
Bit by Bit: An FPGA-assisted Bitcoin Miner
Sabiyyah Ali

6.2050
MIT

Cambridge, USA
sabi@mit.edu

Joshua Herrera
6.2050

MIT
Cambridge, USA

jih@mit.edu

Abstract—Mining cryptocurrency is particularly well suited
to hardware tasks because it requires quickly computing many
hash functions which can be parallelized. We present a system
for mining Bitcoin accelerated by an FPGA. We constructed
a pipelined and optimized implementation of the SHA256d
algorithm on a Nexys A7 FPGA Development Module. The
module communicates with a computer over a USB-RS232
connection, sending mined nonce values and receiving the latest
blockchain block headers. We simulate a hypothetical blockchain
by providing the FPGA with block headers with a known correct
nonce value, and compare the response from the FPGA with the
known solution. We are able to compute approximately 43.75
Million hashes per second, which allows us to search through
232 nonce values in just over 98 seconds! All of the source code
for our project can be found at [8].

Index Terms—Bitcoin, FPGA, RS232, SHA256

I. INTRODUCTION

Hardware assisted mining can speed up the process of
mining a Bitcoin block considerably. We present an approach
to mining hardware acceleration using a Nexys A7 FPGA
Development Module clocked at 100 MHz. Every time the
blockchain grows, the FPGA must parse and hash the latest
block header using the SHA256d algorithm [1]. Our system
implements a SHA256d hashing engine with optimizations
that take advantage of invariants in the Bitcoin Protocol,
allowing us to compute 16 hashes per FPGA clock cycle. After
mining a block, we need to transmit the 32 bit nonce value that
was used to mine the block to an external computer so that it
can submit the mined block to a Bitcoin node. We created a
bidirectional communication channel with a local computer
over USB-UART using the USB-RS232 functionality built
into the FPGA development module. Universal asynchronous
Receiver-Transmitter (UART) is an open ended protocol which
specifies how data is sent over two wires. The development
module includes a chip which allows us to use this protocol
over USB, which we use to send data over the cable that
powers our FPGA.

Section II explains the process of Bitcoin mining and the
necessary components of the Bitcoin protocol used in the
report. Section III explains how the hashing engine works in
detail. Section IV provides insight into the choices we made
for our communication stack.

II. THE BITCOIN PROTOCOL

The Bitcoin blockchain is a directed acyclic graph where
each node is called a ”block”. This graph can grow by adding

”mined” blocks. At any given point in time, only blocks that
exist on the longest path in the graph are considered valid,
mined blocks. The protocol is designed so that obtaining a
mined block is computationally difficult. It only makes sense
to mine blocks that are added to the end of the longest chain
in the blockchain.

A given block consists of a header and a body. In order for a
block to be considered mined, its header’s hash value must be
less than some known target value. Bitcoin uses the SHA256d
hashing algorithm, which does not have a computationally
efficient inverse function. Thus, miners must change parts of
the block header and recompute its hash many times until they
get lucky and find a block header with a small enough hash
value.

The body of a block contains transactional information
about how bitcoins are exchanged, while the header of the
block contains the following fields:

• Version: This describes the protocol version being used.
Valid mined blocks cannot use an old version.

• Previous Block Hash: This determined where on the
blockchain the block is being added. Normally, this value
is the hash of the latest known block on the longest chain
in the blockchain.

• Merkle Root: This can be thought of as an iterated hash
of the contents of the block. This is what links a given
block header to the body. A full explanation of how to
compute the Merkle Root from the block body can be
found on Wikipedia [2].

• Time Stamp: The time the block was mined
• Target: Specifies the difficulty of mining the block. The

hash of the block header must be smaller than this value
in order for the block to be considered ”mined”. This is
recalculated every 2016 blocks on the blockchain.

• Nonce: This is an arbitrary value that is used to add
entropy to the block header. Changing the nonce will
change the hash of the block header, which allows a miner
to cycle through different hashes.

In order to change the block header, a miner can change the
Merkle Root (changing the block body changes the Merkle
Root), time stamp (this shouldn’t be off by more than 2 hours
from the actual time the block was mined), and nonce fields.
Together, these provide about 40 bytes of entropy.

Fig. 1. High Level system diagram

Fig. 2. SHA256 hashing engine block diagram.

Fig. 3. SHA256 hashing engine block diagram.

Fig. 4. SHA256d algorithms block diagram. Adopted from [3]

III. HASHING ENGINE

A. The SHA256d algorithm

The SHA256 hash function is specified by [1]. The input
can only hash a message with a size divisible by 512 bits.
A block header is 640 bits, so 384 bits of padding must be
added. Each 512 bit block is processed by a block module,
which is shown in Figure 3. This happens serially, such that
the output of one block module is used as an input by the
next block module; meanwhile, the first block module uses
known constants as its input. This module corresponds to
the trapezoidal gray blocks in Figure 4. The Bitcoin protocol
uses SHA256d, which calls for hashing the block header with
SHA256, and then hashing the result once more (a ”double-
hash”). Since the output of SHA256 is 256 bits wide, the
second hashing step only requires a single 512 bit block to be
processed. This is outlined in Figure 4. Below we go over the
SHA256 algorithm itself and the corresponding modules for
its hardware implementation.

The first block never changes so we can compute its
message schedule and intermediate hash values a...h and store
them in a BRAM buffer. When we change the nonce value,
we only need to compute the hash values for the second block
using the stored values from the first block. The outline for
this process is shown in Figure 2.

B. The sha256 q module

The sha256 q module performs the innermost loop of the
sha256 algorithm computation, including both the message
schedule computation and the shuffling procedure. The orig-
inal SHA256 specification [1] describes a procedure where,
for each block, the algorithm loops 64 times. Our imple-
mentation splits this 64-loop into four 16-loops as shown in
the pseudocode from Algorithm 1. Each sha256 q module
computes an intermediate 16-loop of the algorithm, and four
are chained together to construct a single block module. Each
sha256 q module computes both the message schedule and
the intermediate hash values and passes them to the next
module down the line. The message schedule computation

Algorithm 1: SHA256 Pseudocode
Data:
Bi = The ith input 512 bit block
N = The number of input blocks
a, b, c, d, e, f, g, h are initialized to known constants
Wi for i← 1 to 16 is initialized to the first 16 words
(32 bit) from the first 512 bit block
Hi for i← 1 to 8 is initialized to known constants
F1, F2, F3 are known functions composed of simple
bitwise arithmetic operations
begin

for i← 1 to N do
for j ← 1 to 4 do

/* Compute the next 16 words
of the message schedule
using the past 16 */

for k ← 1 to 16 do
Wk ← F1(W16j+k−16...W16j+k)

/* Shuffle variables around */
for k ← 1 to 16 do

T1 ← F2(a, b, c, d, e, f, g, h,Wk)
T2 ← F3(a, b, c, d, e, f, g, h,Wk)
a← T1 + T2

b← a
c← b
d← c
e← d+ T1

f ← e
g ← f
h← g

H1 ← H1 + a
H2 ← H1 + b
H3 ← H1 + c
H4 ← H1 + d
H5 ← H1 + e
H6 ← H1 + f
H7 ← H1 + g
H8 ← H1 + h

return H1||H2||H3||H4||H5||H6||H7||H8

(function F1 from the pseudocode) requires remembering
the last 16th, 15th, 7th, and 2nd message schedule words
previously computed, which we keep in a distributed RAM
pipeline. All of the operations happen in a single clock cycle,
so each loop iteration completes in sixteen cycles.

C. The sha256 block module

The sha256 block module puts 4 sha256 q modules to-
gether to compute one 64 cycle iteration of the algorithm
for a single input block. Since the four sha256 q modules
are pipelined, it can compute a hash once every 16 clock
cycles. An additional two cycles of latency are added to
each sha256 q module in order to break up combinational
logic between cycles. Finally, an additional cycle of latency

is added to the sha256 block module. This result is a total
of (16 + 2) ∗ 4 + 1 = 73 clock cycles of latency. Our FPGA
is clocked at 100 MHz. For our purposes, latency is not a
concern since any delay incurred is dwarfed by the amount of
time it takes to search through all possible nonce values.

D. The sha256d module
Recall that the Bitcoin protocol calls for a double-hash

of the block header. This function, which we implement in
the sha256d module, is described by the block diagram in
Figure 4. Figure 2 reveals the steps we make to Bitcoin-
specific optimizations to maintain a tight 16-step pipeline.
The 640 bit block header is padded into two 512 bit blocks,
but the first block never changes (the nonce value which we
change is found in the second block). We can precompute the
intermediate hash values for the first block and store them
in a buffer to use for all subsequent hash calculations. If we
recomputed these values every time, it would take 32 clock
cycles to compute the first block’s hash values, which would
halve the throughput of our system.

The second block changes as we change the block header
nonce value. This means we still have to compute the in-
termediate hash values for the second block with every new
nonce. The first block module therefore expects a 32 bit word
from the second block every cycle, so that the entire block
is transmitted over 16 cycles. The output of the first SHA256
hash is kept in a buffer so that it can be fed into a subsequent
sha256 block module which is needed to compute the second
hash. Figure 3 outlines the entire process. Apart from the
intermediate hash values a, b, ..., h, each block module takes
in a 32 bit ”word in” input as well as a cycle count input.
The word in input is for the actual data being hashed, and
is passed in one word per clock cycle over the course of 16
cycles. The cycle count signal is a counter that increments
from 0...15 which is used to keep the pipeline synchronized
across cycles.

IV. UART COMMUNICATION STACK

Fig. 5. UART Timing Diagram. Adopted from [4]

A. Overview
We can transceive block header and nonce values one byte

at a time using an RS232 interface. Both the receiver and
transmitter must agree upon components of the transmission
like the clock frequency, data width, presence of a parity bit,
and the number of stop bits. We are using an 8-bit data width
without a parity bit or flow control. We chose a clock rate of
115200 Hz, which is one of many standard values for UART
baudrates. Figure 5 displays a timing diagram of a single byte
of information being sent over a wire in one direction.

B. Application layer protocol

We transmit information one byte at a time using the UART
protocol [5]. All transmissions are prefixed with a ”command
byte”, which both parties agree on ahead of time. The receiver
will know the size and content of the information transmitted
depending on the value of this first byte. For example, for a
block header transmission, the FPGA is expecting exactly 80
bytes. A table of commands we use is listed in Table I. The
incoming block header is kept in a BRAM module so that it
can be reused by other modules down the pipeline.

C. Denoising

UART protocol is prone to noise on the RX line, since
any drop to logic 0 indicates a start bit and therefore the
presence of a transmission. In order to make our system
resilient to single-cycle fluctuations in the RX signal, we
maintain a history of 8 RX values sampled uniformly over
the last 64 clock cycles. We then take the denoised signal
to be the majority bit of the samples. This incurs a small
latency penalty of ∼32 clock cycles, but also grants immunity
to any fluctuations in the RX signal that might be caused by
environmental interference or a bad quality USB cable.

D. Clock Domain Crossing

The FPGA development board we use provides a base clock
signal at 100 MHz which we use across all of our modules.
The UART baudrate we chose is 115200Hz, which means
that there are 868 FPGA clock cycles in one period of the
UART clock. In order to send and receive UART signals,
we maintain a counter which emulates a secondary clock by
counting from 0 to 868. Though the frequency is not exactly
115200Hz, it is well within 1% of the correct clock speed,
which is actually sufficient for a successful communication
channel to be established.

It is crucial that the UART module, shown in in Figure 6,
resets this counter every time an incoming byte is detected. If
the clock was never reset, then the the receiver and sender
clocks would desynchronize, drifting apart, and potentially
cause the receiver to either miss a bit or double count a bit in
the transmission. If even a single bit is changed in the block
header, the output hash will be completely different, defeating
the point of the system.

E. Input and Output buffers

In order to make the system more robust, we place 1-
byte input and output buffers for data bytes sent to and from
the UART module. This allows us to run the communication
modules alongside any blocking computation that may inhibit
the communication module from consuming incoming data as
soon as it is received. Both the send and receive modules are
wrapped in a common UART module which includes the input
and output buffers while also using the AXI [6] protocol to
manage communication with other system modules.

Fig. 6. UART Module Block Diagram

TABLE I
UART COMMAND PROTOCOL

Command Description Recipient Subsequent Data Size
8’b00000000 Requests latest block header Computer 0 Bytes
8’b00000001 Provides latest block header FPGA 80 Bytes
8’b00000010 Provides successful nonce Computer 4 Bytes
8’b00000011 Request nonce retransmission FPGA 0 Bytes

Fig. 7. Top Level State Machine

V. TOP LEVEL

The top level module for our system maintains a state
machine which glues together the communication stack with
the hashing engine. When idling, it will request a new block
header. Upon receiving the block header, it will preprocess the

header, computing and storing the intermediate hash values for
the first block. It will also add the 384 bit padding to the stored
header so that it can be consumed directly by the hashing
engine. It will also extract the target from the block header
so that it can be easily compared to the output hash of the
hashing modules. Once the input is preprocessed, the top level
FSM enters the MINE state, where seven duplicate hashing
modules are assigned unique nonce values across the range
of all nonces. We only managed to synthesize seven duplicate
modules before the FPGA ran out of logic resources (the 8th
module required ∼1000 more than the remaining 9500 LUTs).
If a working nonces is found, the state machine transitions to
the SEND NONCE state and sends the golden nonce to the
computer via our UART module. The computer is expected
to compute a unique block header every time a new one is
requested, which can by done by changing the Merkle Root
or the timestamp field.

A. Optimizations and Future Work

We found that the bottleneck in our design was LUT
utilization, which we exhausted after duplicating the hashing
modules in the hashing engine. In particular, slice logic took
up the largest percentage of resources (∼98%) according to the
post-placement synthesis report. In order to reduce slice LUT
utilization, we removed unnecessary pipeline registers where
possible and used BRAM to store large constants (the SHA256
algorithm has 1024 bits of constants) and intermediate al-
gorithm state, such as the message schedule. Unfortunately,
some of our BRAM modules were inferred as distributed RAM
instead. Future work might consider using a dedicated BRAM
IP block to guarantee BRAM usage.

As mentioned in Section III, we piplined our hashing engine
so that it has a total throughput of 1 hash per 16 clock cycles
which equals 6.25 MHashes/s. We duplicated our module
seven times, for a combined hash rate of 43.75 MHashes/s.
To explore all 232 nonce values, this would take, theoretically,
98.171 seconds.

We also took advantage of invariants in the Bitcoin protocol
to reduce the computation required for our system. Recall,
for example, that the first block of the block header doesn’t
contain the nonce value and therefore does not change. By
preprocessing it with the sha256 block module, we can double
our throughput from 1

32 hashes per cycle to 1
16 hashes per

cycle.

VI. EVALUATION

Unfortunately, testing our system on the real blockchain
would be infeasible. The profitability of a mining node is
directly related to its hashrate. Bitcoin’s hash function has
allowed ASICs to emerge and dominate the mining space.
Modern ASICS are thousands of times faster than anything
we might hope to develop on our FPGA, pushing the mining
difficulty of the network higher and higher. At the time this
report was written, the mining difficulty of the latest block
was 34,244,331,613,176. At a hash rate of 43 MHashes/s, it
would take, in expectation, 38,909,599,034 days to mine a
single block by using a single FPGA. Clearly, we need another
way to benchmark our system.

In order to evaluate our system, we emulated a miner node
by scraping block headers from the real blockchain which are
known to have a valid hash below their target value. We also
generated dummy block headers with arbitrarily high target
values so that we could test that the FPGA could actually
find the correct nonce. Once we confirmed that our mining
accelerator was working correctly, we timed the amount of
time it took to explore all nonce values. We used the pyserial
python API to read and write to the FPGA [7]. We sent and
received information using the commands in Table I.

Experimentally, the end-to-end delay for exploring all 232
nonce values was 98.192 seconds, which is 0.02 seconds more
than what we calculated theoretically. We attribute the extra
delay to the time it takes to communicate over RS232, as well
as any delay incurred by the Python script and the operating
system (Ubuntu in our case). We found that communication
over RS232 was very reliable. We performed a stress test that
sent thousands of different block headers with known correct
nonce values (which means tens of thousands of bytes of data
were being transmitted to the FPGA), and the FPGA returned
the correct value 100% of the time.

VII. TEAM CONTRIBUTIONS

As a whole, we felt that we both contributed to this project
equally. Joshua focused on reimplementing the SHA256 al-
gorithm and adding the Bitcoin-specific optimizations to our
FPGA. Sabbiyyah focused on developing and testing the com-
munications stack and developed most of the top level code
as well. Every part of the project and paper saw contributions

from both persons in one way or another. The portions that
we worked on correspond with the portions that we wrote for
the paper.

REFERENCES

[1] FIPS PUB 180-4. “Secure Hash Standard (SHS),”
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[2] https://en.wikipedia.org/wiki/Merkle tree
[3] Naik Rahul, “Optimising the SHA256 Hashing Algorithm for Faster and

More Efficient Bitcoin Mining 1” 2013
[4] Adams, V. Hunter. https://vanhunteradams.com/Protocols/UART/UART.html
[5] https://en.wikipedia.org/wiki/Universal asynchronous receiver-transmitter
[6] https://en.wikipedia.org/wiki/Advanced eXtensible Interface
[7] https://pyserial.readthedocs.io/en/latest/index.html
[8] https://github.mit.edu/jih/6.2050-sabi-jih-final-project-submission

