takes in an old key,
a new key, a note index and octave, and outputs the
note index and octave in the new key. Applying music
theory to note conversion allows for us to only have
to use combinational logic (we only have to shift the
note index and octave with simple arithmetic) and this
module takes very little resources and time.

Fig. 4: Block diagram for the key modulator.

Finally, we pass the result of the key modulation into
pwm adc.sv to drive the speaker.

IV. DESIGN EVALUATION

The dependency chain of modules in this pipeline is pretty
linear (one module after the other), so a worry is latency.
Another worry is that a small discrepancy upstream can have
enormous complications upstream.

V. RETROSPECTION

A. FPGA Piano and Variants (Sahil)

This was a good opportunity to combine knowledge from
music theory and digital logic to create fairly efficient im-
plementations with increasing complexity. For example, bit
shifts gave a simple way to produce different octaves, therefore
only necessitating storage of frequencies for a single octave
(12 notes). Utilizing scale degrees and converting between
scale degrees and notes were central to the key modulation
demonstrated in the “player piano.” This project also provided
many opportunities to interface with material covered earlier in
class, such as the PS2 protocol and VGA display, and practice
with more performance-related design considerations (such as
pipelining VGA stages) even though these were not as relevant
for our objectives.

B. Key Modulator (Ben)

The key modulator was a great way to learn about audio
signal processing and how it works on the FPGA. I enjoyed
designing the modules and thinking about how to apply the
skills from the labs to an open-ended project. Unfortunately,
I was unable to debug the first half of the pipeline up to the



BRAM, which was the major technical difficulty. I take full
responsibility for this (and emphasize that all of these failed
deliverables were on my end and not my partner’s). The end
product was unable to work in hardware. Despite not getting
it done in time I plan on getting it to work after the deadline
and after that will critically evaluate possible improvements to
the project in latency, memory usage, etc.

VI. CODE AVAILABILITY

Code for this project is publicly available at
https : //github.mit.edu/spontula/fpga− sounds− of− music.
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