
FPGA 360
6.205 Final Report

Kailas Kahler
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

kailasbk@mit.edu

Ritik Patnaik
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

rik01@mit.edu

Abstract—We present a 3-dimensional graphics viewer imple-
mented in FPGA hardware, which uses VGA to output to a
monitor and a joystick for camera view control. The graphics
module transforms vertex data, maps triangles to pixels via a
rasterizer, and shades the 3-D object with a maximum throughput
of approximately 95 million pixels per second, though the overall
pipeline locked at a frame rate of 50 fps. The control module
monitors analog signals from a two-axis joystick, converts them
into discrete bits, and transforms the camera’s orientation and
position. We implement our design on a Nexys A7 FPGA,
employing the two on-board XADCs for the joystick, VGA port,
and multiple BRAMs. We evaluate the system’s performance and
quality by rendering custom 3-D models in the OBJ file format,
and describe the successful expansion of our design to include low
poly art graphics, dual-joystick camera control, and 3-D scene
uploads via UART serial communication.

Index Terms—Digital Systems, Field Programmable Gate Ar-
ray, 3-D Computer Graphics, Joystick, Rasterization, Multi-
plexer, ADC, GPU

I. INTRODUCTION

3-D Computer Graphics is a research field for digital
systems that has given rise to powerful GPUs. An essential
application of 3-D graphics is the rendering of custom 3-D
models and scenes, such as low poly art. The FPGA 360 is a 3-
D graphics viewer based on a rasterization rendering scheme.
A user can upload a 3-D model or scene to be displayed
over VGA, and control the camera view with joysticks in two
modes: gimbal-lock and free.

The following project milestones were achieved for the
FPGA 360:
(A) Commitment: Render a scene of cubes with different

color faces and control the viewer with buttons in gimbal-
lock mode.

(B) Goal: Render hardcoded low-poly art scene with di-
rectional lighting and control the viewer with a single
joystick in gimbal-lock mode.

(C) Stretch Goals: Upload a 3-D OBJ model or scene from
a PC using UART serial communication and control the
viewer with two joysticks in either gimbal-lock or free
modes.

Ritik designed the camera control module, built the Dual-
Joystick controller, and implemented the BRAM storage logic
for UART model uploads. Kailas designed and built the

graphics pipeline and implemented the UART decoder logic
and serial Python script for encoding and sending models.
The team members designed, simulated, and deployed their
modules on separate hardware before integrating the system
together.

II. CONTROL MODULE - PHYSICAL SETUP

Fig. 1. Breadboard and Schematic for Dual-Joystick Controller

While the majority of the system hardware is integrated
in the FPGA, including VGA chipset and Block RAM mod-
ules, the control module requires two peripheral joysticks
connected to the development board. As shown in Figure 1
schematic, two five-pin Joystick Control Boards (KY-023) and
two Analog Multiplexers (TI CD74HC4067) were mounted on
a breadboard for easy layout. The power pins, GND and Vcc,
respectively connect to the FPGA’s power supply pins, GND
and 3.3V. While the boards can output up to 5V on the Vx

and Vy analog output pins, the FPGA’s power supply limits
the Joystick analog output voltages to 3.3V.

The on-board XADCs have an input analog voltage range of
0V to 1V, so a voltage divider is necessary to further step down
the output voltage. Voltage dividers with 500K and 100K Ω
resistors are built between the Vx and Vy output pins and the
Analog Multiplexer input channel pins. The first multiplexer
selects either the Vx of the left joystick or the right joystick
and the second multiplexer switches between the Vy analog
voltages via a FPGA digital input pin on the JA port. The Vx

multiplexer common output pin connects to the VAUX3P pin
on the XADC port, and the Vy multiplexer pin is wired to the
VAUX11P pin.

III. CONTROL MODULE - FPGA DESIGN

A. XADC Sampling
The XADC IP configured for this system’s FPGA is operat-

ing in a dual-ADC simultaneous sampling mode. The Joystick
Vx and Vy analog outputs are sampled concurrently and their
12-bit values are stored in status registers. These registers can
be accessed through a dynamic reconfiguration port (DRP).
Figure 2 shows the detailed timing of the DRP. For our
purposes of continuously reading from the XADC, the DEN
enable signal is always high and the DWE write enable is
always low. Ideally, sequential logic in our control module
would check for the rising edge of the DRDY data ready
signal. At the rising edge, one of the ADCs will have their
data updated from the status register read and the DADDR
channel address will be switched to the other ADC.

However, detecting the DRDY rising edge worked in sim-
ulation but did not work on hardware, so the channel address
instead switches every 0.6ms. No crosstalk was captured
between the channels. The joystick multiplexer select signal
(joystick select) switches after reading both registers on the
XADC. The 0.6ms delay also prevents crosstalk between
joysticks. Camera position and orientation logic updates every
20ms based on the joystick data. These latency issues are
due to our chosen analog multiplexer and FPGA develop-
ment board. However, the control module is running at a
similar speed as the graphics module, so the aforementioned
limitations are not significant enough to effect the overall
performance of our project.

Fig. 2. XADC DRP Timing Example

B. Move, Scale, and Rotate (MSR) Logic
The XADCs convert the Vx and Vy Joystick analog outputs

to two 12-bit values (X and Y). Moving the joystick all the way

Fig. 3. Control Module Block Diagram

to the left produces 0x000 on the X logic, while a right toggle
produces 0x800. For the Y logic, the joystick pulled down
results in 0x000 and pushed up outputs 0x800. The MSR logic
block in Figure 3 translates the joystick movement to changes
in the camera position and direction in the 3-D graphics space.

The joystick select and btnr button input signals control
state machines in the MSR logic block that respectively
register the input X and Y as left or right joystick values
and sets the cam mode output signal in either a gimbal-lock
or free state. In gimbal-lock mode, MSR logic produces a
single camera scaling value based on the left joystick Y value
and outputs it on both the x inc and y inc signals. Threshold
ranges are encoded to uniformly increase or decrease the zoom
as the joystick moves further up or down. In free mode, the
left joystick X and Y values increment the camera’s position in
the free space based on the same threshold ranges as gimbal-
mode. The left joystick X and Y values are calibrated at a
resting value of 0x400.

For both camera modes, the right joystick controls the
camera’s orientation, i.e. the direction the camera is pointing
in the 3-D space, by translating the X and Y values into yaw
and pitch angles, respectively. The angles are encoded into
12-bits, where 90◦= 0x400, 180◦= 0x800, and 270◦= 0xC00.
Threshold ranges for X and Y increment or decrement the yaw
and pitch angles depending on direction. For example, a slight
move to the right (0x500 < X < 0x600) increments the pitch
by 0x5 every 20ms, a further push (0x600 < X < 0x700)
increases the pitch by 0xA, and a full toggle (X > 0x700) is
a pitch delta of 0xF.

C. Directional Vector and Position Logic

The Directional Vector logic block in Figure 3 uses
trigonometry to transform the yaw and pitch angular orien-
tation to directional vectors for the camera’s x-y-z axes. The
math described in Figure 4 require sine and cosine functions
to convert the angles to directional vectors. Since there is no
in-built representation of trigonometric functions in the FPGA,
a custom sine function module was built. The module uses a
Python-generated table stored in read-only BRAM that maps
the least significant 10 bits in the encoded angles, i.e. [0◦,
90◦), to 32-bit sine values in the range of [0, 1].

Combinational logic in the module then determines the sign
of the sine value using the two most significant bits in the 12-
bit encoded angles. The output of the sine function module is

X⃗ =

 cos(yaw)
0

− sin(yaw)



Y⃗ =

− sin(pitch) ∗ sin(yaw)
cos(pitch)

− sin(pitch) ∗ cos(yaw)



Z⃗ =

cos(pitch) ∗ sin(yaw)sin(pitch)
cos(pitch) ∗ cos(yaw)


Fig. 4. Math for Transforming Angular Orientation to Directional Vectors

a IEEE-754 floating point 32-bit value representing a decimal
value in the range [-1, 1]. Cosine values can be easily read
from the BRAM by indexing 0x400 - angle (90◦ − θ). The
Vector Logic block outputs 3 axis vectors with 3 magnitudes
(as formulated in Figure 4), fully conveying to the graphics
module in what direction the camera is facing. The latency
of the Directional Vector logic block is 9 clock cycles, i.e. 2
clock cycles to read from the multiple sine table BRAMs and
7 clock cycles to perform the multiplications.

The Position logic block takes the 32-bit incremental values
for each linear axis from the MSR logic and the direction
vectors from the Directional Vector logic to fix the position
of the camera in the 3-D space. In gimbal-lock mode, the
x and y increment inputs have an equal value (a), which is
used to scale the vec z directional vector input (zoom control).
The scaled vec z value is wired to the 3-dimensional 32-bit
position vector produced by the control module and fed to the
graphics module.

p⃗os = aZ⃗

In free mode, the x inc and y inc inputs move the camera
forward, back, left, and right in the direction it is facing. The
x inc scales the camera’s vec x and y inc scales the camera’s
vec z. The scaled vectors add their components to each other
to create a delta vector based on the global coordinate system.
In sequential logic, the position vector updates by adding its
previous value to the delta vector.

p⃗os = xincX⃗ + yincZ⃗ + p⃗os

The Position logic block has a latency of 25 cycles from
the 32-bit floating point add (9-cycle delay) and multiply (7-
cycle delay) implementations. The latency of the Directional
Vector and Position logic have a minimal difference, and
are only read by the graphics module once per frame, so
pipelining to synchronize the pos and directional vectors was
not implemented as it would have no effect on the performance
of the larger graphics system.

IV. GRAPHICS MODULE DESIGN

A. Floating Point Modules

Much of the graphics module, and parts of the control
module, is implemented using floating point arithmetic, which
is useful because numbers with different, and inconsistent,
magnitudes are used together. Vivado provides IP for floating
point units, but for simulation compatibility reasons and for
intellectual curiosity reasons, we are using our own floating
point units. These abide by the IEEE-754 spec in all regards
except for the handling of sub-normal numbers, which are
always rounded to 0. Given that sub-normals almost never
occur, and handling them requires significant additional LUT
logic, this is a nice saving for our purposes. The floating
points units implemented include 32-bit floating point add
(with 9-cycle latency), multiply (with 7-cycle latency), and
divide (with 30 cycle latency). All of the floating points units
are fully pipelined to allow for a throughput of a calculation
each cycle. Only multiply uses DSP resources, which is 2
DSP48’s per multiply module. On a similar note, there is also
a fixed point divider module which is using by the floating
point divide as well as the barycentric conversion.

B. Graphics Pipeline Overview

The general diagram of the graphics module pipeline as a
whole is shown in Figure 5. The different modules vary in

Fig. 5. Graphics Pipeline

complexity, with additional focus being given to the rasterizer
and framebuffer, which are the most essential modules.

• The model memory module (not pictured) holds all of the
model data, such as vertex positions and normal vectors,
as well as the index buffer and the colors of the materials.
The vertex fetch and fragment shader modules get index,
position, normal, and material data from this module.
This module can also be written to over UART, which is
detailed in Section V, and allows for rendering of multiple
different models.

• At the top of the pipeline, the vertex fetch module fetches
the index (which is packed array of a indices for each of
the position, normal vector, and material) from the model
memory, and then uses that to fetch the vertex position
data, and sends that, along with the normal and material
indices, to the vertex shader. To render the next frame,
there is a restart signal which signals the fetch to restart
from the first index. This restart is triggered on a timer,
which is set to 50 times each second, but could be altered
to a different frame rate, and does not need to match with
the VGA frame rate of 60 frames per second.

• The vertex shader multiplies the vertex positions by the
transform matrix, which uses 16 floating point multiplies
and 12 floating point adds in total. The vertices (and their
triangles) outside of the bounds of their w coordinates are
clipped.

• The perspective divide divides each of the x, y, z coor-
dinates by w, and outputs 1/w as the fourth coordinate,
using a total of 4 floating point divides.

• The viewport transform, which has 3 floating point adds
and 3 floating point multiplies, converts the coordinates
from ranges of [-1, 1] to [0, 320), [0, 240), and [0, 1) for
the x, y, and z coordinates, respectively.

• The primitive FIFO stores the vertex positions, and the
material and vertex normal indices, so that they can be
given to the rasterizer when it is ready, as the raster
can spend up to 10’s of 1000’s of cycles on a given
triangle. Due to some issues with simulating Vivado IP,
this FIFO was implemented ourselves. It uses one 96-bit
width by 8192 entry BRAM for the positions and a 12-bit
by 8192 entry BRAM for each of the vertex material and
normal indices. Each BRAM has a write pointer which is
incremented when the vertex transform produces a vertex,
and a single read pointer which is incremented when the
rasterizer consumes a vertex. The FIFO uses 1,245 Kb of
BRAM, which ends up being a significant contributor to
the total BRAM usage of the overall design.

• The rasterizer consumes vertices from the FIFO and links
them together into triangles. It determines the pixels
inside each triangle, which are then sent to the fragment
shader.

• The fragment shader fetches the normal vector and ma-
terial color from the model memory for each pixel and
computes the lighting of each pixel with the following
formula: rgb = rgbmaterial · max(1,min(⃗light dir ·

⃗normal vec, 0) + .1). The color, and the screen space
position of the pixel, are then sent to the framebuffer.

C. Framebuffer

The framebuffer was the first graphics module to be im-
plemented, as it is required to display pixels on the screen
and do any verification on the FPGA of the function of the
other modules. The framebuffer used 3 BRAMS, which were
generated by Vivado IP because of an issue where Vivado
would use more block RAMs than was needed when inferring
block RAMs. There are two 320x240 12-bit entry BRAMs
which store the two frames in 12-bit RGB color, and an 14-bit
320x240 entry BRAM for the depth buffer. This makes for a
total usage of about 2,918 Kb of BRAM usage, which is almost
two thirds of the BRAM resources on the FPGA. While one
frame is being written to, the other one is being scaled and read
out through the VGA port at 640x480 resolution at 60 FPS.
When a valid pixel is written in at the input to the framebuffer,
the z-value is checked against the depth buffer for the pixel at
the same position. If the depth at the input is less than the depth
stored in the depth buffer, then the pixel is considered valid
and the new color value is written to the target frame and the
new depth value to the depth buffer. The framebuffer also has
an FSM to switch between this normal operating mode, and
the clearing mode, where it ignores all inputs and writes the
maximum depth of 0xFFFF (clipped to 14 bits) and the color
gray (0x222), to every pixel. This clearing period generally
coincides with the switching of the read and write target frame
BRAMs. The diagram of the framebuffer module is seen in
Figure 6:

Fig. 6. Framebuffer Module Block Diagram

D. Rasterizer

The rasterizer module is grouped into 3 main portions,
the FSM portion, the barycentric conversion portion, and
the interpolation portion. This is shown in Figure 7. The
barycentric conversion portion and interpolation portion are

Fig. 7. Rasterizer Module Diagram

fully pipelined, allowing for a maximum throughput of 1
pixel per clock cycle. However, due to the time needed for
framebuffer clearing in the parent module and the latency of
the FSM setup pipeline, the maximum throughput of rendering
is closer to .95 pixels per clock cycle. The FSM diagram is
shown in Figure 8. The behavior of each state is the following:

• Ready: the FSM waits for a valid vertex, and when it
receives one, it stores it and moves to the Convert state.

• Convert: the vertex’s coordinates are converted from 32-
bit floating point to 17-bit fixed point with a shift. The
FSM then moves to the Store state.

• Store: the fixed point vertex is stored, and the x and
y coordinates of the bounding box of the triangle are
updated. If it is the 3rd vertex, the FSM goes to Assemble,
otherwise it goes back to Ready.

• Assemble: the first sampling point of the rasterization
sequence is set to be the upper left corner of the bounding
box. Then the FSM transitions to Raster.

• Raster: the FSM sends the current sampling point to the
barycentric conversion module, then increments the point
in the x direction. If it passes the x bound of the bounding
box, it wraps back around to the left of the bounding box
after incrementing the point in the y direction. If both the
x and y coordinates have passed the bounding box, then
rasterization is over and the FSM goes back to Ready
with 0 vertices.

Fig. 8. Rasterizer FSM Diagram

From the FSM, samples are sent to the barycentric conversion
module, where each is converted to barycentric coordinates,
meaning that each point is rewritten as a coefficient times each

of the 3 vertices. This is done by calculating the area of the
3 triangles inside the original triangle made by connecting 2
vertices and the sample point, and dividing those areas by the
area of the entire triangle. These calculations are done using
the DSP multipliers (which is the reason for moving to 17-
bit fixed point), with each area calculation taking 6 DSP48
multiplies for a total of 24 for the entire conversion. If all of
the coefficients are positive and less than or equal to 1, then
the fragment is considered valid and given to the interpolation
section. In addition, a fragment is considered valid only if it
is front-facing, which is generally called backface culling, and
removes some graphical artifacts occurring when faces shared
an edge, shown in Figure 9. Using the coefficients given by

Fig. 9. w/o culling on the left v. w/ culling on the right

the barycentric conversion, the fragment’s attributes can be
interpolated. For example, the depth value is interpolated as
follows, where a, b, c are the barycentric coefficients.

z = a · za + b · zb + c · zc

V. UART AND MODEL MEMORY MODULE

A target stretch feature for the design was to have a method
of importing external models. Originally, importing from an
SD card was proposed, but upon advice, this was changed to be
from a PC over a serial connection. Thus, the design allows
for the models to be uploaded to the FPGA over a UART
serial connection, which utilises the USB to serial bridge on
the Nexys A7. This required that the UART module had a
pathway to write to the 4 BRAMs which held the model
data: the indices BRAM, the positions BRAM, the normals
BRAM, and the materials BRAM (in reality because this was
small, it was implemented as registers). Thus, the required
BRAMs are all placed in a single model memory module, with
read ports for access. The model memory has a 8196 entry
36-bit width index buffer, along with a 2048 entry position
and normal buffer, each with 96-bit width, totalling 721Kb of
BRAM usage. In addition, the module exposes a UART Rx
and Tx line which is handled by an internal UART transceiver
operating at 115200 baud. A diagram for the model memory
module is given in Figure 10. Because the UART controller
runs at 115200 baud, it takes about 6.259 seconds to transmit
the model bits and about 7.823 seconds when accounting for
the additional start and stop bits, to rewrite all of the BRAMs
entirely. Through Vivado has UART IP available, a controller
with a simpler interface was created. When the Rx line goes

Fig. 10. Model Memory Module Diagram

low, the controller starts a 115200 baud ”clock” which is
created using a counter based on the reference GPU clock
of 100MHz. Then, the 8 data bits are sampled on the rising
edge of the clock, which is timed to fall in the center of each
bit’s transmission. After the ending high bit is received, the
controller goes back to idle and emits a 1 cycle valid signal
along with the received byte. As a part of debugging, it was
also made to echo this byte back along the Tx line, though
this is not a required functionality. The BRAM writing logic
then takes the bytes from UART controller and links them
together into valid entries to the BRAMs (which are written
upon receiving 5 bytes per index entry, and 12 bytes for the
other BRAMs). When the FSM receives an entry of all 1’s,
this acts as the stop sequence and the controller goes to writing
to the next BRAM in the order of indices, positions, normals,
material, then back to indices and so on.

On the PC end, there is a Python script with parses the .obj
file and then sends the bytes to the FPGA using Pyserial.

VI. EVALUATION AND ALTERNATIVE IMPLEMENTATIONS

The design can be evaluated in two main facets: the smooth-
ness and the quality of rendering.

In this design, speed of the rendering and control logic,
and thus smoothness, was not an issue, as the modules run at
comparable speeds to the VGA output. The vertex transform
stage has a throughput of 1 vertex per cycle, thus given the
maximum model size of 8196 indices, vertex processing is
completed in a small fraction of the 1.66 million cycles of
rendering time given even when targeting 60 frames per second
which is the maximum for the 640x480 VGA standard. On
the rasterization side, it takes 10 cycles to setup each triangle,
and then outputs 1 pixel per cycle, thus the rasterizer can
process, each rendering cycle, about 20 times the pixels in a
single 320x240 frame. Though overrasterization is possible,
where the same pixel is rasterized multiple times (e.g. when
triangles overlap), it is unlikely to happen to this degree. From
a timing perspective, the main logic runs on an 100MHz clock,
and has 1.979 nanoseconds of slack after synthesis, which is
reduced to 0.529 nanoseconds after routing, so there is not
much immediate room to increase operating frequency.

Quality can be assessed in multiple regards, but the main
components are generally resolution, triangle count, and (lack
of) visual artifacts. With regard to resolution and triangle

count, the final design uses 97.78 percent of the BRAM on the
FPGA, thus there is not space to increase these metrics, though
the rendering pipeline could keep up. It should also be noted,
that the design only uses 41.62 percent of slice logic and 44.17
percent of the DSPs, so the rendering pipeline couple also be
theoretically duplicated to double throughput. There are many
possible visual artifacts in graphics, but the three following
issues, and possible solutions, are discussed below:

1) Z-fighting, where the depth buffer precision is not suffi-
cient, is pictured in Figure 11. The main method of fixing
this is having a higher precision depth buffer, as most
GPUs use 24 or 32-bit depth values as opposed to the
14-bit value we used. Given there are not extra BRAMs
on the board, this would require augmenting the design
to use the DDR.

2) The rendering also suffers from some amount of aliasing,
which is expected in rasterized graphics, and is seen in the
jagged edges of triangles. Modern GPUs support multi-
sampling, where multiple points per pixel are sampled
and then blended before displaying the frame to remove
such edges. Like z-fighting, this requires additional mem-
ory which is not present on the FPGA without using the
DDR.

3) Though it behaves as designed, the way the triangle
clipping works in the design can lead to subpar rendering
in some cases, where is looks like there are segments of
the model missing. This is because triangles are clipped
if any of their vertices lay outside the clipping volume.
In most graphics applications, however, new vertices are
inserted into the pipeline so that an equivalent in-bounds
triangle is rendered, which gives smoother clipping. There
are resources remaining to implement this on the FPGA,
but it would significantly complicate the vertex transform
stages and require stalling signals in the entire pipeline.

Fig. 11. z-fighting when rendering a model tree

APPENDIX

A. Source Code

The source for the project can be found at the
following repository: https://github.com/kailasbk/fpga-
360. All source code used in the project is included,
with the following exceptions: 1) Verilog modules given
in class (debouncer, xilinx_single_port_ram,
xilinx_dual_port_ram), and 2) Vivado generated IP
modules, which is the clk_wiz, depth_ram, frame_ram,
and xadc_fpga360 modules.

https://github.com/kailasbk/fpga-360
https://github.com/kailasbk/fpga-360

B. Renderings

As a final inclusion, this appendix includes renderings of
all models which were tested on the board. All modules were
uploaded to the design over the UART connection (as opposed
to being hard-coded).

Credits for the models, from top left to bottom right:
• The top 4 models were created by Kailas using Blender.
• ”N64 Logo” (https://skfb.ly/6TuRp) by Zero One De-

signs is licensed under Creative Commons Attribution
(http://creativecommons.org/licenses/by/4.0/).

• ”Low poly tree 3D model” was created by Simon
Telezhkin (https://hum3d.com/free/low-poly-tree/).

• ”the volcano” (https://skfb.ly/oyQOx) by Cozmoth
is licensed under Creative Commons Attribution
(http://creativecommons.org/licenses/by/4.0/).

• ”Low Poly Mountain scene” (https://skfb.ly/FtxN) by
David Junghanns is licensed under Creative Commons
Attribution (http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Control Module - Physical Setup
	Control Module - FPGA Design
	XADC Sampling
	Move, Scale, and Rotate (MSR) Logic
	Directional Vector and Position Logic

	Graphics Module Design
	Floating Point Modules
	Graphics Pipeline Overview
	Framebuffer
	Rasterizer

	UART and Model Memory Module
	Evaluation and Alternative Implementations
	Appendix
	Source Code
	Renderings

