
Nonogram Solver Final Report
Nina Gerszberg

Dept. of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

ninager@mit.edu

Veronica Grant
Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
vgrant@mit.edu

Dana Rubin
Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Danaru@mit.edu

Abstract—This project aims to solve a nonogram the
fastest way possible through parallelizing the solving
process. Nonograms are picture logic puzzles which were
invented in the 1980s. They are represented as a grid in
which cells in a line must be colored or left blank according
to a set of numbers that each line has. Each number in
the line’s set requires coloring of a consecutive group of
cells, followed by at least one blank cell before the next
coloring. Solving nonograms is an NP-complete problem
which has different solution techniques.

I. INTRODUCTION

Fig. 1. Empty nonogram board (left) and solved board (right)

Nonograms are grid logic puzzles which have a set
of numbers for each row and each column; we’ll refer
to this set as “constraints”. The numbers in the con-
straint set represent how many unbroken consecutive
cells should be filled in, or colored, we’ll refer to a group
of n number of consecutive colored cells as “block”.
Between each two neighboring blocks there has to be
at least one blank, uncolored, cell. We will refer to a
colored cell as having value of “1” and blank as having
value of “0”.

To solve a Nonogram board one essentially needs to
determine and assign which cells will be blocks and
which will stay blank. There are several methodologies
to extract a cell’s value. Here, we will aim to incorporate
the following methods in our design:

• simple blocks: for a given line, one can deter-
mine cells’ assignments as ”1” if a number in the
constraint set is larger than n/2. It can be done
recursively by breaking the board to smaller pieces.

Fig. 2. simple blocks - blue cells are valid assignments to ”1”, then
middle cell can be deducted-green.

• simple blanks: Similarly to the simple blocks idea,
one can determine cells’ assignments as ”0” if we
have an unknown cell next to a known block.

Fig. 3. simple blanks -The green cell is known to be ”1”, for the
first assignment, so we can deduct that the cells next to it are known
to be-”0”.



Fig. 4. Block Diagram



• Forcing: When there is a gap of n unassigned cells
between two cells that are assigned to be ”0” and
n <smallest number on board, one can assign the
cells in the gap to ”0”.

Fig. 5. Forcing -First row is given, we can deduct the middle cell is
also ”0” since the gap is too small to fulfill any block.

In mathematical perspective the Nonogram problem
can be viewed as a constraint satisfaction problem (CSP).
There have been several Nonogram solver implementa-
tions in the past, from solving Nonograms by combining
relaxations iteratively on the Nonogram’s lines, [3] to us-
ing evolutionary algorithms or a combination of heuristic
solvers on the Nonogram. [2]

Here, we aim to apply continuous line simplifications
using the methods described before in a parallel way.
We chose to represent a board and its constraints in a
computational form using the disjunctive normal form
(DNF) formula. DNF can be described as applying OR
logic to several groups of AND logics, or as a sum of
products in boolean logic. [4]

II. BOARD REPRESENTATION

To translate a given board into a DNF we programmed
a python implementation which generates all valid op-
tions for a row or column given the constraints set forth
by the board specification. Over all these valid options,
each of which is represented as a combination of ANDs
logic, we apply OR logic as we eventually aim to get
one of these options right. After combining all the valid
options for each line in the above manner, we send
this board representation as long sequence bits, which
is further described in Communication section.

III. STORAGE

The main method of storage for this program is a FIFO
queue. Using the Xilinx fifo generator, the current FIFO
we are using has enough space to store a 11x11 board.
The FIFO has width 16 and depth 2048 (22x84). The
depth is that amount since the worst number of possible
options for a puzzle line of size 16, and there are 22 total
rows and cols. The number of possible options for a row
is a combinational problem. As stated in the introduction,
each line has a number of blocks of colored spaces (b)

and a number of blank spaces (s). An option is a unique
ordering of the colored blocks and blank spaces, so we
can use n choose k, or binomial coefficients, to find the
total number of options for a given b and s which

((b+s)
b

)
.

The combination that maximizes the number of options
for a 11x11 board is b = 9 and s = 3 as 9 choose
3 = 84.

Since the FIFO is the size of the worst possible
outcome for an 11x11 board, it is important to store
how many options each line has stored in the FIFO. This
is stored in a 2D array such that the puzzle line index
will map directly to the number of options a particular
line has which is equal to the number of entries in the
FIFO. These are the most important data structures for
this design, and there is still space left for other transient
information.

The FIFO format is as follows:
0123456789101112131415

line index

option #1
...

line index
...

A line index is an arbitrarily assigned number to
uniquely identify the row or column that the constraints
belong to. Line indexes are from 0 to (m+n)-1 for an mxn
board. The line index goes first and everything following
it until the next line index are the constraints for that line.
An option is one possible sequence of 1s and 0s that
obey the constraints for a given line. We only consider
the first m or n bits, so the current FIFO configuration
could support a max size of 16. Using the FIFO and the
options per line, we are able to store all the information
necessary for the solver to work correctly.

IV. COMMUNICATIONS (VERONICA)

The game board is stored on a PC, so it must be
transmitted to the FPGA to be solved in a readable
format and then sent back to the PC for display. The
protocol we used to do this communication was UART
with a baud rate of 9600 that contains 1 start bit, 8 data
bits, no parity, and 1 stop bit.

A. PC to FPGA

On the PC side, PySerial is used to send the bits
representation of the board to the FPGA using the pro-
tocol outlined below. The UART RX module is always



listening, so it correctly outputs 8 bits of data at a time
to the parser module. The parser buffers 1 byte and
waits until it has received a full message (2 bytes) before
processing the message. n and m are extracted from the
first two messages. Each line is fetched one at a time, and
each option is consolidated into a buffer that is written
into the central FIFO. The number of options for each
line is stored in a 2D-packed array that is indexed into by
the corresponding line index. Once the board has been
completely processed, the parser signals the solver to
start.

B. Protocol

Each message is 16 bits, so it takes 2 UART trans-
missions to completely send over one message.

0123456789101112131415

flag index val

There are six message types, and the control bits (bits
13 - 15) are a flag for which type of message is being
sent/received.

• 111 = start new board
• 000 = end board
• 110 = start new line
• 001 = end line
• 101 = option assignment
• 010 = next option

If the control is 111, or start new board, the index
bits (bits 1 - 12) are set to either m or n to communicate
the size of the board (mxn) to the FPGA. If the control
is 101, or option assignment, the index and value (bit
0) bits are set to the correct assignment for the current
option. value is 1 if the current line’s option has a 1
at index and vice versa. For all other flags, the index
and value bits are set to 0 as there is no additional
information that needs to be conveyed.

The flow that a board is sent to the FPGA is as follows:

1) start new board with m in the index value
2) start new board with n in the index value
3) start new line
4) option assignment(s)
5) next option
6) repeat 4 and 5 until line is finished
7) end line
8) repeat 3 - 7 until board is finished
9) end board

C. FPGA to PC

Once the solver module is done, the board’s solution
is ready to be transmitted to the PC using the assembler
and UART TX modules. The assembler will take the
solution array from the parser and form the messages
that are sent to the transmitter as fast as possible. The
first two messages are start messages with m and n in
the index values. Then mxn messages are sent with the
cell by cell index and correct value. The last message
is a stop message. The transmitter will send the board
back to the PC utilizing a subset of the message types
(start new board, end board, and option assignment). The
result is then processed by PySerial and printed to the
terminal for display on the PC.

V. SOLVER (DANA AND NINA)

There are a few components to the solver- the FIFO
queue, an array which holds the number of options per
line, and the solver module itself. The FIFO queue is
constructed in a way so that it stores a line index in a
slot, and in the following slots it has the valid options
for this line, until the next slot with a new line index.
The number of options per line array is constructed so
that it “maps” a line index to the number of options left
for that given line index. This allows the solver to know
when it has found the final assignment for a line because
there is only one valid option left.

The solver module has 2 main components, two 1D
arrays in the size of the maximal board, which it uses to
solve the board and reduce the FIFO. Known- the first
array, which keeps track of which cells have a known
assignment - “0” if a cell is not known, and “1” if a
cell is known. Assigned is the second array which keeps
track of the cells’ assignments- a cell will be assigned to
“1” if it is known and its assignment is “1”, and “0” if it
is either not known or if it is known and its assignment
is indeed “0”.

The solver then gets line by line from the FIFO, and
assigns the board or reduces options for a given line
based on known information from within our Known 2D
array mentioned above. There are two ways to assign a
piece of information. First, is if a given cell has the same
value for all possible ways to fill a row or column, for
example Line 0 (Figure X) has two options- 011 and
110, therefore when we get to the next line index we
know the middle cell in Line 0 can be assigned to “1”.
We will refer to this method as “Consistent Value”. The
second method in which we assign is if there is only one
valid option to fill a row or column, for example we can
consider Line 2 (Figure X).



To reduce the number of options in the FIFO we check
for each option if it contradicts our known information.
Contradiction check is done using a formula that use
XOR logic on a possible option for a line with the
assigned information at these spots. Discrepancies appear
in the result as a 1. We then compare this to see if a
discrepancy occurs at an index of known vs unknown
information. This is done using an AND logic. If the
final outcome is a 1, then we know that this option is not
compatible with our assigned and known information so
we do not add it back to the queue.

We also simplify by Consistent Value checking if a
given index is always 0 or always 1 over all options for
that line index. This is done by using AND logic on all
the the valid options that we got from the FIFO for a
given line with two arrays full of 1’s. One array represent
slots that are consistently “1” (always1) and the other
represent slots that are consistently “0” (always0). For
always0 we AND it with options. Any remaining ones
at the end mean that these indices of the board must be
assigned 1 or 0 respectively.

Over time, the FIFO will get smaller, and we assign
more values to our known and assigned board. We know
we solved the board when all slots in Known array are
equal to ‘1’. This means that every line is fully known.
For every column to be known, every row must also be
known. This means that everything is known and we
have successfully solved the nonogram.

We’ve iterated through multiple possible solvers to get
to this one. Originally there was just a BRAM but we
encountered issues with wanting it to behave as FIFO
queue, and access multiple lines at once. In addition, we
originally had a queue where all of the options for a
given line were stored together. However, the maximum
size of a queue line was 1023 bits which limited us
to 11 by 11 board and rapidly consumed all of the
available memory within the FPGA. We also used to
have a different completed check involving every bit
within known to being 1. Unfortunately, this doesn’t
work for boards that are under our max capacity as the
remaining bits will be 0 (in our final design Known and
Assigned arrays are set to be the max possible size).

To test bench the solver, we used a variety of different
boards with different properties. We began with a smaller
3 by 3 board that tested many basic functionalities. It
tested what happened if multiple rounds were needed to
solve the board or if there was only 1 option for a given
row/column, etc. Once we achieved this, we expanded
into a pretty complex 4 by 4 board which required more
rounds to solve the board. We debugged the solver based

on this testbench and then expanded into a full 11 by 11
board. This tested the full capacity of our solver and
demonstrated that our solver could solve big nonograms
to create images. This made testing a bit easier as we
could simply confirm if the image produced was what
we were expecting, in this case the image we focused
on was a large x. Some challenges we encountered when
testbenching were ensuring that our nonogram didn’t get
too complex too quickly. For instance, at one point we
considered writing the number 15 out but considering
this led to over 70 options for some lines, therefore, we
decided against it and left larger boards up to our overall
integration tests where we wouldn’t have to generate
each option manually.

A. Walk Through Solving

To clarify how exactly the solver works we will walk
through the solver step by step for an example of 3x3
board (fig 6). The FIFO is constructed as displayed in
Figure 7. When solver gets line index 0 it access ”number
of line options” array and sees Line 0 has 2 options. Then
it get each option and uses logic to construct always1
and always0 according to the detailed explanation in the
main sover section. When solver get line index 1 from
FIFO it checks which slots in Line 0 are consistent- and
it deduces that the middle cell is ’1’. Therefore it assigns
it to ’1’ in known and assigned. For Line 2 Solver access
number of options and sees that Line 2 has only 1 option,
therefore on the next clock cycle it will assign all of line
2 to known and the assigned cells which correspond to
the 2nd line will be assigned accordingly to the only
option available. Therefore after the first round, our FIFO
will hold Line 2 index but will not have any option- since
it was assigned. Similarly for Line 3. etc. The solution
will be transmitted from the FPGA to the computer when
all of known is equal to ’1’.

VI. BEYOND THE MINIMUM VIABLE PRODUCT

A. Parallelizing

To parallelize the code, we created a new top level,
2 FIFOs, a parallel solver which uses both FIFOs, and
explored evaluating 2 options at a time. We placed all
rows and their options into one FIFO and all columns
and their options into another FIFO and took an option
off each FIFO on each clock cycle. This could accelerate
the solving process. This proved to be challenging as we
needed to make sure we don’t ask the FPGA to access
Assigned or Known arrays at the same time. We think
we fixed that bug and related bugs by separating the
parallel solver into 2 parallel cases, while making sure



the columns part does not write at the same time the rows
part does. For our final submission, we were unable to
fully integrate it with the rest of our code but have a
parallel solver that uses two FIFO’s that passes multiple
testbenches that we have written for it.

B. Invalid board

Initially we built our solver with the intention of only
handling solvable board inputs. However, we added a
parameter to our solver module that returns if the board
is not solvable. There are two ways to know if a board
is not solvable. First is if there aren’t enough options to
actually solve the board. An example would be if there
are 0 options that would satisfy another row/column.
Second is if you try to try to make an assignment to a
cell that has already been assigned to a different value.
An example would be if you try to assign the value ’1’
to a cell that we know from other constraints must be a
’0’. If a board is found to be unsolvable, we signal this
in our solver module output but do not otherwise change
anything. This also was not yet integrated into our final
product but passes all the testbenches we’ve thrown at
it.

VII. EVALUATION

A. Memory

We used one or two FIFOs for the serial and paral-
lel solver respectively. This was particularly inefficient
because the FIFOs had to have a depth large enough
to support the largest number of options each m or n
could possibly support and then have a width equal to
the largest dimension. This is not sustainable for really
large puzzles upwards of 11x11. Using n choose k, each
line of a 16x16 board has 720 possible options.

The solution being stored in an mxn array was also
not very good. Same as with the FIFO, the larger the
board, the bigger the data structure. As this entire array is
passed between modules, the size of the solution affects
the timing as it becomes harder to route the data the
bigger it is.

B. Latency & Throughput

Each major part of this design has a significant amount
of latency. For the receiver and transmission sections,
there is little that can be done about it since we are
using the UART protocol which is known to be slow.
The one thing that could have been done was to increase
the BAUD rate on both parts of communication, but the
FPGA has a maximum baud rate of 12Mbaud which is
equivalent to 40MB/s.

The solver currently goes through 4 stages in a FSM
each time it processes a single option from the FIFO.
This probably could be pipelined to increase the through-
put of the solver resulting in an overall quicker solver.

C. Goals

We met all our goals for a minimum viable product
as we have a working solver that can read puzzles in
a DNF form from the computer and send the solution
back to the computer to be displayed. It took us quite
a bit longer than expected to get the minimum viable
product, so none of the stretch goals have fully been
integrated into the system. Unfortunately, the stretch
goals we originally came up with no longer fit well with
the design direction we went in, so we started working on
different stretch goals such as supporting bigger boards
and parallel solving.

For the bigger boards, the steps we made to making
this possible was parameterizing all of the modules. The
second part to this issue was thinking of ways to store
the puzzle in a smaller amount of memory since that was
a concern as stated above. The parallel solver required at
least 2 FIFOs, one for the rows and one for the columns.
The rows and columns can be solved independently, so
two parts of the solver work on each by reading and
writing from their respective FIFOs. Both bigger boards
and parallelization worked in testbenches.

VIII. IMPLEMENTATION INSIGHTS

A. Timing

All modules were initially running at 100Mhz, but
the addition of the solver made it impossible. Pipelining
was tried between the modules and inside the solver, but
we could not make the slack nonnegative although we
got pretty close at -0.047ns. Currently everything works
and slack is not violated when the clock runs at 50Mhz.
Maybe if the solver was better pipelined across the FSM,
a 100Mhz clock could have been achieved.

B. Metastability in UART transmit

The major roadblock in achieving our minimum viable
product was getting the uart rx working consistently
enough to be confident that the board was received by the
FPGA worked correctly. The receiver would work 3 or 4
times before receiving the wrong data causing the parser
to quite early. We tried different UART Serial USB
adapters to see if that was the issue, used different
computers, etc., but to no avail.

Eventually, we discovered that the issue was a
metastability issue between the FPGA’s clock domain



and the signal being received by the computer. It was
causing enough of a clock skew that the receiver was
reading in the stop bit way too early and appending 1s to
the end of a byte every few messages. This issue arose
because of how much data we were reading using the
UART protocol at a single time. The solution was to store
the data inside of registers and then do the processing
on the data in the registers.

IX. CONTRIBUTIONS

We collaborated well as a group and did a large por-
tion of this project together through pair programming
techniques and lots of collaborative meetups.

Figures 1, 4, and the byte fields were done by Veron-
ica. Figures 2, 3, and 5-8 were done by Dana.

Veronica came up with the idea and helped with
initial research on ways to implement this in hardware.
She wrote all of the communication modules with their
testbenches (uart tx, uart rx, assembler, parser) and the
python communication methods in nonogram.py and
serial comm.py. She also wrote top level, generated
the FIFO IP, and refactored the solver to use a FSM
and pipelining. Finally, she debugged the entire project
and wrote the storage, communications, evaluation, and
implementation insights sections.

Dana contributed doing research on how previous
nonogram projects were constructed, what are the best
known methods to approach this problem, discussing
with the group on how to best implement the project,
coded DNF board generator, Solver, Parallel Solver, parts
of top level and parser, and whole top level for parallel
solver, test benches for solver, parallel solver, and as-
sembler. In the final report wrote abstract, introduction,
and solver.

Nina began by brainstorming ways to solve nonograms
using a SAT solver ultimately decided on our current
design instead with Professor Steinmeyer. Nina coded the
solver, the parallel solver, lots of testbenches, some of the
top levels. The DNF board generator, the manual version
of inputting a board, a bit of integration as well as code
a lot of maintenence/cleaning. Nina started started the
final report by modifying our preliminary report with all
the new information that has changed since then. After
that, she focused on the solver section discussing the
ways we have testbenched the code, our parallelization
strategies, invalid boards and general project overviews.

X. GITHUB CODE

check out our code base:
https://github.com/2nina2/Nonogram-Solver

REFERENCES

[1] de Harder, Hennie. Solving Nonograms with 120
Lines of Code. Towards Data Science, 1AD,
https://towardsdatascience.com/solving-nonograms-with-
120-lines-of-code-a7c6e0f627e4.

[2] Daniel Berend, Dolev Pomeranz, Ronen Rabani,
Ben Raziel, Nonograms: Combinatorial questions
and algorithms, Discrete Applied Mathematics,
https://www.sciencedirect.com/science/article/pii/S0166218X14000080

[3] K.J. Batenburg, W.A. Kosters, Solving Nonograms
by combining relaxations, Pattern Recognition,
https://www.sciencedirect.com/science/article/abs/pii/S0031320308005153

[4] DNF https : //en.wikipedia.org/wiki/Disjunctivenormalform



Fig. 6. 3x3 board on the left and its solution on the right

Fig. 7. 3x3 board solver walkthrough example.



Fig. 8. Block Diagram for Parallel Solver


