
SpeedyAR
Max Katz-Chrsity

Dept. of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Miles Kaming-Thanassi
Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Abstract—We present a design for an augmented
reality system implemented on a NEXYS 4 DDR
FPGA. In this system, a virtual object is projected
into the camera frame which remains in place
relative to the motion of the camera. We utilize
HSV object tracking to generate three vectors from
a set of four tracking points. A virtual object is
projected into the scene using a linear combination
of these vectors. We are able to animate this virtual
object by shifting between different sets of virtual
points in a set number of frames.

I. Introduction
This paper outlines a design and implementation of

an augmented reality system. Augmented reality allows
for mixing the artificial and real world by fixing virtual
objects in real world camera feeds using sensor readings.
Typically, AR systems identify some known objects in
the real world and fix virtual objects to them providing
the illusion that the objects present in the real scene.
A common application of AR is to fix a virtual piece of
furniture within a room in order to simulate what the piece
would look like in real life.

Traditional methods for creating AR utilize the
perspective-n-point algorithm to calculate the camera’s
rotation and direction relative to a set of known tracking
locations. This algorithm requires an understanding of
complicated linear algebra which we found difficult to
accurately implement in hardware. We decided to circum-
vent the complexities of this traditional approach by gen-
erating a set of vectors from for four tracking points and
then representing a virtual object as a linear combination
of these vectors. The accuracy of the linear combination
strategy is lowered as the virtual points get further from
the tracking points. This leads to distortion if we try to
display points further from the tracking points, because
we do not properly account for the perspective projection
of the camera image, and assume that it is orthographic.
A link to the final project code can be found here:
https://github.com/mileskt/SpeedyAR Final copy.git.

II. Object Tracking
In order to generate the set of vectors with which we

can project a virtual object into the camera frame, we
first needed to determine the location of a four tracking
points. Since we needed to track something invariant to

Fig. 1. The setup we built to hold each of the tracking balls

rotation of the camera, we used color to distinguish the
tracking objects from each other and the rest of the scene.
Effectively tracking color in the RGB color space output
by our camera was difficult because it varied drastically
with light. To overcome this, we used a converter, written
by Kevin Zheng in 2010 to transform the RGB output of
our camera to the HSV color space where each pixel is rep-
resented by a hue, saturation and value. We encountered
difficulty when implementing this converter because the IP
divider originally used is out of date, so we had to figure
out how to tweak the IP generator to get a divider with the
proper latency and ratio of numerical to fractional output
bits. For testing, we defined a set of thresholds using the
switches on the FPGA and then displayed a mask over all
the pixels within this threshold. we determined thresholds
that accurately isolated each color with minimal noise. We
used a ring light to get an even distribution of light over
the balls.

III. vector generation
The masks output by each of the HSV threshold mod-

ules are fed to a center of mass calculator that finds the
average x and y location of each of the tracking objects.
This tracking data is then fed into a module which can
calculate the vectors used for projection. The x and y
vectors are represented with packed 48 bit arrays divided
into three 16 bit sections representing the distance of
each tracking point from the origin. We chose 16 bits so
that the vector values can be converted to a fixed point

Fig. 2. Center of mass tracking using HSV filtering on the color
purple

representation using an arithmetic left shift. The vector
module is a state machine with two states outlined below:

• Idle: In the idle state, the module waits for new center
of mass values for each of the tracking objects. Once
all of the center of mass values are known, the module
will switch into the calculating state.

• Calculating: In the calculating state, x, y and z vec-
tors are calculated. In order to calculate each vector
the locations of the purple, green and blue balls are
subtracted from the center of mass of the red ball.
This gives us a vector system centered around the
red tracking ball.

IV. virtual points
The virtual object that we project into the camera frame

is represented by a set of points that we outline below:

A. Point structure
Each virtual point is 52 bits wide and has the following

structure:

• Color: The top two bits of the virtual points are used
to represent color. The color indicates what the color
line will be drawn from that point. A color value
of zero indicates that no line should be drawn from
the point. Due to memory constraints we could only
use three colors which we chose to be red, green and
yellow.

• Z,Y and X: The remaining 48 bits of a virtual point
represents three 16 bit scalar values. Each value is
represented in fixed point, two’s compliment notation
with eight integer and eight floating point bits. These
scalars are use to scale the x,y and z vectors generated
from our tracking points.

B. Point Generation
We wrote a Python script to generate each of these

points so that the resulting mesh would look like a block
character (specifically mimicking Minecraft’s Steve char-
acter). To be able to display the animated object, the set of
points and colors need to be loaded into the BRAM of the
FPGA. Three dimensional objects are stored in a number
of file formats, such as Wafefront’s .obj file and the
Standard Triangle Language .stl and the more primitive
Polygon File Format .ply. The general idea of these files
is all the same, storing some combination of points, lines,
polygons, and surfaces with various amounts of specificity
regarding color and other formatting. Before moving to
animations, we created a few tools to convert theses object
files into a set of ordered points that would draw out an
object on the FPGA, however, we found theses files to
be relatively inefficient as they relied not on a continuous
line but on a series of loops with often overlapping edges.
Additionally, with animation, there are few files available
that fit our specifications, so we generated the file from a
Python script.

The script has a set of objects that are able to draw
themselves, and a parent object that draws all of it’s chil-
dren objects. Each independently moveable object is based
around its own coordinate system with a rectangular prism
and optional additional features, translated and rotated
from the global origin pose. The rotation matrices for each
object are given by sine functions over time, allowing them
to swing back and forth smoothly. Stepping through a set
of times, we can draw the points at each location. All the
points can be converted into linear combinations of the
vectors between the known tracking objects, which is easy
when the unit vectors are chosen, and written to memory
file in hex. Concatenating all the frames together gives us
a memory file that can be flashed to the device.

C. Animations
In order to animate the virtual objects, we rotate

through different sets of virtual points that contain the
desired object in different positions and orientations. This
is handled by the load animations module. We store all
sets of virtual points in a single port read only BRAM
which is read from at an offset value that rotates every
300 frames.

V. Point Projection
A key module in our system is the projection module

which takes the position of the red tracking point as the
origin and the x,y and z vectors calculated in the vector

Fig. 3. The physical setup of the FPGA in the center of a ring light.

Fig. 4. block character projected into the camera frame using
tracking objects.

module. for each of the virtual points being projected, we
compute a linear combination of the vectors and add back
the value of the psuedo-origin coordinate. Additionally,
All values in this module are represented using two’s
compliment to support negative directions. The projec-

tion module is pipelined so that each projected point is
calculated and output sequentially.

Our original stated goal was to implement a pose esti-
mation algorithm to calculate the camera’s 6 degrees of
freedom. We spent some time working on this, looking
at different solutions to the perspective n-point problem.
The algorithms we looked at used a set of known tracking
points and their locations in the 2d plane as well as
the camera’s intrinsic properties to estimate the location
and roation of the camera. From the camera’s pose, the
virtual points can be accurately displayed in the camera
frame using accruate and deterministic projections. There
are many different algorithms to solve the perspective
n-point problem, each with a balance between accuracy
and complexity. Unfortunately, even simpler algorithms
such as P3P and EPnP were still quite complex and
given the timing constraints and the depth of the math
required to understand the implementation. After failing
to implement and understand these algorithms, we decided
to devise a simpler process for point projection. This is
what brought us to the very simple yet often innacurate
linear combination of known vectors strategy.

Although this method of projection is much simpler
than the pnp algorithm, it still produced many bugs due to
the nuances of fixed point, two’s compliment arithmetic.
Additionally, we encountered situations were the math
would work in Iverilog test benches but not in Vivado.
Specifically, We found that left shifting the vector values
to convert them to fixed point worked in test benches,
but in Vivado would cause overflow. This discrepancy
made it extremely difficult to determine the source of our
errors and cost us much valuable time that could have
been channeled into improving the project. We fixed this
problem by padding the vector values with eight bits on
the right and carefully shifting the results of the scalar
multiplication to ensure that only the integer portion of
each operation would be output. We also store the output
our projection calculation into a 32 bit value to avoid
incorrect truncating until all calculations are complete.
An example of our final projection calculation can be seen
below:

x_projection <= ((($signed({green_x_vec,8'b0})*
↪→ $signed(point_scalars[0]))>>>16␣+((
↪→ $signed({blue_x_vec,8'b0})*$signed(
↪→ point_scalars[1]))>>>16)+(($signed({
↪→ purple_x_vec,8'b0})*$signed(point_scalars
↪→ [2]))>>>16))+␣$signed({1'b0, x_origin});

VI. Line Drawing
In order to create mesh objects, we implemented Bre-

senham’s Algorithm to draw lines between the projected
points output by the projection module. This algorithm
takes starting and ending x and y values and sequen-
tially interpolates intermediate pixels between them. The
latency of Bresenham’s algorithm is proportional to the

length of the line being drawn, so we use a flag to tell the
projection module when to feed it a new point. The line
drawing module has two states which we outline below:

• Idle: In the idle state, we set the previous end point
as the new start point and set the most recent input
from the projection module as the next end point. It
is important to note that once after every reset we
have to wait for an initial point from the projection
module to be set as the start. In addition to setting
the start and end points, the module also calculates
the difference between the start and end points, and
the direction of the line to be drawn. After these
initial calculations are complete, it will switch to the
calculating state.

• Calculating: In the calculating state we sequentially
calculate the location of every point in the line being
drawn. Once the calculated x and y position is equal
to the ending x and y position, we switch back to
the IDLE state and set a flag telling the projection
module to send the next point out.

VII. Pixel Management
Storing and managing all of the projected points proved

to be difficult, so we implemented a separate module just
for handling pixel management. Having a distinct module
for pixel management also gave us the freedom to easily
iterate on our pixel management scheme as the project
progressed. The inputs to this module are the current
h count and v count as well as the current projected
point and its color output from the projection module. The
pixel manager reads the stored pixel value at h count and
v count from one BRAM and writes the new projected
pixel values to another. In order to read and write simul-
taneously, we needed to add a third BRAM to clear stale
points. The pixel manager rotates the function of each of
the three BRAMs at the end of every 480x640 frame.

The writing BRAM takes as input the color of the
projected point at the current x and y location. We found
that writing to an address outside of the bounds of the
BRAM leads to wrapping, so we ignore all values that
lie outside the bounds of the camera frame. Similarly, the
reading module ignores all h count and v count values
that are out of bounds. The clearing BRAM simply writes
a zero to the current h count and v count location.

We found the pixel management module very difficult
to test because it could not be synthesized in iverilog due
to the BRAM IPs. In order to ensure that the BRAMs
were being properly rotated and storing the correct values
we had to spend a hours testing the module manually on
the FPGA and carefully evaluating the module by hand
using state diagrams.

VIII. System Utilization
A. Latency and Throughput

• Vector Generator: one cycle of latency, a new set of
vectors is calculated once per frame.

Fig. 5. System block diagram

• Load animations/Load Points: two cycles of latency
to read from BRAM. Throughput is not a useful
metric for this module because it only outputs a new
point when the next point input flag is high.

• Projection: There is one cycle of latency and the
throughput is one point per cycle.

• Line Generator: This module calculates one point in
the line per cycle, so the latency is proportional to the
length of the line being drawn. We are not drawing
lines in parallel, so the throughput is also proportional
to the length of the line.

• Pixel manager: 2 cycles of latency due to reads from
BRAM.

B. Memory Utilization

The overall memory utilization for our project ended up
being much greater than we expected. According to usage
reports, we used 115 out of 135 available block RAM tiles
for a total utilization of 85%. Our memory usage primarily
comes from the following two places:

• Virtual points: The projected virtual character is rep-
resented by 202 points. In order to create animations,
we use 10 different sets of points for a total of 2020
virtual points. The .mem file containing these points
is loaded into BRAM. Each virtual point has a width
of 52 bits, so the total size of the virtual point BRAM
is 105040 bits.

• Pixel manager: The pixel manager utilizes three sep-
arate BRAMs. Each of these BRAMs has a width
of 2 bits to represent color, and a depth of 640x480
for a total of 1843200 bits. This size proved to be a
bottleneck for adding color support which we had to
shrink from 4 bits to 2 to avoid resource utilization
errors.

C. Miscellaneous Utilization

The remaining utilization of our FPGA was relatively
low compared to memory. We used only 5% of LUTs, 30%
of I/O and 10% of DSPs.

IX. Retrospective
A. Challenges

While we initially thought color tracking would be the
easiest part of the project, it ended up being one of the
most difficult. Converting to HSV was tricky in and of
itself, because we had to learn how to use the Xilinx
IP divider and the Vivado graphical interface. We also
often got different completely different threshold results
because of variations in lighting despite HSV giving us
more lenience with the ranges. We finally got tired of
manually testing different values each time we wanted to
test with the camera in different lighting, so we invested
in a ring light to place around the FPGA. The ring light
drastically stabilized our results. Through this process,
we kept improving our system for experimenting with
thresholds, building internal tooling that would allow us
to efficiently produce the final values.

We spent a significant amount of time chasing down
bugs that were from order of operations and typing details
in our logic’s. The worst bugs were the ones hidden in
top level.sv, as these could not easily be test benched.
We realized over the course of the project the importance
of having small modules with strong hierarchy that com-
plete very specific and isolated tasks so that everything
can be test benched. Because our project is significantly
display and camera based, we had to be creative with
creating test benches where we could see a detailed output.
We also had to be very careful using BRAMs as these
caused issues for test benching. Once we were able to
replicate the issues in the test bench, we were quick to find
and fix the actual issue in hardware. We were surprised
how much time we had to spend isolating small seemingly
simple sections of code, but it payed off in the end.

B. Evaluation
The results of the project accomplished our overarching

goals. We did have a major pivot partway through, allow-
ing us to bypass some of the intermediate goals, but we
utilized the simplicity of our final method, to extend our
project into a couple of our reach goals like animations.
We would have liked to implement a perspective-n-point
algorithm for estimating camera pose as this is an inter-
esting research problem, but we didn’t realize how tricky
it would have been to implement, so we had to abandon
this to complete the project. After pivoting, we decided to
focus on stabilizing the tracking system, getting accurate
projections and adding additional features like animations
and color. We initially set out to only project a point cloud
onto the scene, so we are very happy with the graphics
work we did to create final animated block character.

C. Further Work
Given more time to work on our project, we would have

liked to improve the tracking through methods beyond
color that might be more reliable. We discussed using
beacons that flash at different frequencies and patterns.

This would stabilize the resulting animation and allow for
the camera to move more freely. It would also allow us to
move the camera further from the beacons, making it a
more robust and useful system. There also other tracking
systems to consider, such as pattern matching as is done
in professional film. We also think it would be interesting
to build a more mobile camera setup that could rotate
around the tracking objects more like traditional AR.

As mentioned previously, it is possible to implement
perspective-n-point algorithms on the FPGA, and this
would allow for the projection onto the real world to
be perspective instead of the less accurate orthographic
projection we currently have. This would be particularly
important when the animated object needs to be a large
distance from the tracking object or a different depth than
the tracking objects.

The wireframe is good for showing accurately where
the object is placed, however it isn’t very realistic, and
we would have liked to implement surfaces and shading.
This would require some work to figure out which planes
are hidden, as well as efficiently storing all of the object
skins. Additionally, it would be helpful to explore memory
efficiency changes that could allow us to display a larger
set of colors.

X. Author Contributions
Over the course of this project we frequently found

ourselves working together on each of the modules and
test benches. The idea for an augmented reality project
was Max’s initially, so he did much of the initial planning
and brainstorming work. Miles worked on the line draw-
ing module and Max wrote the python mesh generation
script, but the remaining modules were for the most part
written together. We spent much time during the project
debugging and writing test benches. It was useful to do
this testing work together because we could bounce ideas
off one another and avoid getting stuck on sneaky bugs.
Overall we feel that we put equal effort into the project
and are happy with how we meshed as a team.

