
Medium Distance Livestream with Shape Detection
Final Report

1st Robin Mia Tian
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, MA, USA

miatian@mit.edu

2nd Brady Sullivan
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

bsully@mit.edu

Abstract—We present a design that livestreams a video feed
over distance and performs shape detections on the video feed.
We utilize a hardware networking offload engine to both send and
receive live video feed from one FPGA to another over ethernet.
The receiving FPGA implements image processing in hardware
to identify shapes in the imagery and display detections. The
computer vision component takes a bitstream of the video of a
whiteboard with rectangle(s) drawn on and uses a pre-trained
neural network to output the video with detections of said
rectangle(s) overlayed on top.

Our goal is to reliably deliver a streamed and computer vision
processed video feed in as close to real-time as possible.

Index Terms—FPGA, Ethernet, Neural Network, Convolution

I. BACKGROUND

Implementing computer vision via hardware allows us to
take advantage of the parallelism inherent in neural networks.
Hardware implementation is also more storage efficient, so
it is useful for applications with minimal storage such as
satellites. This project explores implementing a very simple
neural network in hardware.

II. NETWORKING OFFLOAD ENGINE (BRADY)

A. Link Layer - Physical Layer

The Nexys 4 Ethernet PHY has been implemented accord-
ing to IEEE802.3 ”Fast Ethernet” [1]. While the IEEE802.3
standard is rated for full-duplex operation, our project isolates
the encapsulation and de-encapsulation engines on separate
FPGAs. It is thus unnecessary to implement full-duplex capa-
bility on either FPGA. Per spec, we implement a CRC-BZIP32
checksum following the transmission of data data to enforce
reliable data transmission.

B. Local Area Network (LAN) - Media Access Control

We have implemented MAC to enforce data access over
LAN. Both FPGA’s have been assigned MAC addresses for
the transmitting FPGA to send data to the receiving FPGA.

III. IMAGE TRANSMISSION (BRADY)

A. Disassembly

We transport ethernet packets over LAN. This is enabled
through our image disassembly module. On the sending-side
FPGA, as video frames are captured by the camera and stored

Fig. 1. LAN Offload Engine Architecture - The design uses AXI protocol
between Image Disassembly and Network Output (modules and submodules)
as well as between Network Input and Image Assembly (modules and
submodules).

into onboard storage, this module loops over the storage and
then sends pixel location and color data to the network engine
for encapsulation. We are currently sending data at 320x240
image resolution with pixel colors in RGB565 color space.
The module sends one of the 320 horizontal lines per packet
meaning each packet includes 240 pixels of color data and
a vertical line indicator. Each pixel is 16 bits wide with
240 pixels per line, including 16 bits per packet for the line
information. Each packet has the following structure:

v[m] h[0] h[1] ... h[239]

• v[m]: The vertical position of the pixel where m incre-
ments by one between packets. This value goes from 0
and 320. This value is zero-extended to 16 bits for two
complete bytes.

• h[n]: The horizontal position of the pixel where n
increments from 0 to 240 within each packet. Pixel values
are in RGB565 colorspace format for a total of 16 bits
per position.

B. Assembly

On the receiving-side FPGA, as image data packets are
received by the network engine, a separate image assembly
module reads off the line data. At first, the data is held
in temporary register storage. This is due to the ethernet
checksum requirement in order to validate the packet data.
If invalid, the packet data is dropped and the module moves
on to receive the next off the wire. If validated, the module
writes 16-bit pixel data every two cycles until all 240 pixels
from the line (packet) are in memory.



The design choice to include this onboard memory rather
than pipeline packets to image processing module serves to
ensure reliable data delivery. If a packet were to be corrupted
during transmission or the checksum otherwise invalidated a
packet, an entire line of data is lost. However, the image
processing module reads directly from the onboard memory in
it’s own clock domain. Assuming a continuous stream of data,
the same line from the previous frame entered the memory
0.013 seconds before which is likely hardly distinguishable to
the human eye.

Fig. 2. Image Processing Architecture

IV. IMAGE PROCESSING (MIA)



The image processing component takes a bitstream of the
video of a whiteboard with rectangle(s) drawn on and output
the video with detections of said rectangle(s).

At a high level, the image processing architecture is broken
into 3 working parts– Pre-Neural Network Image Processing,
Neural Network, and Display and VGA.

In Pre-Neural Network Image Processing, we convert all
pixels to black and weight, pixelate the 240x320 frame to a
24x32 frame, and then normalize the pixels to prepare them
for the neural network.

In the Neural Network, we have two convolution layers as
well as a dense layer to output the predicted center of the
rectangle. The convolution layers use a filter to scan over the
frame, identifying key features of the rectangle, and the dense
layer will output the hcount and vcount values of the predicted
center of the shape.

The output of the neural network is used to draw bounding
boxes, create a mask to overlay over the existing video stream,
and display on an external monitor.

A. Pre-Trained Neural Network

First, the Neural Network was implemented via Python to
obtain the weights that we used in hardware. I used matplotlib
to generate 500,000 images of black rectangles on white
backgrounds. Then I trained a model to detect these rectangles.

We were conscious of the difficulties of implementing this
network via hardware, so we made choices to simplify the
model as much as possible without sacrificing too much of
the accuracy. We chose to use black and white images as
opposed to colored because in order to multiply a pixel by a
weight, we only have to conduct one multiplication operation
as opposed to three– conserves DSP slices. We began with at
least 32 convolution layers (yielded very accurate results), but
we reduced to 2 convolution layers to decrease the amount of
weights to store and multiply on the FPGA.

Originally, we had planned to train the network on a
240x320 images, but we were limited by the memory of my
MIT loaner laptop. We decided on training the model on
24x32 images. The convolution layers take up significantly
less memory to train on the smaller images.

The model is as follows:
• one 9x9 convolution layer (9*9 + 1 bias = 82 weights)
• one 7x7 convolution layer (7*7 + 1 bias = 50 weights)
• dense layer (32*24*2 outputs + 2 = 1634 weights)
Training this model with 25 epochs has yielded successful

results. My performance metric is Mean Euclidean Distance
Squared. Using this metric on a 24x32 image has yielded a
Mean Euclidean Distance Squared of 1.53.

B. Pre-Neural Network Image Processing

Pre-Neural Network Image Processing contains the follow-
ing modules:

• Black and White Converter (latency: 1 cycle per pixel,
throughput: 1 cycle per pixel). The input video is a
whiteboard with black rectangles on it. We convert all

Fig. 3. Samples used to train the model

Fig. 4. Results of using the model on test images

white, off-white, and light gray pixels to white and all
other pixels to black (represented by one bit).

• Pixelater (latency: 100 cycles per pixel, throughput: 100
cycles per pixel). Per the above, the neural network runs
on a 24x32 grid. We convert the 240x320 frame to a
24x32 frame by outputting the center pixel of every 10x10
on the grid. Consideration was made to use rolling buffers
to find averages of each 10x10, but we deemed that
choosing the center pixel is accurate enough for the neural
network and saves BRAM storage.

• Normalizer (latency: 1 cycle per pixel, throughput: 1
cycle per pixel). Inputs to the neural network must have
mean 0 and standard deviation 1. We decided to use
fixed point math– the output of this module are the pixels
normalized and then shifted 17 bits left.

C. Convolution Layers

There are two convolution layers. The first outputs 24x32
frame of the input convolved with a 9x9 kernel. The second
outputs a 24x32 frame of the output of the first convolution
layer convolved with a 7x7 kernel. Each convolution contains
the following modules:

• Rolling Buffer (latency: 9 cycles per line, throughput:
1 cycle per pixel). We implemented 10 rolling buffers,
each storing a row of pixels. As we are writing to the
10th buffer (10th row), we are outputting a 9x9 of the
buffer from the previous 9 buffers (1-9 rows).

• Get Convolution Weights (latency: 1 cycle per line,
throughput: 1 cycle per line). We processed the con-
volution weights from the pre-trained network into a
.mem file where each line stores one row of weights (9
weights). Python processing was done to convert the pre-
trained network weights to binary, sign them using two’s



complements, and pack them together into a line. The
get-conv9-weights module outputs one row of weights.

• Convolution (latency: 27 cycles per frame, throughput:
27 cycles per frame). Inputs to the neural network must
have mean 0 and standard deviation 1. We decided to use
fixed point math– the output of this module are the pixels
normalized and then shifted 17 bits left.

D. Convolution Output Frame Buffer and Dense Layer

The Convolution Output Frame Buffer stores the output
from the 7x7 convolution above into a frame buffer. This
framebuffer includes signposting to indicate when an entire
frame is in the buffer.

The Dense Layer (latency: 768 cycles per frame, through-
put: 768 cycles per frame) takes in pixels from the frame
buffer and multiplies it by weights stored in a .mem file (same
implementation as weight storage for the convolution weights).
There are two sets of weights for the dense layer– one for the
predicted hcount of the rectangle center, one for the predicted
vcount of the rectangle center.

E. Post Neural Network Processing

Post Neural Network Processing contains the following
modules:

• Draw Boxes (latency: 24 cycles per pixel, throughput:
1 cycle per pixel). We take the predicted center of the
rectangle and output the hcount and vcount of 24 pixels
that serve as the lines of the rectangle. We also output
the color (red) of those pixels in rgb565.

• Unpixelate (latency: 1 cycles per pixel, throughput: 1
cycle per pixel). We take the hcount and vcount of the
red pixels in a 24x32 frame and output the corresponding
hcount and vcount in a 240x320 frame.

• Display through VGA.

V. EVALUATION

A. Networking Offload Engine & Image Transmission

The image disassembly and networking output modules are
pipelined to provided as high of a data rate as possible. Each
packet contains an image line which contain 240 16-bit color
pixels and one 16-bit vertical location resulting in 482 bytes
of data per packet. With the preamble (7 bytes), sfd(1 byte),
destination and source MAC addresses (12 bytes), ethertype
(2 bytes), frame check sequence (4 bytes), and interpacket gap
(4.5 bytes) included, that results in a total of 508.5 bytes per
packet. This means each packet has a 482

504 data ratio or is
95.6% full of data.

With the ethernet clock operating at 50 Mhz or 20 ns
per cycle, this means one packet is transmitted about every
0.00004 s. Multiplying by 320 packets (lines) to transmit the
entire frame, this gives us 0.013 seconds per frame or the
inverse of 76.819 frames per second.

There is room for improvement in both data rate and data
density. Fast ethernet frames have a maximum transmission
unit of 1500 bytes. A potentially quick improvement may
be to transmit two or three lines of data per packet which

would result in data ratios of about 962
984 (97.7%) and 1442

1464
(98.5%) useable pixel data to total transmitted data. Because
our packets are twice or three times as dense, the number
of packets to transmit is decreased two or threefold and thus
frames per seconds increases to 153.6 and 230.5 respectively.

As far as delay from pixel capture to display, since the
data is transmitted linearly, we are concerned with the average
time for a pixel to be taken from the onboard storage of the
transmitting FPGA, to when it is stored in the onboard memory
of the receiving FPGA. Data is continuously streamed on the
transmitting FPGA with approximately 92 registers or 1.84
microseconds between the onboard storage and when data goes
off the wire. This delay is used to add the ethernet header, to
flip the bit order, and to send the preamble.

On the receiving side, a pixel experiences approximately 4
registers or 80 nanoseconds of delay before reaching a large
temporary register storage. This storage is used as the packet
must fully transmit in order for the FCS to be calculated. At
this point, if valid, the data streams off linearly into the on
board memory at 2 cycles per pixel. At this bottleneck, the
average pixel must wait for on average half of the other pixels
to be loaded into the memory which results in a delay of 2.48
microseconds from receiving to storage.

Another unknown delay is the bottleneck that may result is
when we transmit data over the wire. Because the current de-
sign utilizes point-to-point transmission with a single ethernet
cable, we can assume this delay is negligible.

Overall, the delay from pixel capture to pixel storage
between the two FPGAs has a floor of 4.32 microseconds.
Reducing this delay would be tough as upstream modules are
already triggered to seamlessly transmit data. Parallelizing data
transmission, perhaps to 4 bit ethernet could cut the delay in
half when the signal is on our hardware as a 4-bit data bus
could replace the 2-bit bus used throughout the design.

B. Image Processing

All of the image processing modules run on the 65MHz
clock. The above design runs at a throughput of 768 cycles per
pixel = 58,982,400 cycles per frame = .9 seconds per frame.
The background video still has very low throughput, but the
overlay updates very slow. This does not meet our goal because
our detections would update noticably slow to the human eye.
We can improve this by decreasing the throughput of the dense
layer– conducting more multiplication operations per clock
cycle.

The image processing design runs at a latency of 932 cycles
per pixel = 77,732 cycles per frame = .001 seconds per frame.
This does meet our goal because the detections are performed
at very close to realtime– the human eye would not notice the
lag.

The image processing design uses 1,379 Kbits of BRAM
(out of the alotted 4,860 Kbits). The BRAM storage was taken
into account when creating the pre-trained network. Pixelating
the frame also saved a significant amount of memory. We were
able to use more bits to denote each pixel– we chose to shift



the weights and inputs by 17 bits when doing the fixed point
multiplication so as to not lose precision.

The image processing design could be adapted to be used
in any convolutional neural network.

We did not reach our goals. We were able to rigorously
test the pre-neural network processing as well as all modules
in the convolution layer. The dense layer and the post-neural
network processing are at varying levels of tested due to time
limitations and poor planning.

VI. RETROSPECTIVE

• Ethernet is incredibly difficult to implement and has very
particular timing specifications.

• Floating point numbers are unwieldly in hardware.
• We should consider sticking to the schedule.

VII. TEAM REPOSITORY

https://github.com/bmsully/peoplewatching

REFERENCES

[1] IEEE 802.3u Fast Ethernet Specification. IEEE802.3u, June 1995.


