
FPGArio Kart Preliminary Report
Kiersten Mitzel

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA
kmitzel@mit.edu

Ragulan Sivakumar
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA
rskumar@mit.edu

Abstract—We present a design for Ethernet-enabled Mario
Kart on FPGA systems. In this design, two FPGA’s are con-
nected over an Ethernet cable to simultaneously play a game of
Nintendo’s Mario Kart. The system primarily functions through
an Ethernet Module, a Graphics Module, and a Game Module
to bring together technicality with functionality.

Index Terms—Digital systems, Field programmable gate array,
Ethernet, Framerate, Sprite, BRAM

I. SYSTEM DESIGN

As seen in Figure 7, the system is composed of three
primary modules: Ethernet, Graphics, and Game. The game
module keeps track and calculates the player and opponent’s
position, direction, and game status. These values are then sent
both to the Ethernet and Graphics module so that they can both
be transmitted and updated in the graphics. These modules run
simultaneously with one another to determine the state of the
game overall.

Key design choices not noted in the diagram were that the
entire system runs on both a 50MHZ clock for the ethernet
and a 65MHZ clock for the graphics. This meant we tackled
clock crossing by implementing BRAMs to synchronize the
values going in and out of the ethernet transmission.

The same code is run on both FPGA’s, but the starting
positions and cart identifiers were hard coded for each racer to
prevent any initial overlap or glitches. In addition, the collision
effects were both differed with the carts to prevent them from
bouncing off of each other in the same direction.

II. ETHERNET (KIERSTEN)

The Ethernet consists of 2 primary modules: receive and
transmit. As seen in Figure 1, when the transmit module is
enabled by hcount and vcount, a message is sent over by dibits
to the connected FPGA. Once as the transmit message is seen
by the other FPGA, the receive module in the connected FPGA
is enabled, and it validates and parses the message to get only
the bits we use.

A message is formatted through a 512 bit (64 bytes) buffer
that is constantly fed values from the game module. The buffer
message consists of the structure as seen in 6.205’s Ethernet
Lab [1], and when hcount and vcount are equal to 1024 and
768, we send what’s in buffer by dibits. The specific values
for hcount and vcount were chosen because that’s the first
pixel that’s inside the hsync and v sync interval, as seen in
6.205’s Ethernet Lab [1], meaning we would have sufficient

Fig. 1. Ethernet System Diagram

clock cycles after to send the message, process the message,
and update values before the frame had to be updated.

Since we chose to only send the given FPGA player’s x
position, y position, direction, game status, and reset input,
we opted to have a hard set length and definition for the
message to be 44 bits. However, an Ethernet message has
a minimum size requirement of 512 bits (64 bytes), so we
ended up padding a lot of 0’s within the data we would be
sending. As a simplification, since we know that there will
always only be two FPGA’s sending back and forth to one
another by a defined two way connection, messages are sent
to the broadcast destination address, which is 48 bits of 1’s,
so that the two FPGA’s will never miss an incoming message.

Since the two FPGA’s are sending the exact same size mes-
sage and contain the same Ethernet modules, this causes the
two FPGA’s to complete transmitting and receiving messages
at the same time, meaning they will be in sync with one
another. This was proven so during test benching, as well as
proven on hardware as the game play successfully transmitted
locations back and forth.

A. Transmit

The Transmit module consists of a state machine, that when
enabled starts the transmit process. It’s signaled to go high at
the end of every frame that’s been loaded. The transmit module
then grabs the loaded message from the message buffer, which
was formatted in the previous frame. The module then sends
along the message by setting output TX EN to high and loads
the message into TXD[1:0] until the full message has been
sent, where TX EN is set low again.

B. Receive

The Receive module works alongside the Transmit module.
Once TX EN goes high, the message is sent over the wire and
receive is enabled when CRS DV is high. Once this happens,
the message is read through RXD[1:0] and parsed until we
only get the 44 bits of information needed. This module is
similar to the work from 6.205 Ethernet Lab [1].

III. GRAPHICS (RAGULAN)

A. Sprite and Track Storage

Image Sprite Sizes:

• 32 × 32 images (III.B)

Track Storage:

• 16 × 16 memory file with each entry corresponding to
an road, sand, or grass image sprites. These image sprites
together form the base of the track.
• 16 × 16 memory file with each entry corresponding
to obstacle image sprites. These image sprites are placed
on top of the track base. The example in III.F shows an
oil spill overlaid on a road.

Sprite BROMs:

• Image-to-Palette BROM
• Palette-to-Pixel BROM

Image sprites for things, such as roads, sand, and grass, will
be saved in two sizes above via the two BROM files noted.
The Image-to-Pixel BROM has depth equal to the number of
pixels in the sprite. Each entry corresponds to a palette location
in the Palette-to-Pixel BROM where the corresponding pixel
data is stored. Thus, after indexing into that location in the
Palette-to-Pixel, we can retrieve the pixel.

The track base and track obstacles are stored as two distinct
16 × 16 memory files, in which each entry corresponds to a
certain image sprite already defined. Altogether, our memory
consumption is vastly reduced by abstracting the component
sprites of a track into discrete modules, for if we chose to
store tracks explicitly and include all sprite data in the track,
identical sprites would be saved many times over and waste
memory.

Note that the track is designated as 2048 × 2048 to give
granularity in our position updates.

Fig. 2. Graphics System Diagram

B. Graphics Module

Inputs
• player-x, player-y
• opponent-x, opponent-y
• hcount-in, vcount-in
• player-dir opponent-dir

Outputs
• pixel

Graphics as a whole are controlled within this module. The
following submodules determine the pixel output for different
regions of the screen, and those results are all filtered back to
this module where appropriate logic and pipelining is done to
output the correct pixel to the VGA monitor.

The overall throughout of the graphics module is 1, and the
latency is 8 clock cycles.

C. Top-Down Track View

Of the same inputs as the graphics module minus direction,
this module controls the the upper left 512 × 512 pixels. It
renders an image of the entire course and where the players
are located within it, thereby giving players an absolute frame-
of-reference as to where there are in the course.

Fig. 3. An example of the Top-Down Track View

To simplify the following logic, any discussion of obstacles
will be omitted until section III.F. Also, any discussion of the
track memory file refers to the track base memory file.

The track memory file is first indexed appropriately by our
(hcountin, vcountin) to find which 32 × 32 sprite we should

look in to find the correct pixel to output. We then index said
sprite in the manner detailed above to find the specific pixel p
that we should display . However, if our (hcountin, vcountin)
corresponds to a location in the track that is in the player or the
opponent, which we determine by seeing if it’s distance from
(personx, persony), the person’s center is less than |(64, 64)|,
then we display the appropriate pixel p for them instead.
Note that collision logic prevents players and opponents from
occupying the same location in the track, so having players
and opponents at the same spot doesn’t need to be analyzed.

D. Top-Down Racer View

With inputs that are the same as for the graphics module,
this module controls the upper right 512 × 384 pixels. Players
will have an aerial view of their nearby vicinity scaled up 4-
fold in both x and y direction from the track view. Moreover,
this view is also in the direction that the player is driving, so
if a tree is to the right of them in the overall track but they’re
about to drive into it, it will appear directly above them in the
racer view.

Fig. 4. An example of the Top-Down Racer View

A player’s cart is centered about hcountin of 767 and
vcountin of 255. This dictates the 128× 128 bubble surround-
ing that point. Everything else should be in the perspective of
whichever direction the player is driving, so a rotation matrix
involving sines and cosines is needed to compute original track
location of the pixel that should be displayed at a certain point
in the racer’s perspective. The general outline of the algorithm
is as follows:

• First, we want to calculate our relative distance vector
from the player in the racer view (racerRDV). This is(

∆x
∆y

)
=

(
767− hcount
255− vcount

)
.
• We want to get the trackRDV in the overall 2048 ×
2048 game grid. Thus, we want to rotate our racerRDV
appropriately. Given our angle θ that the player is facing,
we multiply our racerRDV by our rotation matrix(

sin θ − cos θ
cos θ sin θ

)
Note that this is not the standard rotation matrix: vcount
decreases as you go up the screen, whereas in a normal

plane, y would increase as you go up, so a different matrix
is used.
• To make our trackRDV absolute, we add our player
position to it. This gives our track lookup location, which
we use in the same manner as in the track view.

As for how trigonometric values are calculated, the cosines
for degree values 0 to 359 are stored in a BROM, and sines
are extracted from the same BROM since sine and cosine are
offset by 90 degrees. They are stored with precision to the
1

512

th so as to enable proper granularity in the track lookup
location.

To determine if we should display a pixel from our op-
ponent, we check if the track lookup location is within the
128 × 128 bubble surrounding our opponent’s center. If so,
we grab the appropriate pixel based on how far they are from
the opponent’s center.

E. Forward View

Unlike the Track and Racer Views, which give aerial views
from high above the track, the forward view give players a
view from the height at which they are driving of their nearby
vicinity. This module controls the bottom right 512 × 256
pixels.

Fig. 5. An example of the Forward View

This module follows similarly to the racer view, but we must
determine how to scale distance appropriately before doing the
rotation and adding in player position to get the track lookup
location. A novel approximation based on the fact that objects
twice as far away from a player appear twice as small was
used to calculate the track lookup location. The exact formula
used for forwardRDV was(

∆x
∆y

)
=

(
hcount−767

256 × (1056− 128× log vcount)
1056− 128× log vcount

)
Note that objects are closer to the player lower in the

forward view, so a larger vcount has our ∆y smaller as desired.
Moreover, the logarithm in base 2 ensures the exponential
scaling up in distance desired. The numbers 1056 and 128
were chosen arbitrarily to make the earliest pixel seen be 32
in front of the player and the farthest about half a track side
away.

Note that in the formula for ∆x, all points a given ∆y
away were considered the same distance from a player. This
is negligible for large ∆y. However, for small ∆y, this gives
undesired curves to straight lines. A more rigorous treatment
of ∆x in a similar manner to ∆y could have eliminated this.

A BROM of the logarithms base 2 of the numbers 1 to 256
is stored so as to find the scaling factor of how far a point
is away from the player. The precision is once again to the
1

512

th.
Everything else follows exactly the same as the racer view

from the second bullet point on.

F. Displaying Obstacles

While indexing into the track base memory file and then
the corresponding sprite, we also index into the track obstacle
memory file and then its corresponding sprite. If the entry in
the track obstacle memory file is 0, then there is no obstacle.
Otherwise, there is an obstacle, and we’ll want to display it.
However, obstacles generally do not take up the full 32 by 32
pixels. Let the 32 by 32 obstacle sprite without the obstacle
be denoted as the canvas region. The underlying track base
should be displayed in the canvas region. To do this, both
track files and sprites are indexed in parallel. The canvas
area of an obstacle sprite was filled with the color 12′h406,
so if the obstacle pixel was 12′h406, we used the underlying
track base pixel, whereas otherwise we used the obstacle pixel.
Thus, obstacles were incorporated.

Note that obstacles is a loose term, for the finish line is also
incorporated in this manner.

Fig. 6. An example all three views with an oil spill overlayed on the track

IV. GAME LOGIC (KIERSTEN)

The Game Logic is driven by a state machine that checks
the status of both FPGA’s once every frame. This includes
checking where both player’s are, whether or not someone
has won, and whether or not someone has reset the game. The
state machine also calculates the players next position based
off of their directions, and sends this to the ethernet module
once a frame.

The game starts when the FPGA’s first load up, or when
one of the players hits btnc to reset the game. Key controls of
the system include:

• BTNC: Used to reset the game logic and start new rounds.
• BTNU: Used to reset the ethernet tranmission.
• SW[15]: Used to turn player’s cart left.
• SW[0]: Used to turn player’s cart right.
• LED[15:0] Used to display opponent’s position, primarily

used to make sure ethernet is transmitting.

A. Win Conditions

Each FPGA internally keeps track of how many laps their
respective kart has gone around the track. To win a game,
a player must complete 3 laps before the opponent does.
Laps are only considered complete and incremented if the
cart has previously hit all 3 corners before hitting the corner
that contains the finish line, as tracked by variables corner1,
corner2, corner3, and corner4. This lap count is held in a
variable called lap count and whether or not lap count is equal
to 3 determines game status, which defines whether or not
the game should be running. At the end of each frame, this
game status is sent over the Ethernet to the other FPGA, to
signify to the opponent whether or not they have lost the game.

When one FPGA completes three laps, their screen freezes,
but the opponent’s does not. In the classic Mario Kart, the
game still continues to run despite one player crossing the
finish line first, so as a choice we continued to let the opponent
race. When the opponent finishes racing, they are sent to the
sideline indicating they have lost but still completed all laps.

If neither player completes three laps, the game will con-
tinue to run until one has done so.

B. Collisions

At the end of each frame, a message is sent and received
by each FPGA. Immediately after, there is a check in the both
game modules to see if the two carts positions will overlap. If
this is the case, the FPGA’s forcibly offsets both carts x and y
positions by 64 pixels to simulate a bounce between the two.
In classic Mario Kart, the physics sends carts flying across the
screen, and this is simulated in our bounce mechanics.

C. Reset

Resets happen when one or both players hit BTNC, causing
both FPGA’s to be reset for the next game at the same time.
The reset sets all variables back to their initial conditions,
including the players starting positions. After doing so, the
system then starts a new game immediately.

D. Design Evaluation

Throughout the project we were sure to check our individual
modules to ensure there was no slack or multidriven errors, for
this could cause problems when sending and receiving data.
We were successful at doing this individually. However when
combining modules together, we ended up with a final WNS
of -2.636 and TNS of -2284.853. While this would generally
be considered a bad statistic, we found it didn’t impact the
functionality of our system. We attempted to bridge the clocks
via registers and BRAMs and still had a negative WNS, so we
suspect the negative WNS is coming about because of when
we’re transferring data from the 65 MHz clock to the 50 MHz
clock, for more would be going in than could be processed
theoretically if we were always transferring data. However, we
only transfer minute amounts at select times in each frame.
Moreover, given how we found that if we removed the clock
crossing and used set values, the game logic and graphics had
a slack of 1.8, we suspect that the majority of the our WNS

slack came from clock crossing. Thus, we deem it negligible
for our project.

As for our BRAM and LUT usage, it’s 8.15% and 3.82%,
respectively. We were very conservative in our memory usage,
so I don’t think it could be optimized further, for the vast
majority of that is memory file storage for the different sprites.
However, we could have pushed our resource usage a lot
further with more granular graphics for the racer and forward
view alongside multitudes of tracks and still been well within
our limits.

As for latency and throughout, it’s 1 and 8 clock cycles,
respectively, for the graphics module, and it’s 261 and 517
clock cycles for the Ethernet module. With graphics, there is
the significant overhead of the blanking periods where nothing
is done, so we took advantage of those by employing all of
Ethernet, transmitting and receiving, within that duration.

V. RETROSPECTIVE

A. Project Commitments and Goals

At the start we made the bare commitment to deliver
basic Mario Kart functions, such as traditional gameplay and
collisions, ethernet transmission and receiving, having a top-
down track view, and having the game run on two FPGA’s at
once. We did accomplish all of these as shown throughout the
rest of the report.

The goals we outlined were to create a top-down track view
and top-down racer view, which were likewise accomplished
alongside the forward view, which was our stretch.

B. Graphics Reflection

If we were to redo graphics, it would be useful to create
the three views in parallel. There was so much overlap in the
logic between the modules, and every time whenever a new
optimization technique was discovered for a new view, the old
ones would need to be updated to have the same optimization.
This made for a lot of time wasted redoing old logic.

One thing that proved key was sketching out internal
diagrams of variable flow throughout time within a module.
Without those diagrams, pipelining would have been a night-
mare.

C. Game Logic and Ethernet Reflection

If we were to redo Ethernet, it would be helpful to properly
set and define the MAC addresses for both FPGA’s. Although
using broadcast addresses for the project works, there is
a chance that a message can be missed due to incorrect
addresses.

If we were to redo Game Logic, it would be useful to spend
a bit more time thinking on collision logic. Collisions were one
of the last features we implemented, and the logic we were
initially going to use proved to not be functional in reality.
It would’ve been helpful to have backup logic in mind to
implement a proper bounce, rather than the solution of doing
a forced offset.

In addition, with more time I would’ve focused on im-
plementing items into the game. With Ethernet working, it

would’ve been possible to send effects back and forth to the
other player, such as slowing down their speed or making them
teleport across the map as item effects. It also may have been
possible to coordinate graphics effects along to.

VI. CODE BASE

The code base can be found here.

VII. CREDITS

Credits for Ethernet and the game logic go to Kiersten,
whereas credits for graphics goes to Ragulan. Special thanks
to Fischer, Jay, and Joe for being great course staff and always
helping us debug, to Pleng for helping to debug and having a
VGA to HMDI cable that enabled graphics to be tested outside
of lab, and to all of our classmates for keeping us sane during
labs.

REFERENCES

[1] As previously built and tested during Fall 2022’s 6.205 Introductory
Digitial Deisgn System’s Lab 5, which can be found at fpga.mit.edu

http://github.com/rskumar-49/fpgario_kart.git

Fig. 7. Overall System Diagram

	System Design
	Ethernet (Kiersten)
	Transmit
	Receive

	Graphics (Ragulan)
	Sprite and Track Storage
	Graphics Module
	Top-Down Track View
	Top-Down Racer View
	Forward View
	Displaying Obstacles

	Game Logic (Kiersten)
	Win Conditions
	Collisions
	Reset
	Design Evaluation

	Retrospective
	Project Commitments and Goals
	Graphics Reflection
	Game Logic and Ethernet Reflection

	Code Base
	Credits
	References

